| id |
111e3856-34a7-445c-b43e-6065cb08d6c0 |
| user_id |
8684964a-bab1-4235-93a8-5fd5e24a1d0a |
| job_id |
bbminrkn-3650 |
| base_model_name |
xevyo |
| base_model_path |
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf... |
| model_name |
Longevity highly cross |
| model_desc |
Longevity highly cross linked |
| model_path |
/home/sid/tuning/finetune/backend/output/bbminrkn- /home/sid/tuning/finetune/backend/output/bbminrkn-3650/merged_fp16_hf... |
| source_model_name |
xevyo |
| source_model_path |
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf... |
| source_job_id |
xevyo-base-v1 |
| dataset_desc |
The Longevity® Highly Crosslinked Polyethylene bro The Longevity® Highly Crosslinked Polyethylene brochure is a detailed technical and clinical overview of Zimmer’s advanced polyethylene material engineered to dramatically reduce wear in total hip arthroplasty (THA). The document explains the science of crosslinking, outlines Zimmer’s proprietary manufacturing process, presents extensive laboratory and clinical evidence, and demonstrates how this material integrates with the Trilogy® Acetabular System to improve implant performance and durability.
⭐ Core Purpose of the Material
The brochure presents Longevity® Polyethylene as a solution to one of the most persistent challenges in hip replacement surgeries:
👉 polyethylene wear, which generates debris, causes osteolysis, and shortens implant lifespan.
Zimmer’s highly crosslinked formulation achieves up to:
89% wear reduction in laboratory hip-simulator tests
75–79% wear reduction in long-term clinical studies
These improvements significantly extend implant longevity and reduce revision surgery risk.
⭐ How It Works: The Science of Crosslinking
The brochure breaks down three possible outcomes of polyethylene irradiation:
Crosslinking (desired) – Creates molecular bridges for a stronger, wear-resistant 3D structure.
Recombination – Radicals reform at break points with no improvement.
Oxidative chain scission (undesired) – Leads to lower molecular weight and material degradation.
Zimmer uses high-dose electron-beam radiation and a proprietary process to:
maximize full crosslinking
eliminate virtually all free radicals
suppress oxidation
maintain all required ASTM and ISO mechanical properties
The result is a high-integrity polyethylene that resists both abrasive wear and long-term oxidative degradation.
⭐ Evidence: Laboratory & Clinical Performance
1. Hip Simulator Testing
Wear testing over millions of cycles demonstrated:
~89% reduction in wear (unaged)
~88% reduction in wear (aged)
~96% reduction in abrasive environments
Machining lines on Longevity® polyethylene remain visible even after 5 million cycles, indicating minimal surface damage—unlike standard polyethylene, where lines are worn away.
2. Clinical Studies
Oonishi Study (17.3-year follow-up)
Wear rate: 0.06 mm/year (crosslinked)
vs. 0.29 mm/year (standard) → 79% reduction
Wroblewski Study (10-year follow-up)
Wear rate: 0.04 mm/year (crosslinked)
vs. 0.16 mm/year (standard) → 75% reduction
These long-term results confirm that crosslinking provides durable, real-world improvements—not just simulation benefits.
⭐ Integration with the Trilogy® Acetabular System
The Longevity® liner is designed for the Trilogy® Cup, which offers:
full liner-to-shell congruency
proven fiber-metal mesh fixation
advanced locking mechanisms reducing micromotion (per ORS studies)
removable liners in standard, 10° and 20° elevated, and 7mm offset configurations
This system builds on the clinical heritage of the Harris/Galante and HGP II acetabular components.
⭐ Product Options & Technical Specifications
The brochure concludes with detailed engineering data, including:
polyethylene liner sizes
elevation and offset options
liner thickness relative to shell diameter
catalogue numbers for all configurations
It emphasizes that Longevity® Polyethylene:
meets or exceeds ASTM and ISO standards
maintains mechanical integrity after accelerated aging
minimizes oxidation risk due to near-zero free radicals
⭐ Overall Summary
The brochure positions Longevity® Highly Crosslinked Polyethylene as a major advancement in hip implant materials, offering:
dramatically reduced wear
outstanding long-term clinical results
superior oxidation resistance
strong mechanical performance
compatibility with a robust, proven acetabular system
It serves as both a technical reference for surgeons and a clinical evidence summary demonstrating why crosslinked polyethylene significantly extends the lifespan of total hip replacements.
If you want, I can also prepare:
✅ A simplified version for patients
✅ A surgeon-focused technical brief
✅ A comparison between Longevity® polyethylene and other implant materials
Just tell me!... |
| dataset_meta |
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/bbminrkn-3650/data/document.pdf", "num_examples": 68, "bad_lines": 0}... |
| dataset_path |
/home/sid/tuning/finetune/backend/output/bbminrkn- /home/sid/tuning/finetune/backend/output/bbminrkn-3650/data/bbminrkn-3650.json... |
| training_output |
null |
| status |
queued |
| created_at |
1765054746 |
| updated_at |
1765055334 |
| source_adapter_path |
NULL |
| adapter_path |
/home/sid/tuning/finetune/backend/output/bbminrkn- /home/sid/tuning/finetune/backend/output/bbminrkn-3650/adapter... |
| plugged_in |
False |