| id |
20a8b043-0def-4a3a-a89a-00b7ca900d0e |
| user_id |
8684964a-bab1-4235-93a8-5fd5e24a1d0a |
| job_id |
owtrjhku-1774 |
| base_model_name |
xevyo |
| base_model_path |
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf... |
| model_name |
Microbiome composition |
| model_desc |
Microbiome composition as a potential predictor |
| model_path |
/home/sid/tuning/finetune/backend/output/owtrjhku- /home/sid/tuning/finetune/backend/output/owtrjhku-1774/merged_fp16_hf... |
| source_model_name |
xevyo |
| source_model_path |
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf... |
| source_job_id |
xevyo-base-v1 |
| dataset_desc |
This PDF is a full 2024 research article investiga This PDF is a full 2024 research article investigating how the gut microbiome—the community of bacteria living in the digestive system—can help predict longevity and resilience in rabbits. It uses advanced genetic sequencing (16S rRNA) and statistical modeling to determine whether certain microbial profiles are linked to long-lived animals.
The core insight of the study is:
Rabbits with longer productive lives have distinct gut microbiome patterns, meaning gut bacteria can serve as biomarkers—or even selection tools—for improving longevity in breeding programs.
📘 Purpose of the Study
The research aims to determine:
Whether rabbits with different lifespans have distinct gut microbiota
If microbial composition can reliably classify rabbits as long-lived or short-lived
Which specific bacterial taxa are linked to resilience and longevity
Whether microbiome traits can be used in selection programs for healthier, longer-living animals
Ultimately, the study explores the idea that gut microbiome = a measurable trait for longevity.
🐇 Experimental Design
The study analyzed 95 maternal-line rabbits, divided into two major comparisons:
1. Line Comparison (DLINES)
Line A → standard maternal line with normal longevity
Line LP → a line selected specifically for long productive life (at least 25 parities)
2. Longevity Within Line LP (DLP)
LLP → rabbits that died or were culled early (≤ 2 parities)
HLP → rabbits that lived long (≥ 15 parities)
Soft feces samples were collected after first parity, DNA was extracted, and bacterial communities were sequenced.
🔬 Key Scientific Methods
The researchers used:
16S rRNA sequencing to identify bacterial species
Alpha and beta diversity analysis (Shannon index, Bray–Curtis, Jaccard)
PLS-DA (Partial Least Squares Discriminant Analysis) to classify rabbits based on microbial patterns
Bayesian statistical models to detect significant bacterial differences
This combination yields highly accurate biological and statistical classification.
🧠 Main Findings and Insights
1. Microbial Diversity Predicts Longevity
Line LP (long-lived) had significantly higher gut microbiome diversity than Line A.
High microbial diversity = better resilience + better health = longer productive life.
This supports the idea that a diverse gut ecosystem strengthens immunity and metabolism.
2. Specific Bacterial Groups Predict Longevity
The study identified bacterial genera strongly associated with long or short lifespan.
More abundant in long-lived rabbits (LP, HLP):
Uncultured Eubacteriaceae
Akkermansia
Christensenellaceae R-7 group
Parabacteroides
These taxa are linked to:
Improved gut barrier health
Better immune function
Higher resilience
Genetic regulation of microbiome composition
More abundant in short-lived rabbits (A, LLP):
Blautia
Colidextribacter
Clostridia UCG-014
Muribaculum
Ruminococcus
Some of these genera are associated with:
Inflammation
Poor health status
Early culling causes (e.g., mastitis)
Lower resilience
3. Machine Learning Accurately Classified Rabbits
PLS-DA models achieved:
91–94% accuracy in line classification
94–99% accuracy in classifying HLP vs LLP at the ASV level
This confirms the predictive power of gut microbiome profiles.
4. Genetics Influences Microbiome → Longevity
Because the longevity-selected LP line showed consistent microbiome differences under identical conditions, the study suggests:
Host genetics shapes microbiome
Microbiome contributes to longevity
The relationship is biological, not environmental
The findings support the “hologenome concept,” where host + microbes form a functional unit.
🧬 Major Implications
1. Microbiome as a Breeding Tool
Microbial markers could be used to:
Select rabbits genetically predisposed to resilience
Improve productivity and welfare
Reduce premature culling
2. Probiotics for Longevity
If specific beneficial bacteria influence lifespan, targeted probiotics could be developed to:
Strengthen immune defenses
Improve gut function
Extend productive life in animals
3. Sustainability in Livestock Production
Longer-lived, healthier animals reduce:
Replacement rates
Veterinary costs
Environmental impact
⭐ Overall Summary
This study concludes that the gut microbiome is closely linked to productive lifespan in rabbits. Long-lived animals have more diverse and favorable microbial communities, including taxa previously associated with resilience. The research identifies reliable microbial biomarkers that can distinguish high- and low-longevity rabbits with high accuracy. These findings open the door to using gut bacteria as powerful predictors—and even enhancers—of longevity in animal breeding systems.... |
| dataset_meta |
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/owtrjhku-1774/data/document.pdf", "num_examples": 44, "bad_lines": 0}... |
| dataset_path |
/home/sid/tuning/finetune/backend/output/owtrjhku- /home/sid/tuning/finetune/backend/output/owtrjhku-1774/data/owtrjhku-1774.json... |
| training_output |
null |
| status |
completed |
| created_at |
1764877673 |
| updated_at |
1764883940 |
| source_adapter_path |
NULL |
| adapter_path |
/home/sid/tuning/finetune/backend/output/owtrjhku- /home/sid/tuning/finetune/backend/output/owtrjhku-1774/adapter... |
| plugged_in |
False |