| dataset_desc |
Exceptional human longevity represents an extreme Exceptional human longevity represents an extreme phenotype characterized by individuals who survive to very old ages, such as centenarians (100+ years) or supercentenarians (110+ years), often with delayed onset of age-related diseases or resistance to lethal illnesses. This review synthesizes evidence on the multifactorial nature of longevity, integrating genetic, environmental, cultural, and geographical influences, and discusses health, demographic trends, biological mechanisms, biomarkers, and strategies that promote extended health span and life span.
Key Insights and Core Concepts
Exceptional longevity is defined by both chronological and biological age, emphasizing delayed functional decline and preservation of physiological function.
The biology of aging is heterogeneous, even among the oldest individuals, and no single biomarker reliably predicts longevity.
Longevity is influenced by disparate combinations of genes, environment, resiliency, and chance, shaped by culture and geography.
Compression of morbidity—delaying the onset of disability and chronic diseases—is a critical concept in successful aging.
Empirical strategies supporting longevity involve dietary moderation, regular physical activity, purposeful living, and strong social networks.
Genetic factors contribute to longevity but explain only about 25% of life span variance; environmental and behavioral factors play a dominant role.
Sex differences are notable: women generally live longer than men, with possible links to reproductive biology and hormonal factors.
Resiliency, the ability to respond to stressors and maintain homeostasis, is emerging as a key determinant of successful aging and extended longevity.
Timeline and Demographic Trends
Period/Year Event/Trend
Pre-20th century Probability of living to 100 was approximately 1 in 20 million at birth.
1995 Probability of living to 100 increased to about 1 in 50 for females in low mortality nations.
2009 Probability further increased to approximately 1 in 2.
2015 (Global data) Countries with oldest populations: Japan, Germany, Italy, Greece, Finland, Sweden.
2015 (Life expectancy at age 65) Japan, Macau, Singapore, Australia, Switzerland lead with 20-25 additional years expected.
2013 Last supercentenarian of note: Jiroemon Kimura died at age 116.
Ongoing Maximum human lifespan (~122 years) remains largely unchanged despite increasing average life expectancy.
Characteristics of Centenarians and Supercentenarians
Disease Onset and Morbidity:
Onset of common age-related diseases varies considerably; 24% of males and 43% of females centenarians diagnosed with one or more diseases before age 80.
15% of females and 30% of males remain disease-free at age 100.
Cognitive impairment is often delayed; about 25% of centenarians remain cognitively intact.
Cancer and vascular diseases often develop much later or not at all in supercentenarians.
Functional Status:
Many supercentenarians remain functionally independent or require minimal assistance.
Geographic Clustering of Longevity
Certain regions globally show high concentrations of exceptionally long-lived individuals, highlighting environmental and cultural influences:
Region Notable Longevity Factors
Okinawa, Japan Caloric restriction via “hara hachi bu” (eat until 80% full), plant-based “rainbow diet,” low BMI (~20 kg/m²), slower decline of DHEA hormone.
Sardinia, Italy Genetic lineage from isolated settlers, particularly among men, with unknown genetic traits contributing to longevity.
Loma Linda, California (Seventh Day Adventists) Abstinence from alcohol and tobacco, vegetarian diet, spirituality, lower stress hormone levels.
Nicoya Peninsula, Costa Rica; Ikaria, Greece Commonalities include plant-based diets, moderate eating, purposeful living, social support, exercise, naps, and possibly sunlight exposure.
Table 1 summarizes common longevity factors in clustered populations.
Table 1: Longevity Factors Associated With Geographic Clustering
Longevity Factors
Eating in moderation (small/moderate portions) and mostly plant-based diets, with lighter meals at the end of the day
Purposeful living (life philosophy, volunteerism, work ethic)
Social support systems (family/friends interaction, humor)
Exercise incorporated into daily life (walking, gardening)
Other nutritional factors (e.g., goat’s milk, red wine, herbal teas)
Spirituality
Maintenance of a healthy BMI
Other possible factors: sunshine, hydration, naps
Trends in Longevity and Morbidity
Life expectancy has increased mainly due to reductions in premature deaths (e.g., infant mortality, infectious diseases).
Maximum lifespan (~122 years) remains stable over the past two decades.
Healthy life years vary widely (25%-75% of life expectancy at age 65), with Nordic countries showing the highest expected healthy years.
Compression of morbidity models propose:
No delay in morbidity onset, increased morbidity duration.
Delay in morbidity onset with proportional increase in life expectancy.
Delay in morbidity onset with compression (shorter duration) of morbidity.
Evidence supports some compression of morbidity, but among those aged 85+, morbidity delay may be less pronounced.
Functional disability rates declined in the late 20th century but may be plateauing in the 21st century.
Mechanisms of Longevity
Genetic Influences
Genetic contribution to longevity is supported by:
Conservation of maximum lifespan across species.
Similar longevity in monozygotic twins.
Familial clustering of exceptional longevity.
Genetic diseases of premature aging.
Candidate genes and pathways associated with longevity include:
APOE gene variants (e.g., lower ε4 allele frequency in centenarians).
Insulin/IGF-1 signaling pathways.
Cholesteryl ester transfer protein.
Anti-inflammatory cytokines (e.g., IL-10).
Stress response genes (e.g., heat shock protein 70).
GH receptor exon 3 deletion linked to longer lifespan and enhanced GH sensitivity, especially in males.
Despite these, only ~25% of lifespan variance is genetic, emphasizing the larger role of environment and behavior.
Sex Differences
Women universally live longer than men, with better female survival starting early in life.
Female longevity may relate to reproductive history; older maternal age at last childbirth correlates with longer life.
The “grandmother hypothesis” proposes post-reproductive lifespan enhances offspring and grandchild survival.
Male longevity predictors include occupation and familial relatedness to male centenarians.
Lower growth hormone secretion may explain shorter stature and longer life in women.
Despite longer life, men often show better functional status at older ages.
Resiliency
Defined as the capacity to respond to or resist stressors that cause physiological decline.
Resiliency operates across psychological, physical, and physiological domains.
Examples involve resistance to frailty, cognitive impairment, muscle loss, sleep disorders, and multimorbidity.
Exercise may promote resiliency more effectively than caloric restriction.
Psychological resilience, including reduction of depression, correlates with successful aging.
Resiliency may explain why some centenarians survive despite earlier chronic diseases.
Strategies to Achieve Exceptional Longevity
Dietary Modification:
Moderate caloric restriction (CR) shown to extend lifespan in multiple species.
Human studies (e.g., CALERIE trial) show CR improves metabolic markers and slows biological aging, though sustainability and effects on maximum lifespan remain uncertain.
Benefits of CR in humans are linked to improved cardiovascular risk factors.
Antioxidant supplementation does not convincingly extend lifespan.
Physical Activity:
Regular moderate to vigorous exercise correlates with increased life expectancy and reduced mortality.
Physical activity benefits hold across BMI categories and are especially impactful in older adults.
Body Weight:
Optimal BMI range for longevity is 20.0–24.9 kg/m²; overweight and obesity increase mortality risk.
Social Engagement and Purposeful Living:
Strong social relationships reduce mortality risk comparable to quitting smoking.
Purpose in life associates with less cognitive decline and disability.
Productive engagement improves memory and overall well-being.
Measuring Successful Aging and Biomarkers of Longevity
Biomarkers of aging are sought to quantify biological age, improving prognosis and guiding interventions.
Ideal biomarkers should correlate quantitatively with age, be independent of disease processes, and respond to aging rate modifiers.
Challenges include separating primary aging from disease effects and confounding by nutrition or interventions.
Commonly studied biomarkers include:
Biomarker Category Examples and Notes
Functional Measures Gait speed, grip strength, daily/instrumental activities of daily living (ADLs), cognitive tests
Physiological Parameters Blood glucose, hemoglobin A1c, lipids, inflammatory markers (IL-6), IGF-1, immune cell profiles
Sensory Functions Hearing thresholds, cataract presence, taste and smell tests
Physical Attributes Height (especially in men), muscle mass, body composition
Genetic and Epigenetic Markers DNA methylation patterns, senescent cell burden
Family History Longevity in parents or close relatives
Biomarkers may help distinguish between biological and chronological age, aiding individualized health screening.
Studies in younger cohorts show biological aging varies widely even among same-aged individuals.
Inclusion of centenarians in biomarker research may reveal mechanisms linking health status to exceptional longevity.
Implications for Clinical Practice and Public Health
Increased life expectancy does not necessarily mean longer periods of disability.
Understanding biological age can improve screening guidelines and preventive care by tailoring interventions to individual risk.
Current screening often ignores differences between biological and chronological age, possibly leading to over- or under-screening.
Life expectancy calculators incorporating biological and clinical markers can inform decision-making.
Anticipatory health discussions should integrate biological aging measures for better patient guidance.
Conclusion
Exceptional human longevity results from complex, multifactorial interactions among genetics, environment, culture, lifestyle, resiliency, and chance.
Aging characteristics vary widely even among long-lived individuals.
No single biomarker currently predicts longevity; a combination of clinical, genetic, and functional markers holds promise.
Observations from the oldest old support empirical lifestyle strategies—moderate eating, regular exercise, social engagement, and purposeful living—that promote health span and potentially extend life span.
Advancing biomarker research and personalized health assessments will improve screening, clinical decision-making, and promote successful aging.
Keywords
Exceptional longevity, centenarians, supercentenarians, aging, biomarkers, compression of morbidity, genetic factors, caloric restriction, physical activity, resiliency, biological age, social engagement, sex differences, life expectancy, health span.
References
References are comprehensive and include epidemiological, genetic, physiological, and clinical studies spanning decades, with key contributions from population cohorts, animal models, and intervention trials.
This summary strictly reflects the source content, synthesizing key findings, concepts, and data related to exceptional human longevity without extrapolation beyond the original text.
Smart Summary... |