| id |
9ac2bd7f-87b9-4b9b-b3b5-afc2bbfe9a98 |
| user_id |
8684964a-bab1-4235-93a8-5fd5e24a1d0a |
| job_id |
zpxchqkn-8883 |
| base_model_name |
xevyo |
| base_model_path |
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf... |
| model_name |
Longevity and GAPDH |
| model_desc |
Longevity and GAPDH Stability |
| model_path |
/home/sid/tuning/finetune/backend/output/zpxchqkn- /home/sid/tuning/finetune/backend/output/zpxchqkn-8883/merged_fp16_hf... |
| source_model_name |
xevyo |
| source_model_path |
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf... |
| source_job_id |
xevyo-base-v1 |
| dataset_desc |
“Longevity and GAPDH Stability in Bivalves and Mam “Longevity and GAPDH Stability in Bivalves and Mammals” is a comparative gerontology study showing that exceptionally long-lived species maintain dramatically superior protein stability, and that this trait may be a key biological foundation of extreme longevity.
Using the enzyme GAPDH as a reporter for proteostasis, the authors test how well this essential, highly conserved protein maintains its structure and function under chemical stress (increasing concentrations of urea) across species with maximum lifespans ranging from 3 to 507 years. The findings reveal a striking, almost linear relationship between lifespan and protein stability.
The star of the study is the bivalve Arctica islandica, the longest-lived non-colonial animal on Earth (up to 507 years). Its GAPDH retains 45% activity even in 6 M urea, a concentration that completely destroys GAPDH activity in short-lived species such as Ruditapes (7-year lifespan) and even in standard laboratory mice. Humans and baboons also outperform mice, but none approach the proteomic resilience of long-lived bivalves.
The study rules out several possible stabilizing mechanisms:
Removing small molecules (<30 kDa), including most small heat shock proteins, does not impair stability.
Removing all N-linked and O-linked glycosylation also does not reduce stability.
This means the extreme proteostatic resistance of A. islandica must arise from other, yet-unknown factors, likely built into the inherent properties of its proteins or proteome-wide systems.
Because proteostasis collapse is central to aging and neurodegenerative diseases—and because long-lived species manage to prevent this collapse for centuries—the authors propose that identifying these stabilizing mechanisms could reveal new therapeutic strategies for protein-misfolding diseases (like Alzheimer’s) and possibly point toward interventions that slow aging itself.
In summary, the paper demonstrates that:
Protein stability is strongly correlated with species longevity.
Arctica islandica possesses extraordinary proteostasis, unmatched even by long-lived mammals.
The mechanisms behind this resistance remain unknown but are likely key to understanding extreme lifespan and age-related disease resistance.
This research establishes GAPDH stability as a powerful, convenient biomarker for comparative aging studies and highlights bivalves as a uniquely promising model for uncovering the biochemical secrets of long life.... |
| dataset_meta |
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/zpxchqkn-8883/data/document.pdf"}... |
| dataset_path |
/home/sid/tuning/finetune/backend/output/zpxchqkn- /home/sid/tuning/finetune/backend/output/zpxchqkn-8883/data/zpxchqkn-8883.json... |
| training_output |
null |
| status |
failed |
| created_at |
1764881786 |
| updated_at |
1764886300 |
| source_adapter_path |
NULL |
| adapter_path |
/home/sid/tuning/finetune/backend/output/zpxchqkn- /home/sid/tuning/finetune/backend/output/zpxchqkn-8883/adapter... |
| plugged_in |
False |