| dataset_desc |
This study investigates gender differences in mito This study investigates gender differences in mitochondrial bioenergetics, oxidative stress, and apoptosis in the C57Bl/6J (B6) mouse strain, a commonly used laboratory rodent model that shows no significant differences in longevity between males and females. The research explores whether the previously observed gender-based differences in longevity and oxidative stress in other species, often attributed to higher estrogen levels in females, are reflected in mitochondrial function and apoptotic markers in this mouse strain.
Background and Rationale
It is widely observed that in many species, females tend to live longer than males, often explained by higher estrogen levels in females potentially reducing oxidative damage.
However, this trend is not universal: in some species including certain mouse strains (C57Bl/6J), longevity does not differ between sexes, and in others (e.g., Syrian hamsters, nematodes), males may live longer.
Previous studies in rat strains (Wistar, Fischer 344) with female longevity advantage showed lower mitochondrial reactive oxygen species (ROS) production and higher antioxidant defenses in females.
The Mitochondrial Free Radical Theory of Aging suggests that aging rate is related to mitochondrial ROS production, which causes oxidative damage.
This study aims to test if gender differences in mitochondrial bioenergetics, ROS production, oxidative stress, and apoptosis exist in B6 mice, which do not show sex differences in lifespan.
Experimental Design and Methods
Animals: 10-month-old male (n=11) and female (n=12) C57Bl/6J mice were used.
Tissues studied: Heart, skeletal muscle (gastrocnemius + quadriceps), and liver.
Mitochondrial isolation: Tissue-specific protocols were used to isolate mitochondria immediately post-sacrifice.
Measurements performed:
Mitochondrial oxygen consumption: State 3 (active) and State 4 (resting) respiration measured polarographically.
ATP content: Determined via luciferin-luciferase assay in freshly isolated mitochondria.
ROS production: H2O2 generation from mitochondrial complexes I and III measured fluorometrically with specific substrates and inhibitors.
Oxidative stress markers:
Protein carbonyls in cytosolic fractions (ELISA).
8-hydroxy-2′-deoxyguanosine (8-oxodG) levels in mitochondrial DNA (HPLC-EC-UV).
Apoptosis markers:
Caspase-3 and caspase-9 activity (fluorometric assays).
Cleaved caspase-3 protein (Western blot).
Mono- and oligonucleosomes (DNA fragmentation, ELISA).
Key Quantitative Results
Parameter Tissue Male (Mean ± SEM) Female (Mean ± SEM) Statistical Difference
Body weight (g) Whole body 30.1 ± 0.55 24.1 ± 1.04 Male > Female (p<0.001)
Heart weight (mg) Heart 171 ± 0.01 135 ± 0.01 Male > Female (p<0.001)
Liver weight (g) Liver 1.52 ± 0.09 1.15 ± 0.09 Male > Female (p<0.01)
Skeletal muscle weight (mg) Quadriceps + gastrocnemius ~403 (sum) ~318 (sum) Male > Female (p<0.001)
Oxygen Consumption (nmol O2/min/mg protein) Heart, State 3 77.8 ± 7.5 65.0 ± 7.3 No significant difference
Skeletal Muscle, State 3 61.4 ± 4.9 64.8 ± 5.5 No significant difference
Liver, State 3 36.1 ± 4.5 34.9 ± 2.5 No significant difference
ATP content (nmol ATP/mg protein) Heart 3.7 ± 0.5 2.8 ± 0.4 No significant difference
Skeletal Muscle 0.12 ± 0.05 0.28 ± 0.06 No significant difference
ROS production (nmol H2O2/min/mg protein) Heart (complex I substrate) 0.7 ± 0.1 0.7 ± 0.05 No difference
Skeletal muscle (succinate) 5.9 ± 0.6 7.5 ± 0.5 Female > Male (p<0.05)
Liver (complex I substrate) 0.13 ± 0.05 0.13 ± 0.05 No difference
Protein carbonyls (oxidative damage marker) Heart, muscle, liver No difference No difference No significant difference
8-oxodG in mtDNA (oxidative DNA damage) Skeletal muscle, liver No difference No difference No significant difference
Caspase-3 and Caspase-9 activity (apoptosis markers) Heart, muscle, liver No difference No difference No significant difference
Cleaved caspase-3 (Western blot) Heart, muscle, liver No difference No difference No significant difference
Mono- and oligonucleosomes (DNA fragmentation) Heart, muscle, liver No difference No difference No significant difference
Core Findings and Interpretations
No significant sex differences were found in mitochondrial oxygen consumption or ATP content in heart, skeletal muscle, or liver mitochondria.
Mitochondrial ROS production rates were similar between sexes in heart and liver; only female skeletal muscle showed slightly higher ROS production with succinate substrate, an isolated finding.
Measures of oxidative damage to proteins and mitochondrial DNA did not differ between males and females.
Markers of apoptosis (caspase activities, cleaved caspase-3, DNA fragmentation) were not different between sexes in any tissue examined.
Despite females having higher estrogen levels, no associated protective effect on mitochondrial bioenergetics, oxidative stress, or apoptosis was observed in this mouse strain.
The lack of differences in mitochondrial function and oxidative damage correlates with the absence of sex differences in lifespan in the C57Bl/6J strain.
These data support the Mitochondrial Free Radical Theory of Aging, emphasizing the role of mitochondrial ROS production in aging rate, independent of estrogen-mediated effects.
The study suggests that body size differences might explain sex differences in longevity and oxidative stress observed in other species (e.g., rats), as mice exhibit smaller body weight differences between sexes.
The estrogen-related increase in antioxidant defenses or mitochondrial function is not universal, and estrogen’s protective role may vary by species and strain.
Apoptosis rates do not differ between sexes in middle-aged mice, but differences could potentially emerge at older ages (not specified).
Timeline Table: Key Experimental Procedures
Step Description
Animal age at study 10 months old male and female C57Bl/6J mice
Tissue collection and mitochondrial isolation Heart, skeletal muscle, liver isolated post-sacrifice
Measurements Oxygen consumption, ATP content, ROS production, oxidative damage, apoptosis markers
Data analysis Statistical comparison of males vs females
Keywords
Mitochondria
Reactive Oxygen Species (ROS)
Oxidative Stress
Apoptosis
Mitochondrial DNA (mtDNA)
Estrogen
Longevity
C57Bl/6J Mice
Mitochondrial Free Radical Theory of Aging
Conclusions
In the C57Bl/6J mouse strain, gender does not influence mitochondrial bioenergetics, oxidative stress levels, or apoptosis markers, consistent with the lack of sex differences in longevity in this strain.
Higher estrogen levels in females do not confer measurable mitochondrial protection or reduced oxidative stress in this model.
The results suggest that oxidative stress generation, rather than estrogen levels, determines aging rate in this species.
Body size and species-specific factors may underlie observed sex differences in longevity and oxidative stress in other animals.
Further research is needed in models where males live longer than females (e.g., Syrian hamsters) and in older animals to clarify the influence of sex on apoptosis and aging.
Key Insights
Gender differences in mitochondrial ROS production and apoptosis are not universal across species or strains.
Estrogen’s role in modulating mitochondrial function and oxidative stress is complex and strain-dependent.
Mitochondrial ROS production remains a central factor in aging independent of sex hormones in the studied mouse strain.
Additional Notes
The study used well-controlled, comprehensive biochemical and molecular assays to evaluate mitochondrial function and apoptosis.
The findings challenge the assumption that female longevity advantage is directly mediated by estrogen effects on mitochondria.
The lack of sex differences in this mouse strain provides a useful baseline for comparative aging studies.
This summary reflects the study’s content strictly as presented, without introducing unsupported interpretations or data.
Smart Summary... |