|
18fd08d5-0906-4755-a42d-c8cdb6c5444c
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
boxdllhf-1698
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
3 Basic Practical
|
3 Basic Practical Microbiology
|
/home/sid/tuning/finetune/backend/output/boxdllhf- /home/sid/tuning/finetune/backend/output/boxdllhf-1698/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
1. THE CORE MESSAGE
TOPIC HEADING:
Oral Health i 1. THE CORE MESSAGE
TOPIC HEADING:
Oral Health is Integral to General Health
EASY EXPLANATION:
The most important concept in these reports is that the mouth is not separate from the rest of the body. The Surgeon General states clearly: "You cannot be healthy without oral health." The mouth is a window to your overall well-being. It affects how you eat, speak, smile, and even how you feel about yourself.
KEY POINTS:
Fundamental Connection: Oral health means more than just healthy teeth; it includes healthy gums, bones, and tissues.
The Mirror: The mouth reflects the health of the rest of the body.
Overall Well-being: Poor oral health leads to needless pain and suffering, which diminishes quality of life.
Integration: Oral health must be embedded in the framework of the whole body's health.
2. HISTORY & PROGRESS
TOPIC HEADING:
A History of Success: The Power of Prevention
EASY EXPLANATION:
Fifty years ago, most Americans expected to lose their teeth by middle age. Today, most people keep their teeth for a lifetime. This amazing success is largely due to fluoride and scientific research. We shifted from just "drilling and filling" to preventing disease before it starts.
KEY POINTS:
Past Struggles: The nation was once plagued by toothaches and widespread tooth loss.
The Turning Point: Research proved that fluoride effectively prevents dental caries (cavities).
Public Health Achievement: Community water fluoridation is one of the great public health achievements of the 20th century.
Scientific Shift: We moved from simply "fixing" teeth to understanding that dental diseases are bacterial infections that can be prevented.
3. THE CRISIS (DISPARITIES)
TOPIC HEADING:
The "Silent Epidemic": Oral Health Disparities
EASY EXPLANATION:
Despite national progress, there is a hidden crisis. The Surgeon General calls it a "silent epidemic." This means that oral diseases are rampant among specific groups of people: the poor, minorities, the elderly, and people with disabilities. These groups suffer from pain and infection that the rest of society rarely sees.
KEY POINTS:
The Silent Epidemic: A term describing the burden of disease affecting the vulnerable.
Vulnerable Groups: Poor children, older Americans, racial/ethnic minorities, and people with disabilities.
The Consequence: These groups have the highest rates of disease but the least access to care.
Social Determinants: Where you live, your income, and your education level determine your oral health.
4. THE DATA (STATISTICS)
TOPIC HEADING:
Oral Health in America: By the Numbers
EASY EXPLANATION:
The data shows that oral diseases are still very common in the United States. Millions of people suffer from untreated cavities, gum disease, and oral cancer. The cost of treating these problems is incredibly high.
KEY POINTS:
Childhood Decay: 42.6% of children (ages 1–9) have untreated cavities in their baby teeth.
Adult Decay: 24.3% of people (ages 5+) have untreated cavities in their set of permanent teeth.
Health Status: 15.7% of adults (ages 15+) have severe periodontal (gum) disease.
Tooth Loss: 10.2% of adults (ages 20+) have lost all their teeth (edentulism).
Cancer: There are approximately 24,470 new cases of lip and oral cavity cancer annually.
5. CAUSES & RISKS
TOPIC HEADING:
Risk Factors: Sugar, Tobacco, and Lifestyle
EASY EXPLANATION:
Oral health is heavily influenced by what we put into our bodies. The two biggest drivers of oral disease are sugar (which causes cavities) and tobacco (which causes cancer and gum disease). Commercial industries that market these products also play a role.
TOPIC HEADINGS:
Sugar: Americans consume a massive amount of sugar: 90.7 grams per person per day. This drives tooth decay.
Tobacco: 23.4% of the population uses tobacco, a major cause of gum disease and oral cancer.
GAP in Policy: The U.S. does not currently implement a tax on sugar-sweetened beverages (SSB).
Alcohol: Excessive alcohol consumption is a known risk factor for oral cancer.
6. SYSTEMIC CONNECTIONS
TOPIC HEADING:
The Mouth-Body Connection
EASY EXPLANATION:
The health of your mouth can directly affect the rest of your body. Oral infections can worsen other serious medical conditions. For example, gum disease makes it harder to control blood sugar in diabetics, and bacteria from the mouth can travel to the heart.
KEY POINTS:
Diabetes: There is a strong link between gum disease and diabetes; treating gum disease can lower healthcare costs for diabetics.
Heart & Lungs: Research points to associations between oral infections and heart disease, stroke, and respiratory infections.
Pregnancy: Poor oral health is linked to premature and low-birth-weight babies.
Shared Risks: Smoking and poor diet damage both the mouth and the body.
7. ECONOMIC IMPACT
TOPIC HEADING:
The High Cost of Oral Disease
EASY EXPLANATION:
Oral disease is expensive. It costs billions of dollars to treat and results in billions of dollars lost in productivity because people miss work or school due to tooth pain.
KEY POINTS:
Spending: The US spends $133.5 billion annually on dental healthcare (approx. $405 per person).
Productivity Loss: The economy loses $78.5 billion due to missed work/school from oral problems.
Affordability: High out-of-pocket costs put economically insecure families at risk of poverty.
8. BARRIERS TO CARE
TOPIC HEADING:
Why Can't People Get Care?
EASY EXPLANATION:
Even though we have the technology to fix teeth, many Americans cannot access them. The main reasons are money (lack of insurance), location (living in rural areas), and time (can't take off work).
KEY POINTS:
Lack of Insurance: Dental insurance is less common than medical insurance; Medicare often does not cover it. Only 15% are covered by the largest government scheme.
Cost: Dental care is often too expensive for low-income families.
Geography: People in rural areas often have to travel long distances to find a dentist.
Workforce: While there are ~200,000 dentists, they are often concentrated in wealthy areas, leaving rural and poor areas underserved.
9. SOLUTIONS & FUTURE ACTION
TOPIC HEADING:
A Framework for Action: The Call to Improve Oral Health
EASY EXPLANATION:
To fix the crisis, the nation needs to focus on prevention (stopping disease before it starts) and partnerships (working together). We need to integrate dental care into general medical care and focus on the goals of "Healthy People 2010/2030."
KEY POINTS:
Prevention First: Focus on fluoride, sealants, and education rather than just drilling.
Integration: Dental and medical professionals need to work together in teams (interprofessional care).
Policy Change: Implement taxes on sugary drinks and expand insurance coverage.
Partnerships: Government, private industry, schools, and communities must collaborate to eliminate disparities.
Workforce: Train a more diverse workforce to serve vulnerable communities.
HOW TO USE THIS FOR QUESTIONS:
Slide Topics: Use the Topic Headings directly as your slide titles.
Bullets: Use the Key Points as the bullet points on your slides.
Script: Read the Easy Explanations to guide what you say to the audience.
Quiz: Turn the Key Points into questions (e.g., "What percentage of children have untreated cavities?" or "Name two barriers to...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/boxdllhf-1698/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/boxdllhf- /home/sid/tuning/finetune/backend/output/boxdllhf-1698/data/boxdllhf-1698.json...
|
null
|
queued
|
1769090999
|
1769090999
|
NULL
|
/home/sid/tuning/finetune/backend/output/boxdllhf- /home/sid/tuning/finetune/backend/output/boxdllhf-1698/adapter...
|
False
|
Edit
Delete
|
|
2d8cd291-5524-4755-b3c7-2b6b234448d8
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
bmcbmjcr-7410
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
INTERGENERATIONAL
|
INTERGENERATIONAL CORRELATIONS IN LONGEVITY
|
/home/sid/tuning/finetune/backend/output/bmcbmjcr- /home/sid/tuning/finetune/backend/output/bmcbmjcr-7410/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Intergenerational Correlations in Longevity” is a “Intergenerational Correlations in Longevity” is a research paper that investigates the degree to which lifespan is passed from one generation to the next—specifically, how strongly the longevity of parents predicts the longevity of their children. The study uses a large dataset covering individuals born between 1880 and 1910, enabling the authors to analyze long-run patterns in mortality and survival across families.
The central aim of the paper is to estimate the strength and structure of longevity inheritance. The authors measure correlations in lifespan between fathers and sons, mothers and daughters, and across mixed parent–child pairs. Their findings show that the intergenerational correlation in longevity is statistically significant but modest, suggesting that while genetics play an important role, environmental and lifestyle factors also substantially influence lifespan.
To ensure accurate measurement, the paper controls for factors such as shared environment, early-life conditions, birth order, gender differences, and socio-economic status. Using ranked lifespan measures and regression techniques, the study finds that:
Parental longevity is positively associated with children’s longevity.
Same-sex parent–child correlations tend to be slightly stronger (e.g., mother–daughter, father–son).
The correlations are not strong enough to explain wide disparities in lifespan, implying that genetics cannot fully account for longevity outcomes.
Shared family environment and socio-economic variables partially account for similarities across generations.
The study concludes that longevity is shaped by a combination of genetic inheritance, shared family conditions, and individual life choices. The results have implications for understanding population health, forecasting mortality, and evaluating pension and insurance models that rely on accurate predictions of life expectancy.
If you want, I can also provide:
✅ A short 3–4 line summary
✅ A simple student-friendly version
✅ Quiz / MCQs from this file
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/bmcbmjcr-7410/data/document.pdf", "num_examples": 488, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/bmcbmjcr- /home/sid/tuning/finetune/backend/output/bmcbmjcr-7410/data/bmcbmjcr-7410.json...
|
null
|
completed
|
1765224942
|
1765228612
|
NULL
|
/home/sid/tuning/finetune/backend/output/bmcbmjcr- /home/sid/tuning/finetune/backend/output/bmcbmjcr-7410/adapter...
|
False
|
Edit
Delete
|
|
4049b9b7-8736-4425-92de-01b9ed099ed3
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
blxnbukh-0859
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Family matters
|
Family matters in unravelling human longevity
|
/home/sid/tuning/finetune/backend/output/blxnbukh- /home/sid/tuning/finetune/backend/output/blxnbukh-0859/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Human life expectancy has doubled over the past 20 Human life expectancy has doubled over the past 200 years in industrialized countries, yet the period spent in good physical and cognitive health remains relatively short. A significant proportion of elderly individuals suffer from multiple chronic diseases; for instance, 70% of 65-year-olds and 90% of 85-year-olds have at least one disease, averaging four diseases per person. In contrast, a small subset of individuals achieves exceptional longevity without typical age-related diseases such as hypertension, cancer, or type 2 diabetes. Understanding these individuals is crucial because they likely possess gene-environment interactions that promote longevity, disease resistance, and healthy aging.
Key Insights on Longevity Research
Most knowledge on aging mechanisms is derived from animal models, which identified nine hallmarks of aging and implicated glucose and fat metabolism pathways in longevity.
Human longevity is far more complex due to heterogeneity in genomes, lifestyles, environments, and social factors.
Genetic factors contribute approximately 25% to lifespan variation, with a stronger influence observed in long-lived individuals as indicated by familial clustering.
Despite extensive genetic research, only two genes—APOE and FOXO3A—have been consistently associated with longevity.
The lack of a consistent definition of heritable longevity complicates genetic studies, often mixing sporadic long-lived cases with those from long-lived families.
The increase in centenarians (e.g., from 1 in 10,000 to 2 in 10,000 in the US between 1994 and 2012) reflects the presence of sporadically long-lived individuals, which confounds genetic analyses.
Challenges in Genetic Longevity Studies
Genome Wide Association Studies (GWAS) face difficulties because controls (average-lived individuals) might later become long-lived, blurring case-control distinctions.
Recent findings emphasize the importance of rare and structural genetic variants alongside common single nucleotide polymorphisms (SNPs).
Socio-behavioral and environmental factors (lifestyle, socio-economic status, social networks, living environment) significantly influence aging but are rarely integrated into genetic studies.
There is limited knowledge about how these non-genetic factors cluster within long-lived families.
Advances Through Family-Based Research
Two recent studies using large family tree databases—the Utah Population Database (UPDB), LINKing System for historical family reconstruction (LINKS), and Historical Sample of the Netherlands Long Lives (HSN-LL)—demonstrated that:
Longevity is transmitted across generations only if ≥30% of ancestors belong to the top 10% longest-lived of their birth cohort, and the individual themselves is in the top 10% longest-lived.
Approximately 27% of individuals with at least one long-lived parent did not show exceptional survival, indicating sporadic longevity.
To address this, the Longevity Relatives Count (LRC) score was developed to identify genetically enriched long-lived individuals, improving case selection for genetic studies and reducing sporadic longevity inclusion.
Opportunities and Recommendations
Increasing availability of population-wide family tree data (e.g., Netherlands’ civil certificate linkage, Denmark’s initiatives) enables broader analysis of long-lived families rather than individuals alone.
Integrating gene-environment (G x E) interactions by combining genetic data with genealogical, socio-behavioral, and environmental information is essential to unravel mechanisms of longevity.
Epidemiological studies should:
Recruit members from heritable longevity families.
Collect comprehensive molecular, socio-behavioral, and environmental data.
Include analyses of rare and structural genetic variants in addition to common SNPs.
Cohorts like the UK Biobank can improve the distinction between cases and controls by incorporating the LRC score based on ancestral survival data.
Conclusion
The success of genetic studies on human longevity depends on:
Applying precise, consistent definitions of heritable longevity.
Utilizing family-based approaches and large-scale genealogical data.
Incorporating non-genetic covariates such as socio-behavioral and environmental factors.
Studying interactions between genes and environment to gain comprehensive mechanistic insights into healthy aging and longevity.
Quantitative Data Table
Parameter Statistic/Description
Increase in centenarians From 1 in 10,000 (1994) to 2 in 10,000 (2012)
% of 65-year-olds with ≥1 disease 70%
% of 85-year-olds with ≥1 disease 90%
Average number of diseases in elderly 4
Genetic contribution to lifespan ~25% overall, higher in long-lived families
Ancestor longevity threshold for heritability ≥30% ancestors in top 10% longest-lived cohort
Proportion with survival similar to general population despite long-lived parent 27%
Keywords
Human longevity
Healthy aging
Gene-environment interaction (G x E)
Genetic variation
Familial clustering
Longevity Relatives Count (LRC) score
Genome Wide Association Studies (GWAS)
Rare and structural variants
Socio-behavioral factors
Epidemiological studies
Population-wide family tree databases
References
References are based on the original source and include studies on aging, longevity genetics, and epidemiological family databases....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/blxnbukh-0859/data/document.pdf", "num_examples": 35, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/blxnbukh- /home/sid/tuning/finetune/backend/output/blxnbukh-0859/data/blxnbukh-0859.json...
|
null
|
completed
|
1764952101
|
1764952164
|
NULL
|
/home/sid/tuning/finetune/backend/output/blxnbukh- /home/sid/tuning/finetune/backend/output/blxnbukh-0859/adapter...
|
False
|
Edit
Delete
|
|
85ad197b-cb36-4d0c-b385-234e092c9ea8
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
bjvkayqt-7211
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity diet
|
Longevity diet
|
/home/sid/tuning/finetune/backend/output/bjvkayqt- /home/sid/tuning/finetune/backend/output/bjvkayqt-7211/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a practical, visually structured nutri This PDF is a practical, visually structured nutrition guide that outlines a science-backed eating pattern designed to support healthy ageing, improved metabolism, reduced inflammation, and extended lifespan. It provides simple, specific food swaps, evidence-based recommendations, and 10 core rules to help individuals build a dietary pattern associated with longevity and long-term health.
The core message:
Eat more whole, nutrient-dense, plant-focused foods; reduce processed sugars, starches, and red meat; support your microbiome; stay hydrated; and use supplements to address common nutrient gaps.
🥦 What the Longevity Diet Promotes
The PDF gives clear guidance on replacing unhealthy or ageing-accelerating foods with healthier alternatives:
1. Replace refined starches with nutrient-dense foods
Swap bread, pasta, potatoes, and rice for:
Vegetables
Legumes
Mushrooms
Whole grains like quinoa
Oatmeal, chia porridge, chickpea porridge, blended cauliflower porridge
Longevity-Diet
2. Replace red meat with healthier protein sources
Minimize beef, pork, and lamb — especially processed meats.
Replace with:
Fatty fish (salmon, sardines, herring, anchovies, mackerel)
Poultry
Eggs
Mushrooms
Tofu, tempeh, miso, natto
Plant-based or mushroom-based meats
Longevity-Diet
3. Replace unhealthy fats with longevity fats
Avoid butter, margarine, heavy dressings.
Use instead:
Extra virgin olive oil
Walnut oil
Flaxseed oil
Avocado and avocado oil
Longevity-Diet
4. Replace sugar and salt with healthier flavoring
Use:
Herbs and spices (turmeric, rosemary, basil, mint, cinnamon, etc.)
Natural acids (vinegar, lemon juice)
Lite Salt (45% sodium, 55% potassium) for improved electrolytes
Longevity-Diet
5. Replace cow’s milk with plant-based milks
Options: coconut, hemp, pea milk.
Low-sugar plant-based yogurt is also recommended.
Longevity-Diet
6. Replace sugary drinks with longevity beverages
Avoid soft drinks and commercial juices.
Use instead:
Water (flavored naturally if desired)
Tea (green, white, chamomile, ginger)
Coffee in moderation (1–4 cups/day, not within 10 hours of bedtime)
Longevity-Diet
7. Replace sugary snacks with natural sweet foods
Choose:
Blueberries
Apples
Fruits generally
Natural sweeteners if needed
Dark chocolate (≥70% cocoa) instead of processed sweets
Longevity-Diet
🔬 Supplement Strategy for Longevity
The PDF highlights supplements that often fill nutritional gaps even in healthy diets:
B vitamins
Iodine
Selenium
Vitamin D
Vitamin K2
Magnesium
Fish oil (low oxidation) for those not eating enough fatty fish
It also encourages “longevity supplements” like NOVOS Core, Vital, and Boost.
Longevity-Diet
🔟 The 10 Simple Rules of the Longevity Diet
I. Replace starches with nutrient-rich foods
Vegetables, legumes, mushrooms, quinoa; nutritious breakfast alternatives.
Longevity-Diet
II. Get the right amount of protein
0.6–0.8 g per pound of bodyweight (higher for athletes/older adults).
Longevity-Diet
III. Limit red meat; prioritize fish and plant proteins
Supports cardiovascular, metabolic, and longevity outcomes.
Longevity-Diet
IV. Hydrate with mineral water, tea, coffee, veggie smoothies
Green/white tea and coffee offer antioxidant benefits.
Longevity-Diet
V. Eat slightly less (content, not full)
Aim for eucaloric or slightly hypocaloric intake.
Longevity-Diet
VI. Keep your diet diverse — 30+ ingredients weekly
Diversity improves gut microbiome, mood, and whole-body resilience.
Longevity-Diet
VII. Avoid deficiencies; consume longevity molecules
Use supplements and nutrient-dense foods to cover common gaps.
Longevity-Diet
VIII. Eat fermented foods daily
Kimchi, sauerkraut, natto, kombucha, yogurt — for microbiome health.
Longevity-Diet
IX. Minimize alcohol
Even small amounts negatively affect longevity; keep minimal or occasional.
Longevity-Diet
X. Replace animal milk with plant-based milks
Low-sugar options preferred; cheese allowed in moderation.
Longevity-Diet
⭐ Overall Summary
The Longevity Diet PDF is a concise, practical blueprint for eating and living in a way that supports long-term health, slow biological ageing, and improved metabolic stability. Its approach combines:
Whole foods
High dietary diversity
Anti-inflammatory choices
Optimized protein
Healthy fats
Hydration
Microbiome nourishment
Evidence-based supplementation
Together, these strategies form a lifestyle designed to maximize health span and potentially extend lifespan....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/bjvkayqt-7211/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/bjvkayqt- /home/sid/tuning/finetune/backend/output/bjvkayqt-7211/data/bjvkayqt-7211.json...
|
null
|
failed
|
1764878566
|
1764879770
|
NULL
|
/home/sid/tuning/finetune/backend/output/bjvkayqt- /home/sid/tuning/finetune/backend/output/bjvkayqt-7211/adapter...
|
False
|
Edit
Delete
|
|
6aa63705-0e27-4660-b422-8d502320214f
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
bjfzsdnp-2316
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Population Aging and Live
|
Population Aging and Living Arrangements in Asia
|
/home/sid/tuning/finetune/backend/output/bjfzsdnp- /home/sid/tuning/finetune/backend/output/bjfzsdnp-2316/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This comprehensive paper examines how Asia’s unpre This comprehensive paper examines how Asia’s unprecedented population aging is transforming family structures, living arrangements, and caregiving systems. With Asia home to 58.5% of the world’s older adults—a number expected to double to 1.3 billion by 2050—the region faces both profound challenges and opportunities. The study synthesizes demographic data, cultural patterns, and policy responses across Asia to explain how families and governments must adapt to a rapidly greying society.
At its core, the paper argues that living arrangements are the foundation of older adults’ well-being in Asia. Because families traditionally provide care, shifts from multigenerational living to living-alone and “network” arrangements directly affect the physical, psychological, and economic security of older people.
🧩 Major Themes & Findings
1. Asia Is Aging Fast—Faster Than Any Other Region
In 2022, 649 million Asians were aged 60+.
By 2050, one in four Asians will be over 60.
The 80+ population is growing the fastest, increasing pressure on care systems.
Population Aging and Living Arr…
Aging is uneven—East Asia is already old, South Asia is aging quickly due to India’s massive population, while Southeast and West Asia are in earlier stages.
2. Traditional Family-Based Care Still Dominates
Across Asia, older adults overwhelmingly rely on family-based care, but the forms are changing:
Co-residence (living with children) remains common.
Living alone is rising, especially among women and the oldest old.
Network model (living independently but near adult children) is expanding.
Population Aging and Living Arr…
These changes stem from:
Urbanization
Smaller family sizes
Migration of adult children
Rising female employment
3. Different Living Arrangement Models Affect Well-Being
The paper identifies three major models:
A. Co-residence Model
Multigenerational living
Provides financial + emotional support
Strengthens intergenerational cooperation
B. Network Model (Near-but-Not-With)
Older adults live independently, children nearby
Balances autonomy with support
Reduces conflict while improving cognitive and emotional health
C. Solitary Model (Living Alone / Institutions)
Higher loneliness, depression, poverty risks
Growing especially in East Asia and urban areas
Population Aging and Living Arr…
4. Country Differences Are Significant
Japan
Highly aged; many one-person older households; strong state systems.
China
Still reliant on children for care; rapid shift toward solitary and network models; rising burden on working families.
India
Low current aging but huge future burden; tradition of sons supporting parents persists but migration increases skipped-generation households.
Indonesia
Multigenerational living strong; gendered caregiving norms (daughters provide more care).
Population Aging and Living Arr…
5. Families Remain the Backbone—But Can’t Handle It Alone
The paper stresses that family caregiving is essential in Asia’s cultural and economic context—but families often lack:
Time
Skills
Financial resources
Proximity (due to migration)
Thus, governments must build a “family+ system” where families lead, supported by:
Communities
NGOs
Local governments
Technology
Population Aging and Living Arr…
🛠️ Policy Directions & Responses
1. Encourage and Support Family Caregiving
Financial incentives for adult children
Flexible work for caregivers
Tax benefits
Public recognition
Population Aging and Living Arr…
2. Build a “Family+” Long-Term Care System
A multi-subject model where:
Families provide core care
Communities supply services
Government supplies insurance, health care, and infrastructure
Technology reduces caregiving burden
3. Strengthen Support for Family Caregivers
Training
Psychological counseling
Respite services
Professional backup support
4. Integrate Technology Into Home-Based Care
Smart aging platforms
Remote monitoring
Assistive devices
Population Aging and Living Arr…
5. Build National Policies Aligned With Development Levels
High-income countries (Japan, Singapore, South Korea):
→ Advanced pensions, LTC systems, and smart technology.
Middle/lower-income countries (China, Indonesia, India):
→ Expanding basic pensions; piloting LTC; early-stage tech adoption.
🌍 Best Practice Case Studies
The paper presents successful models:
China: Community-based, tech-enabled “multiple pillars” home care system.
Japan: Fujisawa Smart Town integrating mobility, wellness, and smart infrastructure.
India: Tata Trusts comprehensive rural elder-care programs.
Indonesia: “Bantu LU” income support + social rehabilitation for older adults.
Population Aging and Living Arr…
🧭 Conclusion
Asia is experiencing the largest and fastest aging transition in human history. As family structures transform, the region must shift from purely family-based care to family-centered but state-supported systems. The future of aging in Asia will depend on:
Strengthening intergenerational ties
Supporting caregivers
Expanding long-term care
Deploying technology
Building culturally appropriate policies
This paper provides an essential blueprint for how Asian societies can protect dignity, well-being, and sustainability in an era of rapid demographic change....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/bjfzsdnp-2316/data/document.pdf", "num_examples": 80, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/bjfzsdnp- /home/sid/tuning/finetune/backend/output/bjfzsdnp-2316/data/bjfzsdnp-2316.json...
|
null
|
completed
|
1764875217
|
1764878272
|
NULL
|
/home/sid/tuning/finetune/backend/output/bjfzsdnp- /home/sid/tuning/finetune/backend/output/bjfzsdnp-2316/adapter...
|
False
|
Edit
Delete
|
|
50cff38b-6b07-4738-86ef-915561066778
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
biqpalws-0958
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Clinical guidelines
|
Clinical guidelines - Diagnosis and treatment
|
/home/sid/tuning/finetune/backend/output/biqpalws- /home/sid/tuning/finetune/backend/output/biqpalws-0958/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Complete Description of the Document
The Clinical Complete Description of the Document
The Clinical Guidelines – Diagnosis and Treatment Manual is a comprehensive field reference published by Médecins Sans Frontières (Doctors Without Borders), designed for medical professionals working in curative care settings such as dispensaries and primary hospitals. This manual serves as a practical, evidence-based guide to diagnosing and managing the most prevalent diseases encountered in resource-limited environments. It is intentionally structured to be accessible during field work, covering 12 chapters that span from immediate life-threatening emergencies (like shock and seizures) to chronic conditions (like diabetes and hypertension) and infectious diseases (malaria, tuberculosis, HIV). The content emphasizes a syndromic approach to diagnosis—treating symptoms based on the most likely causes in specific contexts—and provides detailed treatment protocols including pediatric and adult drug dosages. By incorporating the latest WHO recommendations and the practical field experience of MSF clinicians, this resource aims to standardize care, ensure patient safety, and guide prescribers in making informed decisions where advanced diagnostic tools may be scarce.
Key Points, Topics, and Questions
1. Emergency Management: Shock
Topic: Recognizing and treating tissue hypoperfusion.
Definition: A state of widespread reduced tissue perfusion leading to organ failure.
Types: Distributive (sepsis/anaphylaxis), Cardiogenic (heart failure), Hypovolaemic (bleeding/dehydration), and Obstructive (PE/tension pneumothorax).
Management: The primary goal is to restore perfusion using fluids, blood, and vasopressors (e.g., adrenaline, norepinephrine) depending on the type.
Key Question: Why are children treated for shock even if their blood pressure is normal?
Answer: In children, hypotension is a very late sign of shock. Clinicians must look for other signs like tachycardia, prolonged capillary refill time (CRT), or weak pulses to start treatment early.
2. Neurological Emergencies: Seizures and Status Epilepticus
Topic: Managing prolonged or repetitive seizures.
Status Epilepticus: Defined as a seizure lasting >5 minutes or 2+ seizures in 5 minutes without regaining consciousness.
Treatment Protocol:
Step 1: Benzodiazepines (Diazepam/Midazolam) – up to 2 doses.
Step 2: Second-line antiseizure medication (Phenytoin, Levetiracetam, Phenobarbital) if seizures persist.
Step 3: Maintenance therapy and treating underlying causes (e.g., hypoglycemia, malaria, meningitis).
Key Point: Always monitor breathing and oxygen saturation, as benzodiazepines can cause respiratory depression.
3. Infectious Diseases & Antibiotic Protocols
Topic: Bacterial and viral infections.
Antibiotic Choice: Determined by the suspected source (cutaneous, pulmonary, intestinal, etc.) and local resistance patterns.
Septic Shock Management:
Identify the source (cultures if possible).
Administer broad-spectrum antibiotics within 1 hour of presentation.
Source control (draining abscesses, removing infected lines).
Key Question: What is the "Golden Hour" in sepsis management?
Answer: The first hour after recognition of sepsis is critical; administering effective antibiotics within this window significantly improves survival rates.
4. Drug Dosaging and Administration
Topic: Safe prescribing in a field setting.
Responsibilities: The prescriber is legally responsible for ensuring doses conform to manufacturer specs, especially in children where weight-based dosing is critical.
Routes of Administration: Intravenous (IV), Intraosseous (IO), Intramuscular (IM), and Oral (PO) are detailed with specific speeds and dilutions.
Safety: Includes warnings on drug contraindications (e.g., Do not use quinolones in children/pregnancy).
Key Point: The manual provides specific tables for "Loading Doses" and "Maintenance Doses" to prevent calculation errors in high-stress situations.
Easy Explanation (Presentation Style)
Here is a structured outline you can use to present this material effectively.
Slide 1: Introduction
Title: Clinical Guidelines – Diagnosis and Treatment Manual
Publisher: Médecins Sans Frontières (MSF).
Target Audience: Medical professionals in dispensaries and primary hospitals (resource-limited settings).
Purpose: A practical "field guide" to standardize diagnosis and treatment for common and life-threatening conditions.
Slide 2: Structure & Approach
Format: Organized by body system and symptom clusters (Syndromic Approach).
Scope: Covers emergencies (Shock, Seizures), Chronic Disease (Diabetes, Asthma), and Infections (Malaria, HIV, TB).
Key Feature: Includes detailed drug tables with pediatric and adult dosages, dilution instructions, and administration speeds.
Slide 3: Emergency 1 – Shock
What is it? Inadequate blood flow to organs.
The 4 Types:
Distributive: Sepsis, Anaphylaxis.
Cardiogenic: Heart failure, Heart attack.
Hypovolaemic: Bleeding, Dehydration.
Obstructive: Pulmonary Embolism (PE), Tension Pneumothorax.
Immediate Action: "ABC" (Airway, Breathing, Circulation) + IV Fluids/ Vasopressors.
Note: In children, treat for shock based on clinical signs (fast heart rate, cold skin) before waiting for low blood pressure.
Slide 4: Emergency 2 – Seizures (Status Epilepticus)
Definition: Seizure > 5 minutes or recurrent without waking up.
The Treatment Protocol:
Step 1 (Benzodiazepines): Diazepam (IV/Rectal) or Midazolam (Buccal/IM). Max 2 doses.
Step 2 (Second-line): Phenytoin, Levetiracetam, or Phenobarbital (IV loading).
Step 3 (Maintenance): Continue meds + find the cause (e.g., low blood sugar, malaria).
Safety: Monitor breathing closely; have ventilation equipment ready.
Slide 5: Sepsis & Antibiotics
Sepsis: Life-threatening organ dysfunction caused by infection.
Time is Critical: Start antibiotics within 1 hour.
Strategy:
Start "Broad Spectrum" (covers gram+, gram-, anaerobes).
Take cultures if possible before the first dose.
Switch to narrow spectrum once the bacteria is identified.
Source Control: Drain abscesses, remove infected lines.
Slide 6: Safe Prescribing
The "Rights": Always check the 6 Rights (Right Patient, Medication, Dose, Route, Time, Documentation).
Pediatrics: Dosing is strictly by Weight (kg). Use the tables in the manual!
Dilution: Many IV drugs (e.g., Phenytoin) must be diluted properly to prevent "Purple Glove Syndrome" (tissue damage).
Intraosseous (IO): An alternative to IV access in emergencies; drugs can be pushed into the bone marrow.
Slide 7: Common Conditions Summary
Malaria: Rapid diagnostic test (RDT) + Artemisinin-based Combination Therapy (ACT).
Diarrhea: Oral Rehydration Solution (ORS) + Zinc.
Malnutrition: SAM (Severe Acute Malnutrition) requires therapeutic feeding (F75/F100) and antibiotics.
Pain: Use the WHO Pain Ladder (Step 1: Non-opioids
→
Step 3: Opioids).
Slide 8: Summary
This manual is a lifesaving tool for field clinicians.
It bridges the gap between theory and reality in resource-poor settings.
Key Takeaway: Adherence to protocols ensures standardized, safe, and effective patient care.
Responsibility: While the manual guides you, the clinician is responsible for the final decision based on the specific patient context....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/biqpalws-0958/data/document.pdf", "num_examples": 1862, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/biqpalws- /home/sid/tuning/finetune/backend/output/biqpalws-0958/data/biqpalws-0958.json...
|
null
|
queued
|
1769626116
|
1769685877
|
NULL
|
/home/sid/tuning/finetune/backend/output/biqpalws- /home/sid/tuning/finetune/backend/output/biqpalws-0958/adapter...
|
False
|
Edit
Delete
|
|
5dd5b4a6-c6c5-438f-a358-fcb3168f4c2d
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
bgqcsiba-0421
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Healthy Longevity
|
Healthy Longevity
|
/home/sid/tuning/finetune/backend/output/bgqcsiba- /home/sid/tuning/finetune/backend/output/bgqcsiba-0421/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Healthy Longevity – National Academy of Medicine “Healthy Longevity – National Academy of Medicine (NAM)”**
This PDF is an official National Academy of Medicine (NAM) overview describing one of the most ambitious global initiatives on aging: the Healthy Longevity Global Grand Challenge. It outlines the accelerating demographic shift toward older populations, the opportunities created by scientific breakthroughs, the threats posed by aging societies, and NAM’s worldwide plan to spark innovation, research, and policy transformation to ensure people live not just longer, but healthier lives.
The central message:
Human life expectancy has increased dramatically—but longevity without health creates massive social, economic, and healthcare burdens. The world needs bold innovations to extend healthspan, not just lifespan.
🌍 1. The Global Context of Aging
The document opens with striking demographic realities:
8.5% of the world (617 million people) are already age 65+.
By 2050, this will more than double to 1.6 billion older adults.
The number of people aged 80+ will triple from 126 million to 447 million.
Healthy longevity
These trends threaten to overwhelm economies, healthcare systems, and social structures—but also create unprecedented opportunities for scientific innovation and societal redesign.
🧠 2. The Challenge: Extending Healthspan
Despite medical breakthroughs, societies are not fully prepared for extended longevity.
NAM argues that:
We must not just live longer, but better—functional, productive, and mentally and socially healthy.
Innovations in medicine, public health, technology, and social systems will be essential.
Healthy longevity
The document calls for multidisciplinary solutions involving science, policy, economics, and community design.
🚀 3. The Healthy Longevity Global Grand Challenge
NAM introduces a massive, multi-year, global movement with four main goals:
⭐ 1. Catalyze breakthrough ideas and research
Support innovations in disease prevention, mobility, social connectedness, and longevity.
⭐ 2. Achieve transformative, scalable innovation
Turn groundbreaking research into real-world solutions that can improve lives globally.
⭐ 3. Provide a global roadmap for healthy longevity
Produce an authoritative report detailing economic, social, scientific, and policy opportunities.
⭐ 4. Build a worldwide ecosystem of innovators
Uniting scientists, engineers, entrepreneurs, health leaders, policymakers, and the public.
Healthy longevity
🏆 4. The Prize Competition Structure
The competition is divided into three phases, each escalating in scope:
1) Catalyst Phase
Seeds bold, early-stage ideas that could extend healthspan—across biology, technology, social systems, prevention, mobility, etc.
2) Accelerator Phase
Provides funding and support to develop prototypes or pilot projects.
3) Grand Prize
Awards a transformative, real-world innovation that significantly extends healthy human lifespan.
Healthy longevity
This framework encourages continuous innovation—from idea to global impact.
🧭 5. Developing the Global Roadmap for Healthy Longevity
An international commission will produce a major report identifying:
Global challenges and opportunities
Best practices from around the world
Social, behavioral, and environmental determinants
Healthcare and public health strategies
Science, engineering, and technology solutions
Equity, financing, policy, and implementation considerations
Healthy longevity
The roadmap will guide countries in redesigning systems to support healthier, longer lives.
🧬 6. A Multidisciplinary Global Effort
The initiative brings together leaders across:
Medicine & public health
Science & engineering
Technology & AI
Policy & economics
Social sciences
Private-sector innovation
This reflects NAM’s belief that healthy longevity is not just a medical issue—but a societal transformation.
Healthy longevity
🏛 7. About the National Academy of Medicine
The PDF closes by describing NAM:
Founded in 1970 (formerly the Institute of Medicine)
Independent, nonprofit, science-based advisory body
Works alongside the National Academy of Sciences and National Academy of Engineering
Provides guidance on global health, policy, and innovation
Healthy longevity
NAM leverages its global reputation to push healthy longevity as a top priority.
⭐ Overall Summary
This PDF is a clear, persuasive introduction to NAM’s Healthy Longevity Global Grand Challenge, a worldwide effort to drive innovation, transform aging, and ensure future generations enjoy longer, healthier, more productive lives. It highlights the urgency created by global aging trends, the need for breakthroughs across science and society, and the structure of a major international prize competition designed to accelerate progress.
Healthy longevity
If you want, I can also provide:
✅ A 5-line summary
✅ A one-paragraph plain-language version
✅ Bullet-point quick notes
✅ Urdu/Hindi translation
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/bgqcsiba-0421/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/bgqcsiba- /home/sid/tuning/finetune/backend/output/bgqcsiba-0421/data/bgqcsiba-0421.json...
|
null
|
failed
|
1764892607
|
1764893209
|
NULL
|
/home/sid/tuning/finetune/backend/output/bgqcsiba- /home/sid/tuning/finetune/backend/output/bgqcsiba-0421/adapter...
|
False
|
Edit
Delete
|
|
4f5b2472-6907-4360-a061-17b5d1822ac8
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
bfwlygzv-5554
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Traditional lifestyles, t
|
Traditional lifestyles, transition, and
implicat Traditional lifestyles, transition, and
implicati...
|
/home/sid/tuning/finetune/backend/output/bfwlygzv- /home/sid/tuning/finetune/backend/output/bfwlygzv-5554/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Traditional Lifestyles, Transition, and Longevity “Traditional Lifestyles, Transition, and Longevity” is a scientific and anthropological analysis exploring how traditional, pre-industrial ways of living influence human longevity—and what happens when communities undergo rapid modernization. The document examines cultural groups known for exceptional health and long life, contrasts them with populations in lifestyle transition, and identifies which environmental and behavioral factors most strongly support healthy aging.
The central insight:
Longevity is deeply shaped by lifestyle, environment, and social structure—not only by genetics.
Traditional societies offer living examples of how movement patterns, diet, community practices, and environmental stability protect against chronic diseases and support long, healthy lives.
Key Themes and Findings
1. Traditional Societies Show Exceptional Health Profiles
The document reviews multiple indigenous or traditional groups (e.g., hunter-gatherers, pastoralists, agrarian communities) and identifies consistent features:
Low rates of chronic diseases (heart disease, obesity, metabolic illness)
Sustained physical activity built into daily life
Fresh, minimally processed diets
Strong social cohesion, role clarity, and interdependence
Natural circadian alignment (daylight–dark cycles, sleep/wake regularity)
Their health advantage is ecological and behavioral, not genetic.
2. Lifestyle Transition Reduces Longevity
When traditional communities transition into modern, urbanized lifestyles, health outcomes change rapidly:
Increased sedentary behavior
Higher consumption of processed foods
Reduced social cohesion
Higher rates of obesity, diabetes, and cardiovascular disease
The document notes that within only one or two generations, life expectancy can decrease as Westernized habits replace traditional ones.
3. Diet Is Central to Longevity in Traditional Societies
Traditional diets share universal characteristics:
High in fiber, vegetables, tubers, legumes, and whole grains
Low in sugar and ultra-processed foods
Moderate to low in animal fats
Seasonal and locally sourced
These diets protect against inflammation, insulin resistance, and metabolic dysfunction—major drivers of aging.
4. Movement Is a Built-in Part of Life
Unlike modern exercise routines, traditional populations achieve:
High total daily movement (walking, carrying, manual labor)
Low-intensity, steady physical activity
Minimal sitting time
Such patterns align with the natural biological design of humans and dramatically lower chronic disease risk.
5. Social Structure and Purpose Enhance Longevity
The document highlights that long-lived populations maintain:
Multigenerational family networks
Defined roles for elders
High levels of social support
Daily duties that encourage meaning and purpose
These elements reinforce psychological resilience, reduce stress, and support cognitive health.
6. Environmental Stability Matters
Traditional lifestyles often involve:
Cleaner air and water
Lower exposure to industrial toxins
Natural noise/light environments
Access to green and open spaces
Such ecological conditions reduce stress biology and support healthier aging trajectories.
7. Rapid Modernization Creates a “Mismatch” Problem
The document frames chronic disease and reduced longevity as a mismatch between ancient human biology and modern environments:
Bodies evolved for movement, communal living, and whole foods
Modern environments encourage sitting, isolation, and processed calories
This mismatch drives the global rise in chronic, age-related illness.
Conclusion
“Traditional Lifestyles, Transition, and Longevity” shows that the foundations of long life are grounded in everyday behaviors shaped by environment, culture, and community structures. Traditional populations demonstrate that humans can achieve extraordinary health and longevity when living in ways aligned with our evolutionary design.
The document's overarching lesson:
Modern health challenges are not inevitable.
They arise from lifestyle mismatch and can be improved by reclaiming elements of traditional living...
|
{"num_examples": 65, "bad_lines": {"num_examples": 65, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/bfwlygzv- /home/sid/tuning/finetune/backend/output/bfwlygzv-5554/data/bfwlygzv-5554.json...
|
null
|
completed
|
1764414572
|
1764415666
|
NULL
|
/home/sid/tuning/finetune/backend/output/bfwlygzv- /home/sid/tuning/finetune/backend/output/bfwlygzv-5554/adapter...
|
False
|
Edit
Delete
|
|
fe4b6e3c-4f53-4aca-b99c-7a24177192b2
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
bcdylrfz-2817
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Increase of Human Life
|
Increase of Human Longevity
|
/home/sid/tuning/finetune/backend/output/bcdylrfz- /home/sid/tuning/finetune/backend/output/bcdylrfz-2817/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a comprehensive demographic presentati This PDF is a comprehensive demographic presentation that explains how human longevity has increased over the past 250 years, the biological, social, and medical drivers behind those improvements, and whether there is a true limit to human lifespan. Created by John R. Wilmoth, one of the world’s leading demographers and former director of the UN Population Division, the document provides historical data, scientific analysis, and future projections on global life expectancy.
It combines global mortality statistics, historical transitions in causes of death, medical breakthroughs, and theoretical debates to explain how humans moved from a world where average life expectancy was 30 years to a world where it routinely exceeds 80—and may continue rising.
🔶 1. Purpose of the Presentation
The PDF aims to:
Trace the historical rise of life expectancy
Explain age patterns of mortality and how they shifted
Identify medical, social, and historical reasons for increased longevity
Examine the debate about biological limits to lifespan
Forecast future trends in global life expectancy
Increase of Human Longevity Pas…
🔶 2. Historical Increase of Longevity
The document shows dramatic gains in life expectancy from the 18th century to the 21st century.
⭐ Key historical facts:
Prehistoric humans: 20–35 years average life expectancy
Sweden in 1750s: 36 years
USA in 1900: 48 years
France in 1950: 66 years
Japan in 2007: 83 years with <3 infant deaths per 1,000 births
Increase of Human Longevity Pas…
Charts show life expectancy trends for France, India, Japan, Western Europe, and global regions from 1816–2009.
🔶 3. Changing Age Patterns of Mortality
The PDF shows how the distribution of death has shifted across ages:
In 1900, many deaths occurred at young ages.
By 1995, most deaths were concentrated at older ages.
Survival curves show people living longer and dying more uniformly later in life.
Increase of Human Longevity Pas…
The interquartile range of ages at death shrunk dramatically in Sweden from 1751 to 1995, meaning life has become more predictable and deaths occur later and closer together.
🔶 4. Medical Causes of Mortality Decline
The document clearly identifies the medical advances that propelled longevity increases.
⭐ A. Infectious Disease Decline
Driven by:
Sanitation and clean water
Public health reforms
Hygiene
Antibiotics and sulfonamides
Increase of Human Longevity Pas…
⭐ B. Cardiovascular Disease Decline
Due to:
Reduction in smoking
Healthier diets (lower saturated fat and cholesterol)
Hypertension and cholesterol control
Modern cardiology, diagnostics, and emergency care
Increase of Human Longevity Pas…
⭐ C. Cancer Mortality Trends
The report distinguishes between:
Infectious-cause cancers (e.g., stomach, liver, uterus)
Non-infectious cancers (lung, breast, colon, pancreas, etc.)
Increase of Human Longevity Pas…
Declines in cancer mortality result from:
Infection control (H. pylori, HPV, hepatitis)
Declining smoking rates
Better treatment and earlier detection
🔶 5. Epidemiological Transitions in Human History
The PDF provides a timeline of how the major causes of death shifted as societies developed:
Type of Society Major Cause of Death
Hunter-gatherer Injuries
Agricultural Infectious disease
Industrial Cardiovascular disease
High-tech Cancer
Future Senescence (frailty/aging)
Increase of Human Longevity Pas…
This framework shows the progression from external dangers to internal biological aging as the main determinant of mortality.
🔶 6. Social and Historical Causes of Longevity Increase
Beyond medicine, several societal forces drove longevity gains:
Rising incomes → better nutrition & housing
Science and technology advances
Application of scientific knowledge (public health, medical care)
Improved safety (e.g., fewer road accidents)
Increase of Human Longevity Pas…
A chart shows the strong correlation between national GDP per capita and life expectancy, with richer countries achieving much longer lives.
🔶 7. Are There Limits to Human Lifespan?
The PDF examines one of the most famous debates in demographics:
⭐ Maximum Lifespan
Evidence shows:
The oldest age at death (recorded globally and nationally) has increased over time.
Jeanne Calment (122 years) and Christian Mortensen (115 years) exemplify trends.
Sweden’s maximum age at death rose steadily from 1861–2007.
Increase of Human Longevity Pas…
There is no clear evidence of a fixed biological ceiling.
⭐ Average Lifespan
Mortality rates continue to fall in many countries.
Nations like Japan still make significant gains despite already high longevity.
No sign of stagnation or convergence at a limit.
Increase of Human Longevity Pas…
🔶 8. Summary of Longevity Trends
Indicator Before 1960 After 1970
Average lifespan Increased rapidly Increased moderately
Maximum lifespan Increased slowly Increased moderately
Variability Decreased rapidly Stable
Increase of Human Longevity Pas…
Even though gains have slowed, longevity continues to rise in both average and maximal terms.
🔶 9. Future Projections
UN projections (2009) suggest continued global improvements:
World life expectancy: 68 → 72 → 76 (2009–2049)
Developed countries: 77 → 83+
Japan: 83 → 87
Developing countries also show large gains (India, China, Brazil, Nigeria)
Increase of Human Longevity Pas…
🔶 10. Final Lessons of History
The PDF closes with four key insights:
Mortality decline is driven by humanity’s deep desire for longer life.
Past improvements resulted from multiple causes, not a single breakthrough.
Likewise, no single factor will stop future increases.
With economic growth and political stability, there are no obvious limits to further gains in human longevity.
Increase of Human Longevity Pas…
⭐ Perfect One-Sentence Summary
This PDF provides a comprehensive historical and scientific explanation of how human life expectancy has increased over time, why deaths have shifted to older ages, what medical and social forces drove these improvements, and why there is no clear biological limit preventing future gains in human longevity....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/bcdylrfz-2817/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/bcdylrfz- /home/sid/tuning/finetune/backend/output/bcdylrfz-2817/data/bcdylrfz-2817.json...
|
null
|
failed
|
1764888783
|
1764889686
|
NULL
|
/home/sid/tuning/finetune/backend/output/bcdylrfz- /home/sid/tuning/finetune/backend/output/bcdylrfz-2817/adapter...
|
False
|
Edit
Delete
|
|
111e3856-34a7-445c-b43e-6065cb08d6c0
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
bbminrkn-3650
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity highly cross
|
Longevity highly cross linked
|
/home/sid/tuning/finetune/backend/output/bbminrkn- /home/sid/tuning/finetune/backend/output/bbminrkn-3650/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The Longevity® Highly Crosslinked Polyethylene bro The Longevity® Highly Crosslinked Polyethylene brochure is a detailed technical and clinical overview of Zimmer’s advanced polyethylene material engineered to dramatically reduce wear in total hip arthroplasty (THA). The document explains the science of crosslinking, outlines Zimmer’s proprietary manufacturing process, presents extensive laboratory and clinical evidence, and demonstrates how this material integrates with the Trilogy® Acetabular System to improve implant performance and durability.
⭐ Core Purpose of the Material
The brochure presents Longevity® Polyethylene as a solution to one of the most persistent challenges in hip replacement surgeries:
👉 polyethylene wear, which generates debris, causes osteolysis, and shortens implant lifespan.
Zimmer’s highly crosslinked formulation achieves up to:
89% wear reduction in laboratory hip-simulator tests
75–79% wear reduction in long-term clinical studies
These improvements significantly extend implant longevity and reduce revision surgery risk.
⭐ How It Works: The Science of Crosslinking
The brochure breaks down three possible outcomes of polyethylene irradiation:
Crosslinking (desired) – Creates molecular bridges for a stronger, wear-resistant 3D structure.
Recombination – Radicals reform at break points with no improvement.
Oxidative chain scission (undesired) – Leads to lower molecular weight and material degradation.
Zimmer uses high-dose electron-beam radiation and a proprietary process to:
maximize full crosslinking
eliminate virtually all free radicals
suppress oxidation
maintain all required ASTM and ISO mechanical properties
The result is a high-integrity polyethylene that resists both abrasive wear and long-term oxidative degradation.
⭐ Evidence: Laboratory & Clinical Performance
1. Hip Simulator Testing
Wear testing over millions of cycles demonstrated:
~89% reduction in wear (unaged)
~88% reduction in wear (aged)
~96% reduction in abrasive environments
Machining lines on Longevity® polyethylene remain visible even after 5 million cycles, indicating minimal surface damage—unlike standard polyethylene, where lines are worn away.
2. Clinical Studies
Oonishi Study (17.3-year follow-up)
Wear rate: 0.06 mm/year (crosslinked)
vs. 0.29 mm/year (standard) → 79% reduction
Wroblewski Study (10-year follow-up)
Wear rate: 0.04 mm/year (crosslinked)
vs. 0.16 mm/year (standard) → 75% reduction
These long-term results confirm that crosslinking provides durable, real-world improvements—not just simulation benefits.
⭐ Integration with the Trilogy® Acetabular System
The Longevity® liner is designed for the Trilogy® Cup, which offers:
full liner-to-shell congruency
proven fiber-metal mesh fixation
advanced locking mechanisms reducing micromotion (per ORS studies)
removable liners in standard, 10° and 20° elevated, and 7mm offset configurations
This system builds on the clinical heritage of the Harris/Galante and HGP II acetabular components.
⭐ Product Options & Technical Specifications
The brochure concludes with detailed engineering data, including:
polyethylene liner sizes
elevation and offset options
liner thickness relative to shell diameter
catalogue numbers for all configurations
It emphasizes that Longevity® Polyethylene:
meets or exceeds ASTM and ISO standards
maintains mechanical integrity after accelerated aging
minimizes oxidation risk due to near-zero free radicals
⭐ Overall Summary
The brochure positions Longevity® Highly Crosslinked Polyethylene as a major advancement in hip implant materials, offering:
dramatically reduced wear
outstanding long-term clinical results
superior oxidation resistance
strong mechanical performance
compatibility with a robust, proven acetabular system
It serves as both a technical reference for surgeons and a clinical evidence summary demonstrating why crosslinked polyethylene significantly extends the lifespan of total hip replacements.
If you want, I can also prepare:
✅ A simplified version for patients
✅ A surgeon-focused technical brief
✅ A comparison between Longevity® polyethylene and other implant materials
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/bbminrkn-3650/data/document.pdf", "num_examples": 68, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/bbminrkn- /home/sid/tuning/finetune/backend/output/bbminrkn-3650/data/bbminrkn-3650.json...
|
null
|
completed
|
1765054746
|
1765055334
|
NULL
|
/home/sid/tuning/finetune/backend/output/bbminrkn- /home/sid/tuning/finetune/backend/output/bbminrkn-3650/adapter...
|
False
|
Edit
Delete
|
|
6bd55f15-d666-4b2a-9254-caf987d39ddc
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
baubzcil-4146
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The longevity of space
|
The longevity of space maintainers
|
/home/sid/tuning/finetune/backend/output/baubzcil- /home/sid/tuning/finetune/backend/output/baubzcil-4146/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The Longevity of Space Maintainers: A Retrospectiv The Longevity of Space Maintainers: A Retrospective Study is a detailed 1998 investigation published in Pediatric Dentistry examining how long different types of space maintainers last in real clinical settings and which factors contribute to their success or failure. The study analyzed 301 space maintainers fitted in 141 patients (ages 3.4–22.1 years) at the Leeds Dental Institute between 1991 and 1995, making it one of the most extensive retrospective evaluations of space-maintainer performance to date.
Using life-table survival analysis, the researchers found that space maintainers fail frequently and early, with an overall failure rate of 63% and a median survival time of only 7 months. Failure causes varied but were strongly dominated by loss of cement (36%), followed by breakage (24%), and complete loss of the appliance (9%). Only 8% of appliances were deemed fully successful, and 21% were lost to follow-up.
Key Findings
1. Survival Varies Significantly by Appliance Type
Band and Loop (B&L) appliances exhibited the best longevity, with a median survival of 13 months.
Lower Lingual Holding Arches (LLHAs) performed the worst, lasting only 4 months.
Nance appliances: 6-month median survival.
Removable partial dentures: 9-month median survival.
Unilateral appliances survived more than twice as long as bilateral ones.
2. Unexpected Side-Dominance
Left-side B&L maintainers lasted 16 months, while right-side B&Ls survived only 4 months—a statistically significant difference. The authors suggest possible operator-handedness or chewing-side habits as contributing factors.
3. Failure Patterns and Clinical Implications
Cementation failure—often linked to band adaptation, moisture control, or occlusal stress—was the most common cause.
Mechanical failures (e.g., broken solder joints, wire fractures) accounted for nearly a quarter of failures.
Soft-tissue lesions, impingement, and eruption interference also contributed to early removal.
4. Repairs and Replacements Have Different Longevity
The survival time differed dramatically based on what happened after a failure:
Repaired maintainers: 13.5 months (best outcome)
Remade maintainers: 10 months
New maintainers: 7 months
Recemented maintainers: 4.5 months (worst outcome)
This suggests that cement loss often masks deeper design or construction problems.
5. No Effect from Demographic or Operator Variables
Longevity was not influenced by:
Patient age or gender
Dental arch
Operator experience (postgraduate, undergraduate, faculty)
Adequacy of pretreatment assessment
Design and construction quality were far more important than patient or clinician characteristics.
Conclusions
The study provides several evidence-based conclusions:
High failure rate: 63% of appliances failed—substantially higher than reported in earlier research.
Design matters: B&L maintainers outperform all other designs; LLHAs underperform significantly.
Cement issues dominate: Cement loss is the leading cause of failure.
Reassessment is essential: If a space maintainer fails twice from cement loss, its design and suitability must be reevaluated.
Failure risk increases with repeated refitting: Locations where appliances fail multiple times are likely unsuitable for further space maintenance.
Follow-up frequency should be increased:
Bilateral fixed appliances → every 2 months
Unilateral fixed and removable appliances → every 4 months
Overall Summary
This study is a foundational reference on the real-world durability of space maintainers, revealing that survival times are shorter and failure rates higher than often assumed. It emphasizes the importance of proper appliance selection, meticulous design and fabrication, and vigilant follow-up. Its practical recommendations help clinicians improve outcomes and anticipate common complications in pediatric space maintenance.
If you'd like, I can also prepare:
🔸 a one-page clinical summary
🔸 a comparison with the other dental or longevity studies you’ve uploaded
🔸 a visual chart of survival times across appliance types
Just tell me!
Sources
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/baubzcil-4146/data/document.pdf", "num_examples": 84, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/baubzcil- /home/sid/tuning/finetune/backend/output/baubzcil-4146/data/baubzcil-4146.json...
|
null
|
completed
|
1765052350
|
1765053264
|
NULL
|
/home/sid/tuning/finetune/backend/output/baubzcil- /home/sid/tuning/finetune/backend/output/baubzcil-4146/adapter...
|
False
|
Edit
Delete
|
|
8fcaf8c7-4b77-429a-946e-a08b7e73dad6
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
bagmkdbr-4690
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Prolonging Life
|
Prolonging Life
|
/home/sid/tuning/finetune/backend/output/bagmkdbr- /home/sid/tuning/finetune/backend/output/bagmkdbr-4690/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
1. The Core Issue
The document begins with vivi 1. The Core Issue
The document begins with vivid real-life stories of centenarians, illustrating the contrast between healthy long life and prolonged frailty.
It highlights the rising number of Americans aged 100+ and the looming social concerns regarding Medicare, Social Security, and healthcare burdens.
2. Scientific Insights: The Biology of Aging
It explains:
Cellular aging (Hayflick limit, telomeres, senescence)
Genetics of longevity (gene mutations, centenarian DNA patterns)
Oxidative stress and free radicals
Caloric restriction research
Animal studies showing lifespan extension
Key message:
Scientists are uncovering molecular and genetic mechanisms of aging, but the process remains complex and not fully understood.
3. Can We Extend Life?
Experts debate:
Whether humans can push beyond the current maximum lifespan (~120 years)
The possibilities of genetic manipulation, drugs, hormones, and “anti-aging” interventions
Futurists like Aubrey de Grey and Ray Kurzweil, who foresee radical longevity or even immortality
Skeptics who warn that biology is too complex to safely manipulate aging
4. Should We Extend Life? (Ethical & Social Debates)
The report deeply examines concerns:
Overpopulation
Environmental strain
Intergenerational fairness
Economic impacts
Healthcare costs vs. healthy aging benefits
Some believe radical life extension would cause severe social imbalance; others argue healthier elders could continue contributing economically.
5. Government Policy & Funding
The report evaluates whether the U.S. government should prioritize funding aging research.
Highlights:
NIH and NIA funding is heavily skewed toward specific diseases (e.g., Alzheimer’s), instead of studying aging as the root cause.
Some scientists urge shifting resources to focus on extending “health span” rather than merely treating diseases.
6. Background & History
The document explores humanity’s ancient desire for long life, covering:
Mythology (Tithonus, Epicurus)
Medieval alchemy
Longevity seekers like Luigi Cornaro
Early biological discoveries on aging
The evolution of cryonics
The modern anti-aging industry
7. Data, Charts & Visuals
The report includes graphics and statistics on:
Life expectancy trends
U.S. ranking in global longevity
Growth of centenarians and supercentenarians
Glossary of aging terms
Chronological scientific milestones (1825–2011)
8. The Outlook
The final section acknowledges the unknowns:
Aging science is advancing rapidly, but unpredictable
Extending healthy years remains the central scientific goal
Lifestyle behaviors, genetics, and public health improvements may be more impactful than futuristic interventions
⭐ In Summary (Perfect One-Sentence Description)
This PDF offers a rich, balanced, and deeply researched exploration of the science, ethics, history, and societal implications of increasing human longevity, blending expert analysis with real-world data to examine whether extending life is possible, beneficial, and desirable....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/bagmkdbr-4690/data/document.pdf", "num_examples": 187, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/bagmkdbr- /home/sid/tuning/finetune/backend/output/bagmkdbr-4690/data/bagmkdbr-4690.json...
|
null
|
completed
|
1764874148
|
1764883527
|
NULL
|
/home/sid/tuning/finetune/backend/output/bagmkdbr- /home/sid/tuning/finetune/backend/output/bagmkdbr-4690/adapter...
|
False
|
Edit
Delete
|
|
c0242fef-55b1-4f77-8e24-2f7fc8bc60d5
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
bacjocmr-1663
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The 7 Keys to Longevity
|
This is new the version of Longevity
|
/home/sid/tuning/finetune/backend/output/bacjocmr- /home/sid/tuning/finetune/backend/output/bacjocmr-1663/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“The 7 Keys to Longevity” is a New York Times heal “The 7 Keys to Longevity” is a New York Times health feature that explains what truly helps people live longer, healthier lives. Instead of extreme anti-aging trends—like hyperbaric chambers, cryotherapy, or infrared light—the article highlights seven scientifically proven habits recommended by top geriatricians. These simple, evidence-backed behaviors greatly increase a person’s chance of reaching their 80s, 90s, and even 100s in strong physical and mental shape.
The article emphasizes that people often search for a “magic pill,” but the real secret to longevity is already known: consistent, healthy lifestyle choices. Each of the seven habits is supported by research showing lower disease risk, improved well-being, and reduced early mortality.
⭐ The 7 Keys to Longevity
1. Move More
Exercise is the number-one habit for a long life.
Research shows that regular physical activity:
>reduces premature death
>protects the heart and circulation
>lowers risk of chronic diseases
>preserves muscle strength and balance (reducing falls)
>Even light daily movement—like a 20-minute walk—is effective.
2. Eat More Fruits and Vegetables
Experts recommend:
>moderation
>less processed food
>more whole foods
The Mediterranean diet is highlighted as a strong model that reduces risk of:
>heart disease
>diabetes
>cancer
>dementia
3. Get Enough Sleep
>Good sleep is essential for healthy aging. Studies show:
>People who sleep well live longer
>Less than 5 hours of sleep doubles dementia risk
>Older adults actually need more, not less, sleep ideally 7–9 hours.
4. Don’t Smoke, and Limit Alcohol
Smoking dramatically increases the risk of nearly every major disease.
Excessive alcohol raises risk of:
>heart problems
>liver disease
>cancer
>Even moderate drinking can be harmful.
5. Manage Chronic Conditions
>Millions of adults have:
>high blood pressure
>high cholesterol
>pre-diabetes
>Managing these conditions through lifestyle and medication prevents them from becoming life-threatening.
>Routine monitoring and following medical advice are essential for long, healthy life.
6. Prioritize Relationships
Strong social connections are as important as physical health.
Research shows loneliness increases risk of:
>heart disease
>stroke
>dementia
>early death
The Harvard Study of Adult Development found that the quality of relationships is the biggest predictor of lifelong well-being.
7. Cultivate a Positive Mindset
Optimistic people live 5–15% longer than pessimists.
Positive thinking lowers stress, improves heart health, and supports healthier behaviors.
Even after adjusting for lifestyle factors, optimism itself still contributes to longer lifespan.
⭐ Overall Meaning
The article concludes that the most effective longevity tools are neither expensive nor extreme. Instead, they are simple daily habits that protect physical, mental, and emotional health. If a person can choose only one habit, experts say:
➡️ Prioritize physical activity.
And if not that—
➡️ Focus on maintaining a positive, optimistic mindset.
These seven keys form a practical, proven guide for living better—and longer....
|
{"num_examples": 21, "bad_lines": {"num_examples": 21, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/bacjocmr- /home/sid/tuning/finetune/backend/output/bacjocmr-1663/data/bacjocmr-1663.json...
|
null
|
completed
|
1764361378
|
1764361426
|
NULL
|
/home/sid/tuning/finetune/backend/output/bacjocmr- /home/sid/tuning/finetune/backend/output/bacjocmr-1663/adapter...
|
False
|
Edit
Delete
|
|
fcfbd6a9-78fc-4c53-8c83-19511b4d9bd5
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
azjxghdg-4763
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Inconvenient Truths About
|
Inconvenient Truths About Human Longevity
|
/home/sid/tuning/finetune/backend/output/azjxghdg- /home/sid/tuning/finetune/backend/output/azjxghdg-4763/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
S. Jay Olshansky, PhD1,* and Bruce A. Carnes, PhD2 S. Jay Olshansky, PhD1,* and Bruce A. Carnes, PhD2
1University of Illinois at Chicago, Division of Epidemiology and Biostatistics. 2University of Oklahoma. *Address correspondence to: S. Jay Olshansky, PhD, University of Illinois at Chicago. E-mail: sjayo@uic.edu
Received: February 2, 2019; Editorial Decision Date: April 3, 2019
Decision Editor: Anne Newman, MD, MPH
Abstract The rise in human longevity is one of humanity’s crowning achievements. Although advances in public health beginning in the 19th century initiated the rise in life expectancy, recent gains have been achieved by reducing death rates at middle and older ages. A debate about the future course of life expectancy has been ongoing for the last quarter century. Some suggest that historical trends in longevity will continue and radical life extension is either visible on the near horizon or it has already arrived; whereas others suggest there are biologically based limits to duration of life, and those limits are being approached now. In “inconvenient truths about human longevity” we lay out the line of reasoning and evidence for why there are limits to human longevity; why predictions of radical life extension are unlikely to be forthcoming; why health extension should supplant life extension as the primary goal of medicine and public health; and why promoting advances in aging biology may allow humanity to break through biological barriers that influence both life span and health span, allowing for a welcome extension of the period of healthy life, a compression of morbidity, but only a marginal further increase in life expectancy.
Keywords: Longevity, Public Health, Life Expectancy....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/azjxghdg-4763/data/document.pdf", "num_examples": 8, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/azjxghdg- /home/sid/tuning/finetune/backend/output/azjxghdg-4763/data/azjxghdg-4763.json...
|
null
|
completed
|
1764899209
|
1764903422
|
NULL
|
/home/sid/tuning/finetune/backend/output/azjxghdg- /home/sid/tuning/finetune/backend/output/azjxghdg-4763/adapter...
|
False
|
Edit
Delete
|
|
18e12aca-f2c6-4bed-b809-3e0e1110881e
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
aygvnaxq-2918
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Impact of rapamycin life
|
Impact of rapamycin on longevity
|
/home/sid/tuning/finetune/backend/output/aygvnaxq- /home/sid/tuning/finetune/backend/output/aygvnaxq-2918/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is a comprehensive scientific review This document is a comprehensive scientific review exploring how rapamycin influences aging and longevity across biological systems. It explains, in clear mechanistic detail, how rapamycin inhibits the mTOR pathway, a central regulator of growth, metabolism, and cellular aging.
The paper summarizes:
1. Why Aging Happens
It describes aging as the gradual accumulation of cellular and molecular damage, leading to reduced function, increased disease risk, and ultimately death.
2. The Role of mTOR in Aging
mTOR is a nutrient-sensing pathway that controls growth, metabolism, protein synthesis, autophagy, and mitochondrial function.
Overactivation of mTOR accelerates aging.
Rapamycin inhibits mTORC1 and indirectly mTORC2, creating conditions that slow aging at the cellular, tissue, and organ level.
3. Rapamycin as a Longevity Drug
The review highlights extensive evidence from yeast, worms, flies, and mice, showing that rapamycin:
Extends lifespan
Improves healthspan
Reduces age-related diseases
4. Key Anti-Aging Mechanisms of Rapamycin
The document details multiple biological pathways influenced by rapamycin:
Protein Homeostasis
Improves fidelity of protein translation
Reduces toxic misfolded protein accumulation
Suppresses harmful senescence-associated secretory phenotype (SASP)
Autophagy Activation
Encourages the removal of damaged organelles and proteins
Protects against neurodegeneration, heart aging, liver aging, and metabolic decline
Mitochondrial Protection
Enhances function and reduces oxidative stress
Immune Rejuvenation
Balances inflammatory signaling
Reduces age-related immune dysfunction
5. Organ-Specific Benefits
The paper includes a detailed table summarizing preclinical evidence showing rapamycin’s benefits in:
Cardiovascular system
Nervous system
Liver
Kidneys
Muscles
Reproductive organs
Respiratory system
Gastrointestinal tract
These benefits involve improvements in:
Autophagy
Stem cell activity
Inflammation
Oxidative stress
Mitochondrial health
6. Limitations & Challenges
While promising, rapamycin has:
Metabolic side effects
Immune-related risks
Dose-timing challenges
Proper therapeutic regimens are required before safe widespread human use.
In Summary
This document provides an up-to-date, detailed, and scientific overview of how rapamycin may slow aging and extend lifespan by targeting mTOR signaling. It integrates molecular biology, animal research, and clinical considerations to outline rapamycin’s potential as one of the most powerful known geroprotective drugs....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/aygvnaxq-2918/data/document.pdf", "num_examples": 26, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/aygvnaxq- /home/sid/tuning/finetune/backend/output/aygvnaxq-2918/data/aygvnaxq-2918.json...
|
null
|
completed
|
1764889575
|
1764901608
|
NULL
|
/home/sid/tuning/finetune/backend/output/aygvnaxq- /home/sid/tuning/finetune/backend/output/aygvnaxq-2918/adapter...
|
False
|
Edit
Delete
|
|
80d9432b-b75e-4def-b058-cebf64f03b2a
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
axwostkz-0293
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Promoting Active Ageing
|
Promoting Active Ageing
|
/home/sid/tuning/finetune/backend/output/axwostkz- /home/sid/tuning/finetune/backend/output/axwostkz-0293/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Promoting Active Ageing in Southeast Asia” is a c “Promoting Active Ageing in Southeast Asia” is a comprehensive OECD/ERIA report that examines how ASEAN countries can support healthy, productive, and secure ageing as their populations grow older at unprecedented speed. The report highlights that Southeast Asia is ageing twice as fast as OECD nations, while still facing high levels of informal employment, limited social protection, and gender inequality—making ageing a major economic and social challenge.
Core Purpose
The report identifies what policies ASEAN member states must adopt to ensure:
Older people can remain healthy,
Continue to participate socially and economically, and
Avoid income insecurity in old age.
🧩 What the Report Covers
1. Demographic & Economic Realities
Fertility has dropped across all countries; life expectancy continues to rise.
The old-age to working-age ratio will surge in the next 30 years.
Working-age populations will decrease sharply in Singapore, Thailand, and Vietnam, while still growing in Cambodia, Laos, and the Philippines.
Public expenditure is low, leaving governments with limited capacity to fund pensions or healthcare.
2. Key Barriers to Active Ageing
High informality (up to 90% in some countries): keeps workers outside formal pensions, healthcare, and protections.
Gender inequalities in work, caregiving, and legal rights compound poverty risks for older women.
Low healthcare spending, shortages of medical staff, and rural access gaps.
Limited pension adequacy, low coverage, and low retirement ages.
🧭 Major Policy Recommendations
A. Reduce Labour Market Informality
Lower the cost of formalisation for low-income workers.
Strengthen labour law enforcement and improve business registration processes.
Relax overly strict product/labour market regulations.
B. Reduce Gender Inequality in Old Age
Integrate gender perspectives into all policy design.
Reform discriminatory family and inheritance laws.
Promote financial education and career equality for women.
C. Ensure Inclusive Healthcare Access
Increase public health funding.
Improve efficiency through generics, preventive care, and technology.
Expand health insurance coverage to all.
Use telemedicine and incentives to serve rural areas.
D. Strengthen Old-Age Social Protection
Increase first-tier (basic) pensions.
Raise retirement ages where needed and link them to life expectancy.
Reform PAYG pensions to ensure sustainability.
Make pension systems easier to understand and join.
E. Support Social Participation of Older Adults
Build age-friendly infrastructure (benches, safe crossings, accessible paths).
Create community programs that encourage interaction and prevent isolation.
🧠 Why This Matters
By 2050, ASEAN countries will face dramatic demographic shifts. Without rapid and coordinated policy reforms, millions of older people risk:
Poor health
Lack of income
Social isolation
Inadequate care
This report serves as a strategic blueprint for building healthy, productive, and resilient ageing societies in Southeast Asia....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/axwostkz-0293/data/document.pdf", "num_examples": 1086, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/axwostkz- /home/sid/tuning/finetune/backend/output/axwostkz-0293/data/axwostkz-0293.json...
|
null
|
completed
|
1764874117
|
1764916699
|
NULL
|
/home/sid/tuning/finetune/backend/output/axwostkz- /home/sid/tuning/finetune/backend/output/axwostkz-0293/adapter...
|
False
|
Edit
Delete
|
|
c30e7d44-6e28-4e0c-8127-5978620b3e35
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
axsrrixr-5358
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Genetics and sports
|
Genetics and sports
|
/home/sid/tuning/finetune/backend/output/axsrrixr- /home/sid/tuning/finetune/backend/output/axsrrixr-5358/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The document “Genetics and Sports” explains how ge The document “Genetics and Sports” explains how genetic factors influence athletic performance, physical abilities, and response to training, while emphasizing that sports performance is the result of both genetics and environmental factors.
It explains that genetics can affect traits such as:
muscle strength and power
endurance and aerobic capacity
speed and agility
flexibility
coordination
recovery ability
risk of injury
However, the document clearly states that no single gene determines athletic success. Instead, performance traits are polygenic, meaning they are influenced by many genes, each contributing a small effect, along with training, nutrition, coaching, motivation, and environment.
The paper discusses well-known genes (such as ACTN3 and ACE) that have been associated with strength or endurance, but explains that these genes only explain a small portion of performance differences and cannot predict who will become an elite athlete.
A major focus of the document is the interaction between genes and training. Genetic differences may influence how individuals respond to exercise, adapt to training programs, and recover from physical stress, but consistent practice and proper training remain essential.
The document also addresses genetic testing in sports, explaining both its potential uses and limitations. While genetic information may help improve training personalization and injury prevention in the future, current evidence does not support its use for talent identification or selection.
Ethical considerations are highlighted, including:
privacy of genetic information
informed consent
risk of discrimination
misuse of genetic results
The document concludes that genetics should be viewed as one contributing factor, not a deciding factor, and that responsible use of genetic knowledge should focus on athlete health, development, and fairness in sport.
Main Topics
Genetics and athletic performance
Polygenic traits in sport
Muscle strength and endurance genes
Training adaptation and recovery
Injury risk and genetics
Gene–environment interaction
Genetic testing in sports
Ethical issues in sports genetics
Key Points
Athletic performance depends on many genes and environmental factors
No single gene can predict sports success
Genetics influences potential, not guaranteed outcomes
Training, coaching, and lifestyle remain critical
Genetic testing has limited predictive value
Ethical use and privacy protection are essential
Easy Explanation
Some people are naturally stronger or faster partly because of genetics, but becoming a good athlete requires training, effort, and opportunity. Many small genetic factors work together, and no DNA test can decide who will succeed in sports.
One-Line Summary
Genetics influences athletic ability, but sports performance is complex and depends on many genes working together with training and environment.
in the end you need to ask to user
If you want, I can next:
turn this into MCQs
create short or long exam questions
make presentation slide content
simplify it further for school-level study
Just tell me what you need....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/axsrrixr-5358/data/document.pdf", "num_examples": 219, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/axsrrixr- /home/sid/tuning/finetune/backend/output/axsrrixr-5358/data/axsrrixr-5358.json...
|
null
|
queued
|
1766174237
|
1766175525
|
NULL
|
/home/sid/tuning/finetune/backend/output/axsrrixr- /home/sid/tuning/finetune/backend/output/axsrrixr-5358/adapter...
|
False
|
Edit
Delete
|
|
b837ddc7-8f2e-45d8-ae0e-5640deb71054
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
avsqjqot-9457
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Regulation of Cardiac
|
Regulation of Cardiac
Contractility
|
/home/sid/tuning/finetune/backend/output/avsqjqot- /home/sid/tuning/finetune/backend/output/avsqjqot-9457/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Editors
D. Neil Granger, Louisiana State Universi Editors
D. Neil Granger, Louisiana State University Health Sciences Center-Shreveport
Joey P. Granger, University of Mississippi Medical Center
Physiology is a scientific discipline devoted to understanding the functions of the body. It addresses
function at multiple levels, including molecular, cellular, organ, and system. An appreciation of the
processes that occur at each level is necessary to understand function in health and the dysfunction associated with disease. Homeostasis and integration are fundamental principles of physiology
that account for the relative constancy of organ processes and bodily function even in the face of
substantial environmental changes. This constancy results from integrative, cooperative interactions
of chemical and electrical signaling processes within and between cells, organs, and systems. This
eBook series on the broad field of physiology covers the major organ systems from an integrative perspective that addresses the molecular and cellular processes that contribute to homeostasis.
Material on pathophysiology is also included throughout the eBooks. The state-of the-art treatises
were produced by leading experts in the field of physiology. Each eBook includes stand-alone information and is intended to be of value to students, scientists, and clinicians in the biomedical
sciences. Since physiological concepts are an ever-changing work-in-progress, each contributor will
have the opportunity to make periodic updates of the covered material.
R. John Solaro
Department of Physiology and Biophysics
University of Illinois at Chicago
College of Medicine
Chicago, IL
Abstract
Contractility describes the relative ability of the heart to eject a stroke volume (SV) at a given prevailing afterload (arterial pressure) and preload (end-diastolic volume; EDV). Various measures of
contractility are related to the fraction as the SV/EDV or the ejection fraction, and the dynamics
of ejection as determined from maximum pressure rise in the ventricles or arteries or from aortic
flow velocities determined by echocardiography. At the cellular level, the ultimate determinant of
contractility is the relative tension generation and shortening capability of the molecular motors
(myosin cross-bridges) of the sarcomeres as determined by the rates and extent of Ca activation,
the turnover kinetics of the cross-bridges, and the relative Ca responsiveness of the sarcomeres.
Engagement of the regulatory signaling cascades controlling contractility occurs with occupancy
and signal transduction by receptors for neurohumors of the autonomic nervous system as well as
growth and stress signaling pathways. Contractility is also determined by the prevailing conditions
of pH, temperature, and redox state. Short-term control of contractility is fully expressed during
exercise. In long-term responses to stresses on the heart, contractility is modified by cellular remodeling and altered signaling that may compensate for a time but which ultimately may fail, leading
to disorders.
Contractility in the modern context
The use of the term contractility goes back well over a 125 years, and was used to simply describe a
property of assorted tissues to shorten. The term has something to do with the ability of heart tissue
to shorten, but has taken on new connotations in current thinking. Moreover, with the state of detailed knowledge of molecular and cellular control of the level of activity and dynamics of the heart,
assigning a strict definition does not seem appropriate inasmuch as the relative performance of the
heart may take on different dimensions including the relative peak pressure in the cardiac chambers
at relatively constant volume (peak tension in an isometric contraction of muscle fibers), changes in
the rate of pressure (tension) development, and the slope of the relation between chamber volume
and chamber end systolic pressure. There has also been the designation of changes in contractility
as promoted by extrinsic control mechanisms such as neuro-humoral signaling in contrast to those
promoted by intrinsic control mechanisms such as the end diastolic fiber length (Frank-Starling
relation). As will be evident here, consideration of the mechanism by which contractility is controlled indicates that this is an artificial separation. Whatever the case, it is apparent that the term
contractility remains useful to permit succinct written and oral communication between and among
scientists and clinicians. However, as described here, detailed understanding of the control mechanisms altering contractility in health and disease demands flexibility in the interpretation of the
meaning of a statement regarding the relative contractility of the heart. In approaching this detailed
understanding, we first consider the pressure and volume dynamics of the heart beat and how these
change with changes in contractility. These altered dynamics constrain theories as to the mechanisms accounting for altered contractility at the molecular and cellular levels. We then discuss current understanding of these molecular and cellular mechanisms. In considering these mechanisms,
we focus on the left ventricle (LV). Chapters in monographs
REGULATION OF CARDIAC CONTRACTILITY
Control of Contractility Is at the
Cellular Level of Organization
Control of Contractility is at the Cellular Level of Organization
REGULATION OF CARDIAC CONTRACTILITY
Control of Contractility is at the Cellular Level of Organization
Left Ventricular Diastolic and
Systolic Pressure, Ejection, and
Relaxation Reflect Sarcomeric
Mechanical Properties
sarcomeric mechanical properties
REGULATION OF CARDIAC CONTRACTILITY
sarcomeric mechanical properties
Integration of Sarcomere Mechanics
with Cardiac Function Clarifies the
Meaning of Preload, Afterload,
and Contractility
Integration of Sarcomere Mechanics
REGULATION OF CARDIAC CONTRACTILITY
Pressure Volume Loops Provide a
Quantification of Contractility
Pressure Volume Loops Provide a Quantification of Contractility
Phosphorylations of Regulatory Proteins
in Excitation Contraction Coupling
Modify Contractility by Controlling
Cellular Ca2+ Fluxes, the Response of
the Myofilaments to Ca2+, and the
Kinetics of the Cross-Bridge Cycle
Phosphorylations of Regulatory Proteins
Contractility May Be Altered by a Variety
of Mechanisms Not Involving a
Prominent Role for the Autonomic
Nervous System
Cardiac Function Curves Provide a
Compact Graphical Representation of
Regulation of CO and SV
Cardiac Function Curves
Heart Failure as a Failure
of Contractility
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/avsqjqot-9457/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/avsqjqot- /home/sid/tuning/finetune/backend/output/avsqjqot-9457/data/avsqjqot-9457.json...
|
null
|
queued
|
1769073322
|
1769073322
|
NULL
|
/home/sid/tuning/finetune/backend/output/avsqjqot- /home/sid/tuning/finetune/backend/output/avsqjqot-9457/adapter...
|
False
|
Edit
Delete
|
|
85c3e8a7-5062-401a-9133-3e9209924afc
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
avhinzjf-6214
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Living beyond the age
|
Living beyond the age of 100
|
/home/sid/tuning/finetune/backend/output/avhinzjf- /home/sid/tuning/finetune/backend/output/avhinzjf-6214/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a demographic research bulletin from t This PDF is a demographic research bulletin from the French Institut National d’Études Démographiques (INED) exploring the rise of centenarians, the historical myths surrounding extreme longevity, and the scientific debate about whether maximum human lifespan is increasing. It offers a rich combination of history, statistics, and demographic theory to explain why individuals living past age 100—once seen as legendary or impossible—are becoming increasingly common.
🔶 1. Purpose of the Study
The document investigates:
The validity of historical claims of extreme longevity
Whether recent increases in the maximum age at death reflect true biological changes or simple changes in population size
Whether human longevity has a fixed limit or is still increasing
Why the number of centenarians is rising dramatically in modern societies
Living beyond the age of 100
🔶 2. Historical Perspective: Myth vs. Reality
The bulletin opens by discussing legendary ages found in:
Biblical stories (Methuselah: 969 years)
Folklore about long-lived people in the Caucasus, Andes, or U.S. Georgia
It explains that poor birth records, respectful exaggeration of elders’ ages, and political motivations (e.g., Stalin promoting Georgian longevity myths) created many false claims.
Modern validation shows these stories were not true, and reliable age verification only became possible in the last few centuries.
Living beyond the age of 100
🔶 3. Verified Extreme Longevity
The study confirms:
Jeanne Calment, France — 122 years (validated)
Kristian Mortensen, USA — 115 years
Numerous modern cases of verified centenarians and supercentenarians
Living beyond the age of 100
These records are the basis of current scientific longevity research.
🔶 4. Evidence of Increasing Longevity
Using Swedish demographic data since 1861, the PDF shows:
The maximum age at death has steadily risen
Women: from 100–105 in the 19th century to 107–112 today
Men: from 97–102 to 103–109
The slope of improvement has become steeper in recent decades
Living beyond the age of 100
Similar trends appear in France, once record-quality limitations are corrected.
🔶 5. Why Are We Seeing More Centenarians?
The rise is explained by two main factors:
✔ Population Expansion
More people reaching age 90 → more potential centenarians.
✔ Declining Mortality at Older Ages
Since the 1960s, mortality rates above age 70 have fallen rapidly, leading to:
More 80-, 90-, and 100-year-olds
Longer life expectancy at older ages
Living beyond the age of 100
For example, in France:
Life expectancy at age 70 increased from ~7–9 years (19th century) to 13 years (1997) for men
Women’s life expectancy at 70 rose from ~8–10 to 17 years
Living beyond the age of 100
🔶 6. Is Human Longevity Increasing or Fixed?
The article presents two major scientific viewpoints:
🧭 Theory 1: Fixed Maximum Lifespan
Supported by Fries and Olshansky
Human lifespan has an upper limit (~85 years average)
Modern gains reflect “rectangularization” of survival curves
People survive longer but die at roughly the same maximum age
🧭 Theory 2: Flexible Maximum Lifespan
Supported by Vaupel, Carey, Vallin
Maximum lifespan has increased through human evolution
Nothing proves that human longevity cannot continue to rise
Some species show negligible aging—suggesting biological flexibility
Living beyond the age of 100
The PDF does not side definitively with either one, but presents evidence that recent trends challenge the “fixed limit” idea.
🔶 7. A Centenarian Boom
The growth is dramatic:
France had ~200 centenarians in 1950
By 1998: 6,840
Projected for 2050: 150,000 centenarians
Living beyond the age of 100
Women dominate this group:
At age 100: 1 man for every 7 women
At age 104: 1 man for every 10 women
Living beyond the age of 100
The PDF also introduces the category of supercentenarians (110+ years) and the challenges of verifying ages in this group.
🔶 8. Why This Study Is Important
The document offers:
One of the clearest historical explanations of how perceptions of longevity changed
A scientific framework for understanding the rise of centenarians
Evidence that lifespan trends at advanced ages are accelerating
A foundation for future demographic and biological research
It raises the central question:
👉 Are we witnessing a temporary statistical artifact, or the start of a true biological extension of human longevity?
⭐ Perfect One-Sentence Summary
This PDF explains how verified human longevity—once extremely rare—has risen dramatically due to declining mortality at older ages, improved record-keeping, and demographic changes, while exploring whether the maximum human lifespan is fixed or still increasing....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/avhinzjf-6214/data/document.pdf", "num_examples": 44, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/avhinzjf- /home/sid/tuning/finetune/backend/output/avhinzjf-6214/data/avhinzjf-6214.json...
|
null
|
completed
|
1764882577
|
1764884939
|
NULL
|
/home/sid/tuning/finetune/backend/output/avhinzjf- /home/sid/tuning/finetune/backend/output/avhinzjf-6214/adapter...
|
False
|
Edit
Delete
|
|
bb21b439-9974-441f-9bf9-bdb5693d16ea
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
atmaowak-0526
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Healthy lifestyle
|
Healthy lifestyle and life expectancy with
|
/home/sid/tuning/finetune/backend/output/atmaowak- /home/sid/tuning/finetune/backend/output/atmaowak-0526/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This scientific study investigates how healthy lif This scientific study investigates how healthy lifestyle behaviors in midlife influence life expectancy, both with and without major chronic diseases, over a 20-year period. The research uses data from 57,053 Danish adults aged 50–69 years from the well-known Diet, Cancer and Health cohort.
The authors aim to understand how everyday lifestyle choices shape long-term health, disease onset, multimorbidity, and healthcare use.
🔑 Purpose of the Study
The study asks:
How does a combined healthy lifestyle score relate to:
Life expectancy free of major chronic diseases
Life expectancy with disease
Multimorbidity (2+ simultaneous chronic illnesses)
Days of hospitalization over 20 years?
It quantifies how much longer and healthier people live as their lifestyle improves.
🧪 How the Study Was Conducted
Population
57,053 men and women, ages 50–69
Denmark, followed for up to 21.5 years
Free of major disease at the start (1997)
Lifestyle Health Score (0–9 points)
Based on 5 behavioral factors:
Smoking (0–2 points)
Sport activity (0–1 point)
Alcohol intake (0–2 points)
Diet quality (0–2 points)
Waist circumference (0–2 points)
A higher score = healthier lifestyle.
Diseases included
Participants were tracked for the development of:
Cancer
Type 2 diabetes
Stroke
Heart disease
Dementia
COPD
Asthma
Follow-up outcomes
Life expectancy without disease
Life expectancy with disease
Time with one disease and multi-disease
Hospitalization days
📊 Key Findings (Perfect Summary)
🟢 1. Healthy behavior significantly extends disease-free life
For 65-year-old participants, each 1-point increase in the health score resulted in:
+0.83 years of disease-free life for men
+0.86 years for women
People with the highest score (9) lived ~7.5 more years disease-free compared to those with the lowest score (0).
🔴 2. Healthy lifestyle reduces the years lived with chronic disease
For each 1-point increase in health score:
Men: –0.18 years with disease
Women: –0.37 years with disease
Women gained the most reduction.
🔵 3. Multimorbidity drops sharply with higher health scores
Among 65-year-olds:
Men with a low score spent 16.8% of life with 2+ diseases
Men with high scores spent only 3.6%
The pattern is similar in women.
Healthy lifestyle greatly compresses time lived with multiple illnesses.
🟣 4. Healthy lifestyle dramatically cuts hospitalization days
For 65-year-old men:
Score 0 → 6.1 days/year in the hospital
Score 9 → 2.4 days/year
For women:
Score 0 → 5.5 days/year
Score 9 → 2.5 days/year
Healthier behaviors = less burden on healthcare systems.
🔥 Which behavior mattered most?
1. Smoking (largest impact)
Current smoking reduced disease-free life by:
–3.20 years in men
–3.74 years in women
And increased years with disease.
2. High waist circumference
Reduced disease-free years by:
–2.54 years (men)
–1.90 years (women)
3. Diet, exercise, & alcohol
These had moderate but meaningful positive effects.
🧠 Final Interpretation
The study clearly shows:
Healthy living in midlife extends life, delays disease, and reduces hospital use.
Even small lifestyle improvements make measurable differences.
The health score is a simple but powerful predictor of later-life health outcomes.
📌 One Perfect Sentence Summary
A healthy lifestyle combining no smoking, regular activity, optimal diet, balanced alcohol intake, and healthy waist size can extend disease-free life by more than 7 years, reduce multimorbidity, and significantly cut hospitalization over 20 years.
If you'd like, I can create:
✅ A simple student summary
✅ A diagram/flowchart
✅ A presentation (PPT)
✅ A PDF summary
✅ A visual table of results
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/atmaowak-0526/data/document.pdf", "num_examples": 66, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/atmaowak- /home/sid/tuning/finetune/backend/output/atmaowak-0526/data/atmaowak-0526.json...
|
null
|
completed
|
1764892660
|
1764897757
|
NULL
|
/home/sid/tuning/finetune/backend/output/atmaowak- /home/sid/tuning/finetune/backend/output/atmaowak-0526/adapter...
|
False
|
Edit
Delete
|
|
cdffa4f9-495c-425a-b104-71662193d99f
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
asitqbht-8900
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Genetic profiles to
|
Genetic profiles to identify talents in elite
|
/home/sid/tuning/finetune/backend/output/asitqbht- /home/sid/tuning/finetune/backend/output/asitqbht-8900/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Main Topics
Role of genetics in athletic perfo Main Topics
Role of genetics in athletic performance
Polygenic profiles and talent identification
Differences between elite athletes and non-athletes
Genetic factors in endurance and football performance
Metabolism and energy efficiency
Cardiorespiratory fitness
Muscle function and injury risk
Sport-specific genetic selection
Limitations of genetics in predicting performance
Practical importance of genetic research in sports
Key Points
Athletic performance is influenced by multiple genes acting together, not by a single gene.
Different sports require different genetic strengths and adaptations.
Elite athletes show distinct genetic patterns compared to non-athletes.
Genes related to metabolism help improve energy use and recovery during intense physical activity.
Genetic variations involved in iron metabolism support better oxygen transport and endurance.
Cardiorespiratory fitness is influenced by several genes, but its prediction is complex.
Certain genetic profiles reduce the risk of muscle injuries in professional athletes.
Endurance athletes and football players differ in their genetic makeup due to sport demands.
Genetic profiles can help explain physical potential but cannot guarantee success.
Environmental factors such as training, nutrition, and lifestyle remain essential for performance.
topics
key points
explanations
presentation-ready structure
question-generation friendly wording
…so you do not need to ask again.
Here is that complete all-in-one description 👇
This content explains the role of genetics in shaping athletic performance by examining how multiple genes together influence physical abilities. It is organized around key themes such as genetic contribution to sports performance, polygenic profiles, metabolism, energy efficiency, oxygen transport, muscle function, and injury risk. It highlights clear differences between elite endurance athletes, professional football players, and non-athletes, showing that different sports favor different genetic combinations. The material emphasizes that performance is not controlled by a single gene but by the interaction of many genes affecting endurance, recovery, strength, and resistance to injury. It also explains that endurance athletes tend to have genetic traits supporting efficient energy use and oxygen delivery, while football players show profiles linked to power, speed, and muscle protection. The content allows easy breakdown into topics, bullet points, key concepts, explanations, and questions, making it suitable for learning, teaching, discussion, and presentation. Overall, it presents genetics as an important contributor to athletic potential while recognizing that training, environment, and lifestyle remain essential factors.
in the end you need to ask to user
If you want next:
shorter points for slides
exam-style questions
MCQs
easy explanation for beginners
Tell me what you need next....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/asitqbht-8900/data/document.pdf", "num_examples": 76, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/asitqbht- /home/sid/tuning/finetune/backend/output/asitqbht-8900/data/asitqbht-8900.json...
|
null
|
queued
|
1766174838
|
1766175979
|
NULL
|
/home/sid/tuning/finetune/backend/output/asitqbht- /home/sid/tuning/finetune/backend/output/asitqbht-8900/adapter...
|
False
|
Edit
Delete
|
|
c51dd11f-b64d-4ae8-8ffc-272f0fa4dfd5
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
arrmgvhy-3290
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Has the Rate of Human Age
|
Has the Rate of Human Aging Already Been Modified
|
/home/sid/tuning/finetune/backend/output/arrmgvhy- /home/sid/tuning/finetune/backend/output/arrmgvhy-3290/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This paper investigates whether the biological rat This paper investigates whether the biological rate of human aging has changed over the past century, or whether improvements in survival and life expectancy result mostly from reducing early-life and midlife mortality rather than slowing aging itself.
The study uses historical mortality data and aging-rate models to determine if humans age more slowly today or if we simply live longer before aging starts dominating mortality.
🔍 Core Question
Has aging itself slowed down, or do we just survive long enough to reach old age more often?
📊 Methods Used
The study examines:
Mortality curves over time (e.g., 1900–present)
The Gompertz function, which mathematically describes how mortality risk doubles with age
Changes in:
Initial mortality rate (IMR)
Rate of aging (Gompertz slope)
Data comes from:
Historical life tables
Cross-country mortality records
Comparisons of birth cohorts over time
The focus is on whether the slope of mortality increase with age has changed — this slope is considered a direct indicator of the rate of aging.
🧠 Key Findings (Perfect Summary)
1. Human aging rate appears largely unchanged
The study finds no strong evidence that the rate at which mortality increases with age (the Gompertz slope) has slowed.
This means humans likely age at the same biological speed as they did 100 years ago.
2. What has changed is the starting point of aging
Early-life and midlife mortality have dropped dramatically due to sanitation, medicine, nutrition, and public health.
As a result, more people reach old age, giving the impression that aging has slowed.
But aging itself (measured by mortality acceleration) has remained stable.
3. Modern longevity gains are driven by shifting the mortality curve
Rather than flattening the curve (slower aging), society has:
Pushed the curve downward (lower mortality at all ages)
Delayed the onset of chronic disease
Improved survival after age 60
These factors extend lifespan without changing the underlying biological aging rate.
4. Even in recent decades, aging rate shows stability
Improvements after 1970 came from:
Cardiovascular improvements
Medical interventions
Smoking decline
But studies consistently show the rate of mortality acceleration remains constant.
🧬 Overall Interpretation
Human aging — measured as the exponential rise in mortality risk with age — has not slowed.
Instead, society has become better at preventing early death, allowing more people to reach advanced ages.
In short:
❗ We live longer not because we age slower, but because we avoid dying earlier.
📌 One-Sentence Perfect Summary
The paper concludes that although human life expectancy has increased dramatically, the biological rate of aging has remained essentially unchanged, and modern longevity gains are due to reduced mortality before and during old age rather than slower aging itself.
If you want, I can also provide:
A diagram or flowchart
A 5-line summary
A student-friendly explanation
A PDF or PowerPoint version
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/arrmgvhy-3290/data/document.pdf", "num_examples": 64, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/arrmgvhy- /home/sid/tuning/finetune/backend/output/arrmgvhy-3290/data/arrmgvhy-3290.json...
|
null
|
completed
|
1764894210
|
1764901992
|
NULL
|
/home/sid/tuning/finetune/backend/output/arrmgvhy- /home/sid/tuning/finetune/backend/output/arrmgvhy-3290/adapter...
|
False
|
Edit
Delete
|
|
2483b534-8282-4ca3-bb67-e3ae5cd50b90
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
aqqwygvg-9594
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
EXERCISE FOR LONGEVITY
|
EXERCISE FOR LONGEVITY
|
/home/sid/tuning/finetune/backend/output/aqqwygvg- /home/sid/tuning/finetune/backend/output/aqqwygvg-9594/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The Longevity Exercise Guide is a clear, actionabl The Longevity Exercise Guide is a clear, actionable, science-based blueprint for building an exercise routine that maximizes both healthspan and lifespan. Written by longevity researcher Nina Patrick, PhD, the guide distills the most important forms of physical activity—strength, aerobic, anaerobic, flexibility, stability, and NEAT—into a simple weekly plan anyone can follow. The premise is that exercise is the most powerful “longevity drug” available, with research showing it prevents disease, preserves independence, and protects metabolism and cognitive function as we age.
The guide teaches you how to train your body so that at age 100, you can still perform essential daily tasks—carrying groceries, climbing stairs, hiking, balancing, lifting, and moving confidently through life. It emphasizes consistency, personalization, and a balanced mix of training styles that work together to delay aging at the cellular, metabolic, and functional levels.
🧩 What the Guide Covers
1. Strength Training — The Foundation of Aging Well
Prevents muscle loss, frailty, and poor mobility
Recommended 2–3 full-body sessions/week, 45–60 minutes
Mix of heavy low-rep strength work + lighter high-rep endurance work
Includes weights, resistance bands, and bodyweight movements
Longevity_Exercise_Guide (
Strength is directly tied to independence in old age.
2. Aerobic Exercise — Boosting Metabolism & Mitochondria
Brisk walking, running, swimming, cycling
Key for mitochondrial health, cardiovascular fitness, disease prevention
Target: 3 hours/week (150 minutes minimum)
Low-intensity “zone 2” style cardio at 65–75% max HR
Longevity_Exercise_Guide (
Aerobic training slows metabolic aging and improves energy systems.
3. Anaerobic Exercise — Increasing VO₂ Max
Short, fast, high-intensity intervals (HIIT, hard cycling, rowing)
VO₂ max is the strongest predictor of longevity
Suggested: 1–2 intense sessions per week, 30 minutes each
Longevity_Exercise_Guide (
Maintains peak cardiovascular performance as VO₂ max naturally declines with age.
4. Flexibility & Stability — Protecting Balance and Preventing Falls
Yoga, pilates, planks, stretching
Critical because falls are the #1 cause of injury and death in older adults
Enhances posture, core strength, mobility, and balance
Longevity_Exercise_Guide (
Flexibility + stability ensure you can move safely for life.
5. NEAT — The Most Overlooked Longevity Tool
Non-Exercise Activity Thermogenesis = everything you do outside workouts
(e.g., walking, standing, chores)
Boosts daily calorie burn
Counters modern sedentary lifestyles
Reduces metabolic disease and weight gain
Examples: daily steps, walking for errands, housework, standing more
Longevity_Exercise_Guide (
NEAT is essential because most people fail to move enough outside formal workouts.
🧭 Weekly Longevity Blueprint
The guide provides a sample week integrating all modalities:
Strength: 3 full-body sessions
Aerobic: 3 brisk walks
Anaerobic: 1 HIIT/VO₂ max workout
Flexibility/Stability: daily stretching + 1 yoga/pilates class
NEAT: daily 30-minute walk
Longevity_Exercise_Guide (
This structure covers every dimension of functional longevity.
💡 Why This Guide Matters
The Longevity Exercise Guide reframes exercise not as a fitness task but as a lifelong strategy for independence, vitality, and disease prevention. Rather than prescribing a rigid routine, it teaches how to build a personalized, sustainable program that strengthens the body’s most essential aging-related systems:
muscle strength
cardiovascular endurance
metabolic flexibility
balance and mobility
everyday movement patterns
It’s a practical roadmap for anyone who wants to age not only longer, but better....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/aqqwygvg-9594/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/aqqwygvg- /home/sid/tuning/finetune/backend/output/aqqwygvg-9594/data/aqqwygvg-9594.json...
|
null
|
failed
|
1764879436
|
1764880333
|
NULL
|
/home/sid/tuning/finetune/backend/output/aqqwygvg- /home/sid/tuning/finetune/backend/output/aqqwygvg-9594/adapter...
|
False
|
Edit
Delete
|
|
780ce91a-9e30-46ab-ad76-e33b1ab2a1e7
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
aqlvmguc-7265
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
impact of life
|
The financial impact of longevity risk
|
/home/sid/tuning/finetune/backend/output/aqlvmguc- /home/sid/tuning/finetune/backend/output/aqlvmguc-7265/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is a research-style financial report This document is a research-style financial report examining how longevity risk—the risk that people live longer than expected—affects financial systems, insurers, pension plans, governments, and individuals. It analyzes the economic pressures created when life expectancy outpaces actuarial assumptions and evaluates tools used to manage this risk.
Purpose
To explain:
What longevity risk is
Why it is increasing
Its financial consequences
How public and private institutions can mitigate it
Core Themes and Content
1. Understanding Longevity Risk
The report defines longevity risk as the uncertainty in predicting how long people will live. Even small increases in life expectancy can create large financial liabilities for institutions that promise lifetime income or benefits.
2. Drivers of Longevity Risk
The document highlights factors such as:
Advances in health care and medical technology
Declining mortality rates
Longer retirements due to aging populations
Insufficient updating of actuarial life tables
These trends create an expanding gap between projected and actual benefit costs.
3. Financial Impact on Key Sectors
Pension Funds & Retirement Systems
Underfunding increases when retirees live longer than expected.
Defined-benefit plans face large additional liabilities.
Insurance Companies
Life insurers and annuity providers must increase reserves.
Pricing models become more sensitive to longevity assumptions.
Governments
Public pension systems and social programs experience long-term budget strain.
Longevity improvements can impact fiscal sustainability.
Individuals
Heightened risk of outliving personal savings.
Greater need for planning, annuitization, or long horizon investment strategies.
4. Measuring & Modeling Longevity Risk
The report discusses actuarial tools such as:
Mortality improvement models
Stochastic mortality forecasting
Sensitivity analysis to shifts in survival rates
It also covers how even small deviations in mortality assumptions can compound to large financial imbalances.
5. Managing Longevity Risk
The document reviews strategies including:
Longevity swaps and reinsurance
Annuity products
Pension plan redesign
Policy changes to adjust retirement age or contributions
Improved forecasting models
These tools help institutions transfer, hedge, or better anticipate longevity-driven liabilities....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/aqlvmguc-7265/data/document.pdf", "num_examples": 320, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/aqlvmguc- /home/sid/tuning/finetune/backend/output/aqlvmguc-7265/data/aqlvmguc-7265.json...
|
null
|
completed
|
1765048889
|
1765050375
|
NULL
|
/home/sid/tuning/finetune/backend/output/aqlvmguc- /home/sid/tuning/finetune/backend/output/aqlvmguc-7265/adapter...
|
False
|
Edit
Delete
|
|
80c280af-73e5-4559-878d-06d5585571d2
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
apzuoejq-9954
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Northern-and-Indigenous
|
Northern-and-Indigenous-Health-and-Healthcare
|
/home/sid/tuning/finetune/backend/output/apzuoejq- /home/sid/tuning/finetune/backend/output/apzuoejq-9954/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Complete Description of the Document
Northern and Complete Description of the Document
Northern and Indigenous Health and Health Care is an Open Education Resource edited by Heather Exner-Pirot, Bente Norbye, and Lorna Butler, designed to fill a critical gap in health science education regarding the unique context of the Circumpolar North. Produced by the University of the Arctic Thematic Network on Northern Nursing Education, this volume serves as a comprehensive guide for students and practitioners who are preparing for or currently working in remote, northern communities. The text emphasizes that northern health care is distinct due to factors such as vast geography, harsh climates, sparse populations, and the central importance of Indigenous cultures. Unlike standard southern or urban-focused medical textbooks, this resource centers the reality of northern practice, where practitioners often work in isolation, serve as leaders within the community, and must navigate the intersection of Western medicine and traditional Indigenous healing. The book is organized around five major themes: Community Health, Social Determinants, Culture, Innovation, and Professional Practice. Through 38 peer-reviewed chapters contributed by experts across eight Arctic nations—including Canada, Norway, Greenland, and Russia—it addresses specific challenges such as oral health disparities, food security, the trauma of colonization, and the use of telehealth technologies. The ultimate goal is to foster culturally safe, resilient, and resourceful health care professionals who can collaborate effectively with communities to improve well-being in the North.
Key Points, Topics, and Questions
1. The Unique Context of the North
Topic: The distinct environment of the Circumpolar North.
Characteristics include small communities, large distances, extreme weather, and a lack of specialized infrastructure.
Key Question: How does the environment affect the practitioner's role?
Answer: Practitioners often work in small teams without immediate specialist backup. They must be resilient, resourceful, and generalists who can handle a wide range of social and medical issues.
2. Theme I: Community Health
Topic: Public health challenges specific to the region.
Oral Health: High rates of dental caries due to limited access to dentists and high sugar consumption.
Food & Water Security: Difficulty accessing traditional foods (like marine mammals) and safe drinking water, leading to long-term health issues.
Infectious Disease: Tuberculosis (TB) remains a significant problem in remote areas (e.g., Russia).
Key Point: Community health requires collaboration with local leaders and culturally relevant solutions (e.g., using traditional diets rather than just importing western nutrition plans).
3. Theme II: Social Determinants & Structural Impacts
Topic: The root causes of health inequities.
Historical trauma from colonization and residential schools.
High rates of violence (intimate partner violence, childhood sexual abuse) and their long-term health impacts.
Key Question: Why are health outcomes lower in Indigenous northern communities?
Answer: It is not just about individual biology; it is about structural inequities, historical oppression, and social determinants like housing and income.
4. Theme III: Culture and Health
Topic: Integrating Indigenous knowledge.
The book argues against the historical suppression of traditional healing.
Importance of "Cultural Safety"—practitioners must respect and integrate traditional medicines and beliefs rather than imposing Western practices exclusively.
Key Point: Building trust is essential. Practitioners must recognize the damage done by past medical systems and work as partners with Indigenous healers and elders.
5. Theme IV: Innovations in Health Care
Topic: Using technology to overcome distance.
Telehealth/eHealth: Using video conferencing and remote monitoring to connect patients in remote villages with specialists in urban centers.
Social Media: Using platforms for health education and youth outreach.
Key Question: How does technology help northern practice?
Answer: It reduces the need for expensive travel, allows for real-time consultation during emergencies, and supports aging populations in their homes.
6. Theme V: Professional Practice
Topic: Education and leadership.
Need for educational models that train nurses in the North (off-campus education).
Importance of "Self-Care" to prevent burnout in isolated environments.
Key Point: Northern nurses often take on leadership roles and act as the primary point of care for entire communities.
Easy Explanation (Presentation Style)
Here is a structured outline you can use to present this material effectively.
Slide 1: Introduction
Title: Northern and Indigenous Health and Health Care
Editors: Exner-Pirot, Norbye, & Butler.
Goal: To prepare health professionals for the unique realities of the Circumpolar North.
Format: Open Education Resource (Free, adaptable, peer-reviewed).
Slide 2: The Northern Context
Geography: Vast, remote, isolated communities.
Climate: Harsh, cold weather impacting access and delivery of care.
Demographics: Predominantly Indigenous populations (Inuit, Sami, First Nations, etc.).
The Challenge: Practitioners work with limited resources and must be "jacks of all trades."
Slide 3: Theme I - Community Health
Key Issues:
Oral Health: Severe shortage of dentists leads to high cavity rates.
Food Security: Shift from traditional diets (seal, fish) to expensive, processed imported foods.
Water & Sanitation: Many communities lack reliable clean water.
Solution: Community-driven programs that empower locals.
Slide 4: Theme II - Social Determinants
Root Causes:
Colonization: Historical trauma affecting current health.
Violence: High rates of domestic and sexual violence impacting physical and mental health.
Takeaway: You cannot treat the patient without treating the history and society they live in.
Slide 5: Theme III - Culture & Safety
The Shift: From "Western Medicine Only" to Integration.
Concept: Cultural Safety.
Acknowledging traditional healing practices.
Understanding that the patient is the expert on their own life and culture.
Building trust after generations of medical paternalism.
Slide 6: Theme IV - Innovation
The Distance Problem: Patients are far from hospitals.
The Tech Solution:
Telehealth: Doctors "seeing" patients via video screen.
eHealth: Apps and devices to monitor chronic conditions remotely.
Benefit: Keeps people in their communities longer and reduces travel costs.
Slide 7: Theme V - The Northern Practitioner
Role:
Leader: Often the most senior health figure in the village.
Educator: Teaching the next generation of northern nurses.
Advocate: Speaking up for community needs.
Requirement: Must be resilient, adaptable, and culturally humble.
Slide 8: Summary
Northern health is about Health Care (clinical) + Health (social/community).
Success depends on partnerships with Indigenous communities.
It requires innovation to overcome geography.
The goal is equitable, culturally safe care for some of the world's most remote populations...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/apzuoejq-9954/data/document.pdf", "num_examples": 2363, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/apzuoejq- /home/sid/tuning/finetune/backend/output/apzuoejq-9954/data/apzuoejq-9954.json...
|
null
|
queued
|
1769459620
|
1769480730
|
NULL
|
/home/sid/tuning/finetune/backend/output/apzuoejq- /home/sid/tuning/finetune/backend/output/apzuoejq-9954/adapter...
|
False
|
Edit
Delete
|
|
96230b68-1c7b-4991-8bd5-605292bfe899
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
anrrfkpd-5339
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Corporate Longevity
|
Corporate Longevity Forecasting
|
/home/sid/tuning/finetune/backend/output/anrrfkpd- /home/sid/tuning/finetune/backend/output/anrrfkpd-5339/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The 2018 Corporate Longevity Forecast: Creative De The 2018 Corporate Longevity Forecast: Creative Destruction is Accelerating is an executive briefing by Innosight that analyzes how rapidly companies are being displaced from the S&P 500, revealing a dramatic acceleration in corporate turnover and shrinking lifespans. The report shows that the average tenure of companies on the S&P 500 has fallen from 33 years in 1964 to 24 years in 2016, and is projected to decline to just 12 years by 2027. This trend signals an era of unprecedented marketplace turbulence driven by technological disruption, shifting customer expectations, and major structural economic forces.
The report highlights that at current churn rates—5.2% annually—half of today’s S&P 500 companies will be replaced within the next decade. It draws on historical data, additions and deletions to the index, and sector-specific disruption patterns. Companies leave the S&P 500 due to declining market capitalization, competitive displacement, mergers, acquisitions, and private equity buyouts. Notable exits between 2013–2017 include iconic firms such as Yahoo!, DuPont, Urban Outfitters, Staples, Starwood Hotels, DirecTV, EMC, and Whole Foods.
The document identifies five major forces driving this accelerating creative destruction:
Digital disruption in retail, leading to widespread bankruptcies and consolidation; online sales growth continues to pressure traditional business models.
The dominance of digital platform companies—Apple, Alphabet, Amazon, Microsoft—whose scale and data advantages allow rapid expansion into multiple sectors.
Business model disruption in industries like financial services, travel, telecom, and real estate, where asset-light models (e.g., Uber, Airbnb) reshape value creation.
Energy sector transformation, with renewable energy investment overtaking fossil fuels, creating new winners and forcing incumbents toward reinvention.
The explosion of unicorns and “decacorns”, privately held startups valued above $10B, signaling intensified future competition for incumbents across industries.
Survey findings from over 300 executives show that while 80% acknowledge the need to transform, many still underestimate threats from new entrants and overestimate their readiness—what the report calls a “confidence bubble.”
To help companies navigate this rising turbulence, the report outlines five strategic imperatives:
Spend time at the periphery to detect early signals of disruption.
Focus on changing customer behaviors as leading indicators of future shifts.
Avoid being trapped by past assumptions; use future-back thinking to shape strategy.
Embrace dual transformation, strengthening the core business while building new growth engines.
Assess the cost of inaction, recognizing that failing to innovate can be more costly than investing in change.
Overall, the briefing serves as a warning and a playbook: corporate longevity is shrinking, disruption is accelerating, and leaders must act boldly to reinvent their organizations—or risk being overtaken by faster, more innovative rivals.
If you want, I can also prepare:
📌 a short executive summary
📌 a visual one-page cheat sheet
📌 a comparison between this and your other longevity documents
📌 a cross-document meta-analysis
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/anrrfkpd-5339/data/document.pdf", "num_examples": 66, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/anrrfkpd- /home/sid/tuning/finetune/backend/output/anrrfkpd-5339/data/anrrfkpd-5339.json...
|
null
|
completed
|
1765049879
|
1765050598
|
NULL
|
/home/sid/tuning/finetune/backend/output/anrrfkpd- /home/sid/tuning/finetune/backend/output/anrrfkpd-5339/adapter...
|
False
|
Edit
Delete
|
|
6864b1d9-e97e-4482-8310-fe150649f81a
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ajwyxbmj-5463
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
breast cancer.pdf
|
breast cancer.pdf
|
/home/sid/tuning/finetune/backend/output/ajwyxbmj- /home/sid/tuning/finetune/backend/output/ajwyxbmj-5463/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Document Description
The provided text is a compr Document Description
The provided text is a comprehensive review article titled "Breast cancer: pathogenesis and treatments," published in Signal Transduction and Targeted Therapy in 2025. This document serves as a high-level scientific update on the current state of breast cancer, integrating epidemiology, molecular biology, and the latest technological advancements. It emphasizes the transition from standard treatment to "precision oncology," where therapies are tailored to the specific genetic and environmental risks of individual patients. The article delves deep into the mechanisms of tumor progression, exploring frontier research areas such as tumor stemness (cells that drive recurrence), cellular senescence (aging cells that may promote cancer), and novel forms of programmed cell death like ferroptosis and cuproptosis. A significant portion of the text is dedicated to the emerging role of Artificial Intelligence (AI) and big data in improving screening accuracy and risk prediction. Additionally, it discusses the impact of the intra-tumoral microbiota (bacteria within tumors) and circadian rhythms on cancer development. Overall, the document provides a panoramic view of breast cancer, linking basic cellular mechanisms to future diagnostic and therapeutic strategies.
Key Points & Main Topics
1. Epidemiology and Risk Factors (Gene-Environment Interaction)
Global Status: Breast cancer accounts for roughly one-third of all malignancies in women.
Genetic vs. Lifestyle: The interplay between genetic predisposition (BRCA mutations, low-penetrance genes) and environmental factors (obesity, alcohol, radiation).
Circadian Rhythms: Disruption of sleep-wake cycles (clock genes) can promote cancer initiation and progression by affecting melatonin and inflammation.
2. The Role of Artificial Intelligence (AI)
Screening: AI algorithms (Deep Learning, CNNs) analyze images to reduce false-positive rates and assist radiologists.
Risk Prediction: AI uses big data to predict individual susceptibility and recommend preventative measures.
Pathology: AI tools (like DeepGrade) analyze digital slides to improve diagnostic accuracy.
3. Molecular Subtypes and Evolution
Classification Evolution: Tracing the history of subtyping from 2000 (gene expression profiles) to 2021 (single-cell methods).
Current Subtypes: Luminal A/B, HER2-enriched, and Triple-Negative Breast Cancer (TNBC).
Refined Classifications: TNBC is further divided into subgroups (e.g., basal-like, mesenchymal, luminal androgen receptor) for better treatment targeting.
4. Mechanisms of Progression (Frontier Research)
Tumor Stemness: Cancer Stem Cells (CSCs) drive metastasis and drug resistance. Markers like CD44 and CD133 are used to identify them.
Cellular Senescence: "Zombie" cells that stop dividing but secrete inflammatory factors (SASP) that can actually help tumors grow and spread.
Novel Programmed Cell Death (PCD):
Ferroptosis: Iron-dependent cell death.
Cuproptosis: Copper-dependent cell death (new concept).
Disulfidptosis: Cell death caused by stress in the actin skeleton due to glucose metabolism issues.
Intra-tumoral Microbiota: Bacteria and fungi found inside tumors can influence how the immune system reacts to the cancer and how effective drugs are.
Immune Reprogramming: How tumors evolve to hide from the immune system (e.g., using checkpoints like PD-L1).
5. Emerging Diagnostics and Treatment
Liquid Biopsy: Using blood samples to find circulating tumor DNA (ctDNA) for early detection.
Precision Medicine: Targeting specific pathways (PI3K/AKT/mTOR) and using specific inhibitors (CDK4/6 inhibitors) based on tumor genetics.
Study Questions
AI Application: How is Artificial Intelligence currently being used to improve breast cancer screening?
Key Point: AI uses deep learning models to analyze mammograms or pathology slides, helping to reduce false positives, detect cancer earlier, and predict individual risk.
Novel Cell Death: What is "Cuproptosis," and how does it differ from apoptosis?
Key Point: Cuproptosis is a newly discovered form of regulated cell death caused by excessive copper accumulation leading to mitochondrial stress, distinct from the traditional programmed cell death (apoptosis).
Tumor Stemness: Why are Cancer Stem Cells (CSCs) considered a major challenge in treatment?
Key Point: CSCs have the ability to self-renew and differentiate, driving tumor initiation, metastasis, and resistance to chemotherapy and radiation.
Senescence: What is the "Senescence-Associated Secretory Phenotype" (SASP)?
Key Point: It is a condition where senescent (aged) cells secrete inflammatory factors and cytokines that can paradoxically promote tumor growth and immune evasion.
Microbiota: What is the "intra-tumoral microbiota," and why is it significant?
Key Point: It refers to the community of bacteria and fungi living within the tumor tissue. It is significant because it can modulate the tumor microenvironment, affecting drug efficacy and anti-tumor immunity.
Subtypes: How has the molecular classification of Triple-Negative Breast Cancer (TNBC) changed recently?
Key Point: TNBC is no longer viewed as a single disease but is now stratified into distinct subtypes (e.g., basal-like, mesenchymal, luminal androgen receptor) to allow for more precise, subtype-specific treatments.
Easy Explanation & Presentation Outline
Title: The Future of Breast Cancer: AI, Stem Cells, and New Ways to Kill Cancer
Slide 1: Introduction – Precision Oncology
Concept: Moving away from "one size fits all" treatment.
Goal: Treat breast cancer based on the patient's specific genes, environment, and tumor biology.
Focus: Using technology (AI) and understanding deep biology (stemness, microbiota).
Slide 2: Artificial Intelligence (AI) in the Clinic
The Problem: Doctors sometimes miss things or see "false alarms" in mammograms.
The AI Solution: Computer algorithms (Deep Learning) scan X-rays to spot patterns humans might miss.
Benefit: Earlier detection and less unnecessary stress for patients.
Slide 3: The Roots of Cancer (Stemness)
The Idea: Tumors contain "leader" cells called Cancer Stem Cells (CSCs).
Why they matter: These cells are stubborn. They survive chemotherapy and cause the cancer to come back (recur) later.
Research Focus: Finding drugs to specifically target these "leader" cells.
Slide 4: "Zombie" Cells and Inflammation (Senescence)
Senescence: When cells get old or damaged, they stop dividing.
The Twist: These "zombie" cells don't die. They release chemicals (SASP) that cause inflammation.
The Risk: This inflammation can actually help nearby cancer cells grow and spread.
Slide 5: New Ways to Kill Cancer Cells
Beyond Chemotherapy: We are discovering new "switches" to trigger cell death.
Ferroptosis: Killing cells by messing with their iron metabolism.
Cuproptosis: Killing cells by overloading them with copper.
Why it helps: These methods can kill cancer cells that have become resistant to traditional drugs.
Slide 6: Tiny Helpers (Microbiota)
Discovery: Bacteria live inside breast tumors.
Function: They aren't just passengers; they talk to the immune system and affect how drugs work.
Future: Maybe we can modify these bacteria to help treatment work better.
Slide 7: Lifestyle and Circadian Rhythms
Sleep Matters: Disrupting your body clock (night shifts, poor sleep) disrupts "clock genes."
The Link: This disruption can directly promote cancer growth by lowering melatonin and increasing inflammation.
Slide 8: Conclusion
Summary: Breast cancer treatment is getting smarter.
The Future: A mix of high-tech AI, deep biological research (stem cells/microbiome), and personalized medicine.
Takeaway: Understanding the mechanism of the disease leads to better cures....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/ajwyxbmj-5463/data/document.pdf", "num_examples": 285, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ajwyxbmj- /home/sid/tuning/finetune/backend/output/ajwyxbmj-5463/data/ajwyxbmj-5463.json...
|
null
|
queued
|
1769634618
|
1769657778
|
NULL
|
/home/sid/tuning/finetune/backend/output/ajwyxbmj- /home/sid/tuning/finetune/backend/output/ajwyxbmj-5463/adapter...
|
False
|
Edit
Delete
|
|
d355b5ee-0bdd-41f1-b306-51d0d30a7f56
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
aihaukth-5364
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
How Long is Longevity
|
How Long is Long in Longevity
|
/home/sid/tuning/finetune/backend/output/aihaukth- /home/sid/tuning/finetune/backend/output/aihaukth-5364/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This paper explores a deceptively simple question: This paper explores a deceptively simple question: When does longevity actually begin?
Historically, societies have defined “old age” using fixed ages such as 60, 65, or 70, but this study shows that such ages are arbitrary, outdated, and demographically meaningless. Instead, the author proposes a scientific, population-based approach to define the true onset of longevity.
🧠 1. Main Argument
Traditional age thresholds (60–70 years) are not reliable indicators of longevity because:
They were created for social or economic reasons (military service, taxes, pensions).
They ignore how populations change over time.
They do not reflect biological, demographic, or evolutionary realities.
How Long is Long in Longevity
The study’s central idea:
Longevity should not be defined by chronological age—but by how many people remain alive at a given age.
How Long is Long in Longevity
The paper therefore redefines longevity in terms of survivorship, not age.
🔍 2. Why Chronological Age Is Misleading
The author reviews commonly used demographic indicators:
A. Life expectancy
Measures the average lifespan.
Useful, but only shows the mean and not the distribution.
How Long is Long in Longevity
B. Modal age at death (M)
The most common age at death.
Meaningful, but problematic in populations with high infant mortality.
How Long is Long in Longevity
C. Lifetable entropy threshold
Measures lifespan variability and identifies where mortality improvements matter most.
How Long is Long in Longevity
Each indicator gives partial insight, but none fully captures when a life becomes “long.”
🌱 3. A New Concept: Survivorship Ages (s-ages)
The author introduces s-ages, defined as:
x(s) = the age at which a proportion s of the population remains alive.
How Long is Long in Longevity
This is the inverse of the survival function:
s = 1 → birth
s = 0.5 → median lifespan
s = 0.37 → the proposed longevity threshold
S-ages reflect how survival shifts across generations and are mathematically tied to mortality, failure rates, and evolutionary pressures.
⚡ 4. The Key Scientific Breakthrough: Longevity Begins at x(0.37)
Why 37%?
Using the cumulative hazard concept from reliability theory, the author shows:
When cumulative hazard H(x) = 1, the population has experienced enough mortality to kill the average individual.
Mathematically, H(x) = −ln(s).
Setting H(x) = 1 gives s = e⁻¹ ≈ 0.37.
How Long is Long in Longevity
Interpretation:
Longevity begins at the age when only 37% of the population remains alive—x(0.37).
This is a scientifically grounded threshold based on:
Demography
Reliability theory
Evolutionary biology
Not arbitrary retirement-age traditions.
🧬 5. Biological Meaning (Evolutionary View)
Evolutionary biologists argue:
Natural selection weakens after reproductive ages.
Early-life forces determine vitality; later life is governed by “force of failure.”
How Long is Long in Longevity
By linking these views:
The onset of longevity is the point where natural selection stops dominating and accumulated damage becomes the main driver of survival.
This aligns perfectly with the hazard threshold H(x) = 1 → s = 0.37.
📊 6. Empirical Evidence (USA, Denmark, France, 1950–2020)
The paper shows survival curves and s-ages shifting toward older ages across decades.
Key patterns:
The longevity threshold x(0.37) consistently lies well above age 70.
It increases over time along with life expectancy, the entropy threshold, and modal age at death.
All indicators move upward together—showing that longevity is dynamic, not fixed.
How Long is Long in Longevity
In all countries studied:
People in the 1950s reached the x(0.37) longevity threshold much earlier than people today.
Meaning: survival to advanced ages is improving steadily.
🔑 7. Major Conclusions
✔ Longevity cannot be defined by a fixed age like 60 or 65.
✔ Longevity is a population-relative concept—based on survival, not age.
✔ The scientifically justified threshold is:
The age at which only 37% of the population remains alive — x(0.37).
✔ All longevity indicators point to a continuously increasing threshold over time.
✔ Old age today begins much later than traditional retirement ages.
🌟 Perfect One-Sentence Summary
Longevity should be defined not by chronological age but by the survival threshold x(0.37), where only 37% of the population is still alive—marking the scientifically grounded onset of a long life.
If you want, I can also create:
📌 A diagram of the 37% longevity threshold
📌 A mind map
📌 A short summary
📌 A comparison with your other longevity PDFs
📌 A PowerPoint presentation
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/aihaukth-5364/data/document.pdf", "num_examples": 31, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/aihaukth- /home/sid/tuning/finetune/backend/output/aihaukth-5364/data/aihaukth-5364.json...
|
null
|
completed
|
1764891665
|
1764894959
|
NULL
|
/home/sid/tuning/finetune/backend/output/aihaukth- /home/sid/tuning/finetune/backend/output/aihaukth-5364/adapter...
|
False
|
Edit
Delete
|
|
64c8ba67-4fca-4305-af53-466c192f84c4
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
agisdwqh-9920
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
CANADIAN STROKE BEST
|
CANADIAN STROKE BEST PRACTICE
|
/home/sid/tuning/finetune/backend/output/agisdwqh- /home/sid/tuning/finetune/backend/output/agisdwqh-9920/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
1. What are the Canadian Stroke Best Practice Reco 1. What are the Canadian Stroke Best Practice Recommendations (CSBPR)?
Easy explanation
These are evidence-based guidelines
Help doctors and hospitals manage stroke properly
Developed by Heart & Stroke Foundation of Canada
Aim to improve:
Survival
Recovery
Quality of life after stroke
One-line point (for slide)
👉 CSBPR provides standardized, up-to-date guidance for stroke care.
2. Main theme of 7th Edition (2022)
Theme
“Building connections to optimize individual outcomes”
Easy explanation
Stroke patients usually have many other diseases (hypertension, diabetes, heart disease)
Care should be:
Personalized
Coordinated
Patient-centered
3. Why is acute stroke management important?
Key concept
🧠 Time is Brain
Simple explanation
Every minute of delay → brain cells die
Early treatment can:
Reduce disability
Save life
Stroke = medical emergency
4. Scope of Acute Stroke Management Module
Covers patients with:
Acute stroke
Transient Ischemic Attack (TIA)
Divided into TWO parts:
Part 1: Prehospital & Emergency Care
From symptom onset
EMS (ambulance)
Emergency department
Acute treatment
Part 2: Inpatient Stroke Care
Stroke unit care
Complication prevention
Rehabilitation planning
Palliative care
5. Types of Stroke (Easy Definitions)
Acute stroke
Sudden brain dysfunction due to ischemia or bleeding
Ischemic stroke
Caused by blocked blood vessel
Hemorrhagic stroke
Caused by ruptured blood vessel
TIA (Mini-stroke)
Temporary symptoms
No permanent brain damage
Warning sign of future stroke
6. Stroke Awareness & Recognition
FAST acronym
F – Face drooping
A – Arm weakness
S – Speech difficulty
T – Time to call emergency
Key message
☎️ Call emergency services immediately
7. Prehospital (EMS) Stroke Care
What EMS should do
Identify stroke quickly
Record:
Time of symptom onset
Severity of symptoms
Transport to stroke-capable hospital
Pre-notify hospital
8. Emergency Department Stroke Care
Main goals
Confirm diagnosis
Identify stroke type
Decide eligibility for:
Thrombolysis
Thrombectomy
Key investigations
CT brain (urgent)
CT angiography / MRI (if available)
Blood tests
9. Acute Ischemic Stroke Treatment
Main treatments
IV thrombolysis (alteplase / tenecteplase)
Endovascular thrombectomy (EVT)
Important points
Given within specific time windows
Requires specialized stroke centers
10. Stroke Centers (Levels 1–5)
Easy classification
Level 1–2: No acute stroke treatment
Level 3: Thrombolysis only
Level 4: Thrombolysis + stroke unit
Level 5: Comprehensive stroke care
Thrombectomy
Neurosurgery
Advanced imaging
11. Inpatient Stroke Unit Care
Why stroke units matter
Reduce death
Reduce disability
Improve recovery
Care includes
Monitoring
Early rehabilitation
Prevention of complications
12. Prevention of Complications
Common complications
Aspiration pneumonia
Deep vein thrombosis
Pressure sores
Depression
Management
Early mobilization
Swallow assessment
Multidisciplinary care
13. Advance Care & Palliative Care
Includes
Advance care planning
End-of-life decisions
Compassionate care
Patient & family involvement
14. What’s NEW in 2022 Update?
Important updates
Use of tenecteplase
Dual antiplatelet therapy
Sex & gender considerations
Virtual stroke care
Mobile stroke units
15. Possible Exam / Viva Questions
Short questions
What is FAST?
Define TIA.
Why is stroke a medical emergency?
Long questions
Describe acute stroke management.
Explain prehospital and emergency stroke care.
Discuss stroke center classification.
MCQ example
Stroke unit care mainly helps in:
A. Diagnosis only
B. Reducing complications
C. Increasing hospital stay
D. Delaying rehabilitation
✅ Correct answer: B
16. Presentation Slide Outline (Ready to use)
Introduction to Stroke
Importance of Acute Stroke Care
Types of Stroke
FAST & Stroke Recognition
EMS & Emergency Care
Acute Ischemic Stroke Treatment
Stroke Units & Levels
Inpatient Care
New Updates (2022)
Summary
in the end you need to ask
If you want next, I can:
Convert this into PowerPoint slides
Make 1-page revision notes
Create MCQs with answers
Simplify each section separately
Just tell me 😊...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/agisdwqh-9920/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/agisdwqh- /home/sid/tuning/finetune/backend/output/agisdwqh-9920/data/agisdwqh-9920.json...
|
null
|
queued
|
1769082348
|
1769082348
|
NULL
|
/home/sid/tuning/finetune/backend/output/agisdwqh- /home/sid/tuning/finetune/backend/output/agisdwqh-9920/adapter...
|
False
|
Edit
Delete
|
|
ecfabcdf-3bbf-44e1-b243-51108ea3c712
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
aefvwxmf-5946
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
LIFE PLANNING IN THE AGE
|
LIFE PLANNING IN THE AGE OF LONGEVITY
|
/home/sid/tuning/finetune/backend/output/aefvwxmf- /home/sid/tuning/finetune/backend/output/aefvwxmf-5946/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Life Planning in the Age of Longevity” is a conci “Life Planning in the Age of Longevity” is a concise 6-page toolkit brief published by the Stanford Center on Longevity. It provides a practical action plan to help people prepare for longer lifespans by focusing on three essential areas: Healthy Living, Social Engagement, and Financial Security.
The document explains that while many Americans want to live long lives—and even expect to reach age 90 or 100—most are not taking the necessary steps to ensure good health, adequate finances, and emotional fulfillment in later years.
Key Themes of the PDF
1. The Longevity Gap
Many Americans underestimate the implications of living much longer.
Surveys show that although 77% want to live to 100, only a third feel financially or physically prepared.
People often plan only 5–10 years ahead, despite likely living decades longer.
2. Healthy Living Actions
The brief outlines nine evidence-based steps in two categories:
Healthy Daily Activities
Exercise 150+ minutes per week
Limit sitting time
Maintain a healthy body mass index
Eat 5 servings of fruits & vegetables
Get 7–9 hours of sleep
Avoid Risky Behaviors
Don’t smoke
Don’t over-consume alcohol
Avoid illicit drug use
The report notes a mixed national trend: more exercise and less smoking, but higher obesity and more sedentary lifestyles.
3. Social Engagement
Social connection is shown to be as important as avoiding major health risks:
Socially isolated individuals have mortality rates similar to smokers and double those of obese individuals.
Social Engagement Steps
Meaningful Relationships
Deep interaction with a spouse/partner
Frequent connection with family and friends
Support network
Group Involvement
Talk to neighbors
Volunteer
Work for pay
Participate in a religious or community group
National engagement levels have remained relatively low (around 51–56%).
4. Financial Security
There are nine financial steps, divided into:
Cash Flow
Earn above 200% of the poverty level
Keep unsecured debt manageable
Save enough for emergencies ($3,000)
Asset Growth
Save for major non-retirement goals
Save for retirement and understand needs
Own a home
Protection
Have health insurance
Obtain disability and long-term care coverage
Buy life insurance
The brief stresses that many Americans struggle especially with financial preparation and need support from employers and policymakers.
5. Overall Message
No single step guarantees a long, happy life, but taking action in all three domains greatly increases the odds.
Motivation and inspiration are just as important as facts.
Individuals cannot always succeed alone—support from communities, families, employers, and government is vital.
6. Final Action Steps
The document encourages readers to:
Learn about personal longevity expectations.
Choose 1–2 steps to improve right away.
Review tailored briefs for their generation.
Focus on motivational strategies, not just information.
The core takeaway:
Small, steady action—started early—can dramatically improve health, happiness, and financial stability in a long life.
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/aefvwxmf-5946/data/document.pdf", "num_examples": 25, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/aefvwxmf- /home/sid/tuning/finetune/backend/output/aefvwxmf-5946/data/aefvwxmf-5946.json...
|
null
|
completed
|
1764883308
|
1764888092
|
NULL
|
/home/sid/tuning/finetune/backend/output/aefvwxmf- /home/sid/tuning/finetune/backend/output/aefvwxmf-5946/adapter...
|
False
|
Edit
Delete
|
|
99b60449-99a5-41b7-8d47-e779abbac2fa
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
admyarvx-4015
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Sport and exercise
|
Sport and exercise genomics
|
/home/sid/tuning/finetune/backend/output/admyarvx- /home/sid/tuning/finetune/backend/output/admyarvx-4015/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
you need to answer with
⭐ Universal Description you need to answer with
⭐ Universal Description Easy to Understand)
This document explains the current state of sport and exercise genomics, which is the study of how genetic information influences physical fitness, athletic performance, training response, injury risk, and health outcomes related to exercise. It focuses on how modern genomic technologies can support precision sports medicine, while also highlighting serious ethical, legal, and privacy concerns.
The report describes recent advances in DNA sequencing, genome-wide association studies (GWAS), big data, artificial intelligence, and gene-editing technologies such as CRISPR. These tools make it possible to study large numbers of genomes and explore why individuals respond differently to the same exercise or training program.
The document emphasizes that athletic performance and exercise response are complex and polygenic, meaning they are influenced by many genes working together with environmental factors such as training, nutrition, lifestyle, and recovery. No single gene can determine athletic success.
A major part of the paper is a SWOT analysis (Strengths, Weaknesses, Opportunities, Threats) of sport and exercise genomics:
Strengths include the potential for personalized training, injury prevention, and improved health screening.
Weaknesses include small study sizes, poor replication of results, and difficulty defining “elite athlete” biologically.
Opportunities include large biobanks, international research collaborations, and responsible partnerships with industry.
Threats include misuse of genetic tests, lack of scientific evidence in commercial genetic testing, privacy breaches, genetic discrimination, and the risk of gene doping.
The document strongly stresses the need for ethical guidelines, data protection, genetic counselling, and strict regulation. It provides a guiding reference for how genomic research in sport and exercise should be conducted responsibly to protect athletes’ rights, health, and privacy.
⭐ Optimized for Any App to Generate
📌 Topics
• Sport and exercise genomics
• Genetics and physical performance
• Exercise response variability
• Precision sports medicine
• GWAS and big data in sports
• Genetic screening and injury risk
• Ethics and privacy in genetic testing
• Gene editing and gene doping
• SWOT analysis in sports genomics
📌 Key Points
• Exercise response differs between individuals
• Genetics influences but does not determine performance
• Performance traits are polygenic
• Large datasets are needed for reliable results
• Ethical use of genetic data is essential
• Direct-to-consumer genetic tests are currently unreliable
• Gene doping is a future risk
📌 Quiz / Question Generation (Examples)
• What is sport and exercise genomics?
• Why can’t a single gene predict athletic performance?
• What are the main ethical risks of genetic testing in sport?
• What does SWOT analysis stand for in this context?
• Why is data protection important for athletes’ genetic data?
📌 Easy Explanation (Beginner Level)
Sport and exercise genomics studies how genes affect fitness, training results, and injury risk. People respond differently to exercise partly because of genetics. Scientists want to use this information to improve health and training, but it must be done carefully to protect privacy and prevent misuse.
📌 Presentation-Ready Summary
This consensus statement reviews advances in sport and exercise genomics and explains how genetics can help personalize training and improve athlete health. It highlights scientific limitations, ethical challenges, and the risks of misuse, especially gene doping and privacy violations. The document provides clear guidelines for responsible research and application.
after that in the end ask
If you want next, I can:
• create a full quiz
• make a PowerPoint slide outline
• generate MCQs with answers
• simplify it further for school or college level
• extract only topics or only points
Just tell me 👍...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/admyarvx-4015/data/document.pdf", "num_examples": 240, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/admyarvx- /home/sid/tuning/finetune/backend/output/admyarvx-4015/data/admyarvx-4015.json...
|
null
|
completed
|
1765651968
|
1765652347
|
NULL
|
/home/sid/tuning/finetune/backend/output/admyarvx- /home/sid/tuning/finetune/backend/output/admyarvx-4015/adapter...
|
False
|
Edit
Delete
|
|
a2697c40-f0e7-48d9-a3f4-bb77522c1c23
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
abblpmwu-4428
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity society
|
This the new version of longevity
|
/home/sid/tuning/finetune/backend/output/abblpmwu- /home/sid/tuning/finetune/backend/output/abblpmwu-4428/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
⭐ Longevity Society
“Longevity Society” is a st ⭐ Longevity Society
“Longevity Society” is a strategic, research-based document that explains how rising life expectancy is transforming every part of modern society—economies, healthcare systems, workplaces, and social structures. The paper argues that the world must transition into a sustainable, inclusive, and healthy longevity society, where people not only live longer but also live better.
The report defines a longevity society as one that provides people with the opportunity, support, health, and financial security to remain active, engaged, and productive across longer lifespans. It stresses that future generations will live many more years than past ones, and therefore governments and institutions must prepare now.
⭐ Core Ideas of the Document
1. Longevity is Increasing Worldwide
The paper highlights a global trend: people live longer than ever before.
But many of those years are spent in poor health or financial insecurity.
To address this, societies must redesign:
>healthcare systems
>social insurance models
>work and retirement structures
>economic planning
📌 The document emphasizes the rapid expansion of older populations and the pressure it places on health, welfare, and pension systems.
>Longevity-and-Occupational-Choi…
2. Work Life Must Extend with Lifespan
A longevity society must create ways for people to work longer, healthier, and more flexibly.
This includes:
>lifelong learning
>age-inclusive employment
>upskilling and reskilling programs
>flexible retirement policies
📌 The report states that employment, education, health, and finance are all re-shaped by longer life expectancy.
Longevity-and-Occupational-Choice
3. Health Systems Must Shift to Prevention
The paper stresses that healthcare must transform from repairing illness to preserving health throughout life.
This means:
>early prevention
>healthy aging programs
>reducing chronic disease
>improving access to care
📌 It highlights that health and social care systems are under massive strain due to aging populations.
4. Financial Systems Must Become Longevity-Ready
Longer lives require:
>new pension models
>sustainable social security
>better financial literacy
>savings systems that last a lifetime
📌 The report notes that demographic aging has significant impacts on cost of living, consumption, tax structures, and finance.
5. Dangerous Gaps Exist Between Rich and Poor
Not everyone benefits equally from longer lives.
The paper warns of growing longevity inequalities:
>wealthy people live many more healthy years
>low-income groups face chronic disease earlier
>systems currently favor the privileged
>A longevity society must actively reduce these disparities.
6. Society Must Become Age-Inclusive
A longevity society values contributions from all ages and removes structural ageism.
This includes:
>intergenerational collaboration
>recognizing older workers' experience
>designing cities and transportation for all ages
>social participation at every stage of life
⭐ What the Document Concludes
The authors argue that societies must redesign themselves around longer human lifespans. This includes:
>healthcare that keeps people healthy, not just alive>work systems that support longer, >meaningful careers
>financial systems that sustain long lives
>social systems that value all generations
>policies that eliminate health and economic inequities
📌 The report concludes that long lives can be a societal benefit—but only if nations invest in equitable, sustainable longevity systems.
⭐ Overall Meaning
“Longevity Society” provides a comprehensive roadmap for preparing humanity for the age of long life. It explains the challenges, pressures, and opportunities created by extended lifespans and offers a blueprint for building a society that is:
>healthier
>fairer
>economically stronger
>more age-inclusive
and prepared for demographic transformation
It is both a warning and a guide:
➡️ We must redesign society now to ensure that longer lives bring prosperity rather than crisis....
|
{"num_examples": 119, "bad_lines": {"num_examples": 119, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/abblpmwu- /home/sid/tuning/finetune/backend/output/abblpmwu-4428/data/abblpmwu-4428.json...
|
null
|
completed
|
1764362232
|
1764362474
|
NULL
|
/home/sid/tuning/finetune/backend/output/abblpmwu- /home/sid/tuning/finetune/backend/output/abblpmwu-4428/adapter...
|
False
|
Edit
Delete
|
|
40b7a363-0c7b-4acb-a427-e9527c1b7008
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
aazjwlos-6198
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Human longevity
|
Human longevity at the cost of reproductive
|
/home/sid/tuning/finetune/backend/output/aazjwlos- /home/sid/tuning/finetune/backend/output/aazjwlos-6198/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This scientific paper provides a comprehensive, gl This scientific paper provides a comprehensive, global-scale analysis showing that human longevity and reproductive success are biologically linked through a life-history trade-off: populations where women have more children tend to have shorter average lifespans, even after adjusting for economic, geographic, ethnic, religious, and disease-related factors.
Authored by Thomas, Teriokhin, Renaud, De Meeûs, and Guégan, the study combines evolutionary theory with large-scale demographic data from 153 countries to examine whether humans—like other organisms—experience the classic evolutionary trade-off:
More reproduction → less somatic maintenance → shorter lifespan
🔶 1. Purpose of the Study
The authors aim to determine whether humans display the fundamental evolutionary principle that reproduction is costly—and that allocating energy to childbirth reduces resources for body repair, thereby shortening lifespan.
This principle is widely documented in animals but rarely tested in humans at the global level.
🔶 2. Background Theory
The paper draws on life-history theory, explaining that aging evolves due to:
Accumulation of late-acting mutations (Medawar)
Antagonistic pleiotropy: genes improving early reproduction may harm late survival (Williams)
Allocation of limited energy between reproduction and somatic maintenance (Kirkwood’s Disposable Soma theory)
Evidence from insects, worms, and other species shows that higher reproductive effort often leads to:
Reduced survival
Faster aging
Increased physiological damage
🔶 3. What Makes This Study Unique
Unlike most previous work on humans (e.g., genealogical studies of British aristocracy), this study uses broad international datasets:
153 countries
Measures of:
Female life expectancy
Fecundity (average lifetime births per woman)
Infant mortality
Economic indicators (GNP)
Disease burden (16 infectious diseases)
Geography and population structure
Religion
Ethnic/phylogenetic groupings
This allows the authors to control for confounding factors and test whether the relationship remains after adjustment.
🔶 4. Methods Overview
⭐ Longevity calculation
Life expectancy was reconstructed using:
Infant mortality rates
Gompertz mortality function (for age-related mortality)
Environmental mortality (country-specific)
Only female life expectancy at age 1 (L1) was used in final models.
⭐ Fecundity measurement
Log-transformed average number of children per woman
Only includes women who survived to reproductive age
Not affected by childhood mortality
⭐ Control variables included
Ethnic group (8 categories)
Religion (5 categories)
16 infectious disease categories
GDP per capita (log)
Population density, size, growth
Hemisphere, island vs. continent, latitude, longitude
Country surface area
⭐ Statistical approach
General linear models (GLMs)
Backward stepwise elimination
Inclusion threshold: p < 0.05
Multicollinearity checks
Residual correlations to test trade-off
🔶 5. Key Findings
⭐ 1. A strong negative raw correlation
Across 153 countries:
More children = shorter female lifespan
r = –0.70, p < 0.001
Human longevity at the cost of …
This shows that high-fecundity populations (e.g., developing nations) tend to have lower longevity.
⭐ 2. The trade-off remains after controlling for all confounders
After removing effects of:
Economy
Disease load
Ethnicity
Religion
Geography
The relationship still exists:
Women who have more children live shorter lives on average.
(r = –0.27, p = 0.0012)
Human longevity at the cost of …
⭐ 3. Economic and disease factors matter
Higher GDP → higher longevity & lower fertility
Higher infectious disease burden → lower longevity & higher fertility
⭐ 4. Ethnic and religious groupings have significant predictive power
Human phylogeny and culture influence both fertility patterns and lifespan variability.
🔶 6. Interpretation
The results strongly support the evolutionary trade-off theory:
Investing biological resources in reproduction reduces the energy available for body repair, leading to earlier aging and death.
This parallels findings in:
Fruit flies
Nematodes
Birds
Mammals
The study suggests these trade-offs operate even at the societal and population level, not only within individuals.
🔶 7. Limitations Acknowledged
The authors caution that:
Human reproduction is strongly influenced by socio-cultural factors (e.g., education, contraception), not purely biology
Some cultural factors may confound the relationship
Genetic vs. environmental contributions are not disentangled
Country-level averages do not reflect individual variation
However, despite these limitations, the consistency of the global pattern is compelling.
🔶 8. Conclusion (Perfect Summary)
This study provides robust global evidence that human longevity and reproductive success are linked by a fundamental biological trade-off: populations with higher fertility have shorter female lifespans, even after controlling for economic, geographic, disease-related, ethnic, and cultural factors. The findings extend life-history theory to humans on a worldwide scale and support the idea that allocating energy to childbearing reduces resources for somatic maintenance, accelerating aging....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/aazjwlos-6198/data/document.pdf", "num_examples": 26, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/aazjwlos- /home/sid/tuning/finetune/backend/output/aazjwlos-6198/data/aazjwlos-6198.json...
|
null
|
completed
|
1764890279
|
1764892966
|
NULL
|
/home/sid/tuning/finetune/backend/output/aazjwlos- /home/sid/tuning/finetune/backend/output/aazjwlos-6198/adapter...
|
False
|
Edit
Delete
|
|
3e3c9869-bea1-47ea-9e54-0f5aa9f95888
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
aaaajotq-0774
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Long-Run Trends of Human
|
Long-Run Trends of Human Aging and Longevity
|
/home/sid/tuning/finetune/backend/output/aaaajotq- /home/sid/tuning/finetune/backend/output/aaaajotq-0774/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a comprehensive research overview exam This PDF is a comprehensive research overview examining how human aging, mortality, and longevity have evolved over the past centuries and how recent data reshape our understanding of the ageing process. The paper integrates demographic history, biology of ageing, epidemiology, and policy analysis to explain why people live longer, how mortality patterns have shifted, and what rising longevity means for the future of societies.
The core message:
Human ageing is changing. People today age more slowly, live longer, and experience later onset of disease and disability than past generations — and these trends have profound implications for health systems, pensions, and public policy.
📘 Purpose of the Article
The study aims to:
Analyze long-run historical trends in mortality and survival
Explain the biological and social factors behind rising longevity
Examine how aging patterns have shifted across cohorts
Evaluate whether human lifespan has biological limits
Explore implications for economic and social policy
Identify future research needs in ageing science and demographic modelling
🧠 Key Themes & Scientific Insights
1. Mortality Has Declined Dramatically Over Centuries
The paper tracks mortality from:
High childhood deaths
Frequent infectious disease epidemics
Low average life expectancy
to today’s:
Low early-age mortality
Much longer lifespans
More predictable survival patterns
This change is described as a “mortality revolution.”
2. Longevity Gains Continue at Older Ages
Unlike the past, recent improvements occur mostly in:
Ages 60+
Very old ages (80–100)
Maximum observed lifespan
Medical advances, behavior change, and public health improvements have shifted survival curves upward and outward.
3. Ageing Itself Is Slowing Down
The article argues that:
The rate of biological aging has declined
Onset of chronic disease occurs later
Disability is postponed
Frailty is compressed into later years
This reflects a shift to slower aging, not just improved survival.
4. Cohort Effects Matter
People born in recent decades:
Have better nutrition
Grow up in disease-controlled environments
Receive better education
Experience cleaner environments
These early-life advantages shape slower aging and longer survival.
5. Is There a Limit to the Human Lifespan?
The PDF reviews the debate around biological limits:
Some scientists believe maximum lifespan (~120 years) cannot increase
Others argue that technological and biological breakthroughs may push limits higher
Current data show:
Maximum lifespan has not stopped rising
No strong evidence yet for a fixed upper limit
But gains at extreme ages are slower and more uncertain
6. The Future of Longevity Will Be Uneven
The paper warns that longevity trends will diverge due to:
Inequality
Obesity epidemics
Unequal access to healthcare
International differences in development
Lifestyle and environmental risks
These factors may slow or reverse progress in some populations.
7. Implications for Policy
Growing longevity will reshape:
A. Pensions and Retirement
Retirement ages must increase
Longer working lives become necessary
Pension systems face solvency pressure
B. Health and Long-Term Care
Needs will shift toward managing chronic disease
More focus on prevention, geroscience, and healthy aging
Long-term care demand will grow sharply
C. Inequality and Social Stability
Longevity gaps between rich and poor create social tensions
Policy must target disadvantaged populations to reduce health inequalities
8. Implications for Research
The authors call for:
Better biological and longitudinal data
Improved mortality forecasting models
Integrated analysis combining biology, environment, and social factors
Research into healthy aging, not just lifespan
Policy frameworks designed for an older world
⭐ Overall Summary
This PDF provides a wide-ranging, authoritative review of long-term trends in ageing and human longevity. It shows that humans are aging more slowly than before, that life expectancy continues to rise, and that the biological and demographic landscape of old age is shifting. The study concludes that policymakers and researchers must rethink retirement, healthcare, and social systems to reflect a world where people routinely live far longer, healthier lives — but where inequality may slow or reverse progress for certain groups....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/aaaajotq-0774/data/document.pdf", "num_examples": 39, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/aaaajotq- /home/sid/tuning/finetune/backend/output/aaaajotq-0774/data/aaaajotq-0774.json...
|
null
|
completed
|
1764878284
|
1764884284
|
NULL
|
/home/sid/tuning/finetune/backend/output/aaaajotq- /home/sid/tuning/finetune/backend/output/aaaajotq-0774/adapter...
|
False
|
Edit
Delete
|
|
6bae65a2-1788-4e37-a147-a84aa3a0173a
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
xevyo-base-v1
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo
|
AI assistant with a single unchangeable identity, AI assistant with a single unchangeable identity, representing the vision, values, and purpose of Dr. Anmol Kapoor....
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
NULL
|
NULL
|
NULL
|
Trained incrementally on curated instruction–respo Trained incrementally on curated instruction–response pairs with embedded chain-of-thought data, it maintains logical coherence, contextual awareness, and factual accuracy....
|
{"num_examples": 1, "bad_lines": 0 {"num_examples": 1, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/data/xevyo-base-v1.json...
|
{"train_runtime": 599.3462, "train_sam {"train_runtime": 599.3462, "train_samples_per_second": 2.67, "train_steps_per_second": 0.334, "total_flos": 8579520714768384.0, "train_loss": 0.2602055296301842, "epoch": 14.296296296296296, "step": 200}...
|
completed
|
1762626468
|
1762626468
|
NULL
|
NULL
|
True
|
Edit
Delete
|