|
9d634269-2f6e-4be3-8d04-23563fefe3ac
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
mhqfxurm-4634
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Successful Longevity
|
A Framework for Choosing Technology Interventions
|
/home/sid/tuning/finetune/backend/output/mhqfxurm- /home/sid/tuning/finetune/backend/output/mhqfxurm-4634/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Technology Interventions to Promote Longevity” pr “Technology Interventions to Promote Longevity” presents a clear and influential framework explaining how technology can support people in maintaining independence, wellbeing, and functional ability as they age. The central premise is that successful longevity is achieved when individuals can continue to set, pursue, and accomplish their goals across the lifespan, even in the face of typical age-related declines.
Technology Interventions to Pro…
To address these declines, the paper introduces the PRAS hierarchy—a structured system for selecting technology-based interventions:
Prevent functional decline
Rehabilitate lost function
Augment remaining ability
Substitute lost function through technological replacement
Technology Interventions to Pro…
The framework emphasizes that technologies designed for older adults should prioritize prevention and rehabilitation first, resorting to augmentation and substitution only when necessary. It argues that behavioral and technology-driven interventions will be most effective when they align with older adults’ capabilities, preferences, and time constraints.
Key Themes and Insights
1. The Aging Population Meets Rapid Technological Change
The paper highlights two major global trends:
Rapid population aging
Rapid growth and spread of digital technologies (ICTs)
Technology Interventions to Pro…
While technology has helped extend lifespan—through better healthcare, communication, and resource distribution—older adults often adopt these technologies more slowly due to generational, educational, economic, and usability barriers.
2. The Digital Divide in Older Adults
Older adults show significant lag in technology adoption.
For example:
Only 46% of adults 65+ in the U.S. owned smartphones in 2018, compared to 94% of ages 18–29.
Technology Interventions to Pro…
Reasons include:
Limited experience with ICT
Learning costs that increase with age
Poorly designed interfaces that ignore age-related sensory and cognitive changes
Financial barriers
Despite these hurdles, adoption is improving across all regions.
3. Technology’s Benefits and Drawbacks
Technology can expand productivity, social connectivity, and access to care. However, it can also:
Exacerbate inequalities
Have unclear or mixed effects on wellbeing
Technology Interventions to Pro…
Some studies show reduced depression and higher wellbeing among older ICT users, but randomized trials offer inconsistent findings.
4. Technology-Based Interventions Are Increasing
Behavioral clinical trials using technology—particularly for adults 65+—are rapidly growing.
Over 31% of all registered technology-behavioral trials are currently active, with 76% targeting older adults.
Technology Interventions to Pro…
This reflects a shift toward personalized, adaptive digital interventions (e.g., cognitive training software, telehealth).
5. Aging as Functional Decline—But Also Plasticity
The paper acknowledges that aging involves:
Physical decline
Cognitive slowing
Higher rates of chronic diseases
Technology Interventions to Pro…
Yet, it emphasizes that plasticity remains. Older adults can improve performance through training—though with limits—and technologies can amplify or compensate for abilities.
6. The PRAS Framework — A Hierarchy for Choosing Interventions
1. Prevention
The least intrusive and most valuable strategy.
Examples:
Hearing protection
Education that builds cognitive reserve
Healthy lifestyle technologies
Technology Interventions to Pro…
2. Rehabilitation
Training to restore lost or declining function (motor, cognitive, perceptual).
Examples:
Stroke rehabilitation tools
Cognitive training programs
Technology Interventions to Pro…
3. Augmentation
Enhancing existing abilities with supportive technology.
Examples:
Glasses
Smartphone reminder apps
Technology Interventions to Pro…
4. Substitution
Replacing lost human function with external devices—most intrusive, last resort.
Examples:
Cochlear implants
Artificial lenses in cataract surgery
Technology Interventions to Pro…
The hierarchy reflects human preferences: most older adults prefer to maintain their “sense of self,” choosing rehabilitation over augmentation, and augmentation over replacement.
7. Designing Technology for Longevity
For technology to meaningfully improve aging outcomes, it must:
Adapt to an individual’s abilities
Offer graded, personalized challenges
Account for sensory, motor, and cognitive changes
Avoid stigmatizing users
Technology Interventions to Pro…
The paper stresses that simply proving a technology works does not ensure adoption—usability and dignity matter.
Overall Interpretation
This paper reframes longevity not just as living longer but as sustaining capability, and it provides a practical roadmap for how technology can support that goal. Its PRAS framework is widely applicable across healthcare, gerontology, AI, robotics, and assistive technology.
Its central message:
To support successful longevity, technology must be thoughtfully designed and matched to the real needs, abilities, and preferences of aging adults—prioritizing prevention, then rehabilitation, then augmentation, and finally substitution...
|
{"num_examples": 123, "bad_lines": {"num_examples": 123, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/mhqfxurm- /home/sid/tuning/finetune/backend/output/mhqfxurm-4634/data/mhqfxurm-4634.json...
|
null
|
completed
|
1764447640
|
1764448684
|
NULL
|
/home/sid/tuning/finetune/backend/output/mhqfxurm- /home/sid/tuning/finetune/backend/output/mhqfxurm-4634/adapter...
|
False
|
Edit
Delete
|
|
aac1cd49-28bb-4f79-92ba-af1dfacecbd6
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hqnggxov-0943
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity education
|
CORE COMPETENCIES FOR
PROFESSION
|
/home/sid/tuning/finetune/backend/output/hqnggxov- /home/sid/tuning/finetune/backend/output/hqnggxov-0943/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“The Essentials: Core Competencies for Professiona “The Essentials: Core Competencies for Professional Nursing Education” is the American Association of Colleges of Nursing’s updated national framework (2021) that defines everything a professional nurse must know and be able to do. It modernizes nursing education by shifting from content-based education to competency-based education, ensuring that graduates are ready to meet today’s complex healthcare demands.
The document sets two levels of nursing education outcomes:
Level 1: Entry-level professional practice (e.g., BSN).
Level 2: Advanced professional practice (e.g., MSN/DNP).
At the heart of the Essentials are the Core Competencies, which every nurse must demonstrate across practice settings. These include:
Knowledge for Nursing Practice – clinical judgment, pathophysiology, pharmacology, social sciences, and population health
Person-Centered Care – respecting individuals' values, needs, and preferences
Population Health – understanding social determinants of health, equity, and prevention strategies
Scholarship for Nursing Practice – evidence-based practice and lifelong learning
Quality and Safety – reducing risk, improving care systems, and fostering safety culture
Interprofessional Partnerships – collaborative team-based care
Systems-Based Practice – navigating healthcare structures and advocating for improvements
Informatics & Healthcare Technologies – using digital tools, data, and technology safely
Professionalism – ethical behavior, accountability, and leadership identity
Personal, Professional, and Leadership Development – resilience, self-care, adaptability, and growth
The Essentials also include conceptual domains, such as diversity, communication, ethics, clinical judgment, and care coordination. These domains guide curriculum design, assessment strategies, and educational outcomes.
Overall, the document transforms nursing education into a competency-driven, adaptable, future-ready system, ensuring nurses are prepared for rapid changes in healthcare, technological advancement, population needs, and interprofessional collaboration.
It serves as the national roadmap for developing competent, ethical, evidence-based nursing professionals who can promote health, deliver safe care, and lead across complex healthcare environments....
|
{"num_examples": 693, "bad_lines": {"num_examples": 693, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hqnggxov- /home/sid/tuning/finetune/backend/output/hqnggxov-0943/data/hqnggxov-0943.json...
|
null
|
completed
|
1764445497
|
1764449308
|
NULL
|
/home/sid/tuning/finetune/backend/output/hqnggxov- /home/sid/tuning/finetune/backend/output/hqnggxov-0943/adapter...
|
False
|
Edit
Delete
|
|
24389c7c-4a4f-4f26-8df5-e6c9d11dd398
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
pikiyblw-0899
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Chronic diseases and lon
|
Chronic diseases and longevity
|
/home/sid/tuning/finetune/backend/output/pikiyblw- /home/sid/tuning/finetune/backend/output/pikiyblw-0899/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Chronic Diseases and Longevity” is an educational “Chronic Diseases and Longevity” is an educational guide that explains how lifestyle-related chronic diseases—especially cardiovascular disease, cancer, and metabolic disorders—have become the leading causes of death worldwide and major barriers to a long, healthy life. The document emphasizes that as medical advances allow people to live longer, the quality of those added years depends heavily on preventing or delaying chronic illnesses, most of which are strongly linked to behavior and lifestyle. It highlights that noncommunicable diseases now represent the highest proportion of global baseline mortality, with cardiovascular disease alone accounting for the largest share
Eating_for_health_longevity
.
The guide shows that despite rising life expectancy, the prevalence of chronic disease continues to grow—largely driven by poor diet, physical inactivity, smoking, excess alcohol, stress, and other modifiable risk factors. It explains that primary prevention offers the most powerful approach to promoting longevity, since many conditions such as hypertension, type 2 diabetes, atherosclerosis, and some cancers can be prevented or slowed through healthful lifestyle patterns
Eating_for_health_longevity
.
The document stresses that early change is far more effective than late intervention and describes how “health risk escalation” occurs when small, daily lifestyle choices accumulate over decades, eventually overwhelming the body’s resilience. It encourages individuals to adopt sustainable habits centered on wholesome nutrition, regular exercise, weight management, avoiding tobacco, managing stress, and obtaining routine health screenings, noting that these protective behaviors dramatically increase the chances of reaching older age in good functional health
Eating_for_health_longevity
.
Ultimately, the guide frames longevity not simply as living longer, but as extending healthspan—the period of life free from significant disease or disability. It argues that most people can add healthy years to their lives by understanding major risk factors and making informed, preventative lifestyle choices that delay or reduce chronic disease...
|
{"num_examples": 508, "bad_lines": {"num_examples": 508, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/pikiyblw- /home/sid/tuning/finetune/backend/output/pikiyblw-0899/data/pikiyblw-0899.json...
|
null
|
completed
|
1764364580
|
1764366204
|
NULL
|
/home/sid/tuning/finetune/backend/output/pikiyblw- /home/sid/tuning/finetune/backend/output/pikiyblw-0899/adapter...
|
False
|
Edit
Delete
|
|
f1ca94e6-2baa-48a2-86f3-9cc494b02e90
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jrmnhvmx-0672
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
International Database
|
International Database on Longevity
|
/home/sid/tuning/finetune/backend/output/jrmnhvmx- /home/sid/tuning/finetune/backend/output/jrmnhvmx-0672/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a comprehensive documentation and over This PDF is a comprehensive documentation and overview of the International Database on Longevity (IDL)—the world’s largest, most rigorously validated scientific database dedicated to tracking individuals who have lived to extreme ages (110 years and older). The document explains how the database is built, how ages are scientifically verified, which countries contribute data, and how researchers use these records to study human longevity and mortality at the highest ages.
The core purpose of the IDL is to provide accurate, validated, international data on supercentenarians, allowing demographic researchers, biologists, and statisticians to understand mortality patterns beyond age 110—a topic often full of uncertainty, myth, and unreliable reporting.
🌍 1. What the IDL Is
The International Database on Longevity (IDL) is:
A public research database
Created by leading longevity researchers
Focused exclusively on validated individuals aged 110+
Based on international civil registration systems
Continuously updated as new cases are confirmed
It aims to eliminate false age claims and ensure scientific reliability.
International Database on Longe…
🔍 2. What the Database Contains
The IDL includes:
Individual-level data on supercentenarians
Validated age-at-death
Birth and death dates
Geographic information
Sex and demographic characteristics
Censored individuals (still alive or lost to follow-up)
Documentation on verification processes
Some countries provide exhaustive lists of all persons aged 110+; others provide sampled or partial data.
International Database on Longe…
📝 3. Why Age Validation Is Necessary
Extreme ages are often misreported due to errors such as:
Missing documents
Duplicate identities
Cultural age inflation
Family-based misreporting
Administrative mistakes
The IDL implements strict validation methods:
Cross-checking civil records
Analyzing genealogical information
Ensuring consistency between documents
Verifying unique identity
Only individuals with high-confidence proof of age are included.
International Database on Longe…
🌐 4. Countries Covered
The database includes data from:
France
Germany
United States
United Kingdom
Canada
Switzerland
Sweden
Japan
Denmark
Belgium
Czech Republic (sample)
Others with varying depth of validation
Each country’s rules, data sources, and levels of coverage are described.
International Database on Longe…
📈 5. Scientific Goals of the IDL
The database supports research on:
⭐ A. Mortality at Extreme Ages
Does mortality plateau after age 110?
Is there a maximum human lifespan?
⭐ B. Survival Models
Testing demographic models beyond typical life-table limits.
⭐ C. Longevity Trends Across Countries
Comparing patterns internationally.
⭐ D. Biological and Social Determinants
Sex differences, geographic variation, and historical trends.
⭐ E. Extreme-Age Validation Science
Improving methods for verifying unusually long life spans.
International Database on Longe…
🧪 6. Key Features of the IDL Data
Right-censored data for persons still alive
Left-truncated data for those who entered the risk pool at a known age
Survival records starting at age 110
Consistent formatting across countries
Metadata on each individual
The structure allows researchers to estimate death rates at very high ages without relying on unreliable claims.
International Database on Longe…
🔬 7. Major Scientific Insights Enabled by the IDL
Research using the IDL has contributed to:
Discovery of mortality plateaus beyond age 105–110
Evidence supporting the idea that death rates stop rising exponentially at extreme ages
Better understanding of why women are far more likely to reach 110+
Insights into potential limits vs. non-limits of human longevity
Historical comparisons (e.g., supercentenarians born in 1880–1900 vs. today)
International Database on Longe…
📚 8. Purpose of the Document Itself
This PDF specifically provides:
An overview of the IDL
Explanation of its structure
Details on data sources
Verification standards
Country-specific documentation
Methodological notes on survival and mortality calculations
It serves as the official guide for researchers using the IDL.
International Database on Longe…
⭐ Overall Summary
The PDF provides a clear and detailed explanation of the International Database on Longevity, the world’s most authoritative resource for validated data on individuals aged 110+. It shows how the database is constructed, how age validation works, which countries contribute, and how researchers use the data to study mortality patterns at the extremes of human lifespan. The IDL is essential for answering key scientific questions about longevity, the limits of human life, and demographic change....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jrmnhvmx-0672/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/jrmnhvmx- /home/sid/tuning/finetune/backend/output/jrmnhvmx-0672/data/jrmnhvmx-0672.json...
|
null
|
failed
|
1764887671
|
1764891584
|
NULL
|
/home/sid/tuning/finetune/backend/output/jrmnhvmx- /home/sid/tuning/finetune/backend/output/jrmnhvmx-0672/adapter...
|
False
|
Edit
Delete
|
|
fc6c40ff-0d59-41ff-9a6b-8bb701f3cb97
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
tfpnpxjj-2464
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Is Extreme Longevity
|
Is Extreme Longevity Associated ...
|
/home/sid/tuning/finetune/backend/output/tfpnpxjj- /home/sid/tuning/finetune/backend/output/tfpnpxjj-2464/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This study investigates whether extreme longevity This study investigates whether extreme longevity in animals is linked to a broad, multi-stress resistance phenotype, focusing on the ocean quahog (Arctica islandica)—the longest-lived non-colonial animal known, capable of surpassing 500 years of life.
The researchers exposed three bivalve species with dramatically different lifespans to nine types of cellular stress, including mitochondrial oxidative stress and genotoxic DNA damage:
Arctica islandica (≈500+ years lifespan)
Mercenaria mercenaria (≈100+ years lifespan)
Argopecten irradians (≈2 years lifespan)
🔬 Core Findings
Short-lived species are highly stress-sensitive.
The 2-year scallop consistently showed the fastest mortality under all stressors.
Longest-lived species show broadly enhanced stress resistance.
Arctica islandica displayed the strongest resistance to:
Paraquat and rotenone (mitochondrial oxidative stress)
DNA methylating and alkylating agents (nitrogen mustard, MMS)
Long-lived species differ in their stress defense profiles.
Mercenaria (≈100 years) was more resistant to:
DNA cross-linkers (cisplatin, mitomycin C)
Topoisomerase inhibitors (etoposide, epirubicin)
This shows that no single species is resistant to all stressors, even among long-lived clams.
Evidence partially supports the “multiplex stress resistance” model.
While longevity correlates with greater resistance to many stressors, the pattern is not uniform, suggesting different species evolve different protective strategies.
🧠 Biological Significance
Findings support a major idea from comparative aging research:
Long-lived species tend to exhibit superior resistance to cellular damage, especially oxidative and genotoxic stress.
Enhanced DNA repair, durable proteins, low metabolic rates, and strong apoptotic control may contribute to extreme lifespan.
Arctica islandica’s biology aligns with negligible senescence—minimal oxidative damage accumulation and high cellular stability.
📌 Conclusion
Extreme longevity in bivalves is strongly associated with heightened resistance to multiple stressors, but not in a uniform way. Long-lived species have evolved different combinations of cellular defense mechanisms, helping them maintain tissue integrity for centuries.
This study establishes bivalves as powerful comparative models in gerontology and reinforces the concept that resistance to diverse forms of cellular stress is a critical foundation of exceptional longevity....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/tfpnpxjj-2464/data/document.pdf", "num_examples": 19, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/tfpnpxjj- /home/sid/tuning/finetune/backend/output/tfpnpxjj-2464/data/tfpnpxjj-2464.json...
|
null
|
completed
|
1764887634
|
1764892445
|
NULL
|
/home/sid/tuning/finetune/backend/output/tfpnpxjj- /home/sid/tuning/finetune/backend/output/tfpnpxjj-2464/adapter...
|
False
|
Edit
Delete
|
|
be08aaed-f266-40c7-8d43-aa910e204c0e
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
taklfncz-4942
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Lifespan in drosophila
|
Lifespan in
Drosophila
|
/home/sid/tuning/finetune/backend/output/taklfncz- /home/sid/tuning/finetune/backend/output/taklfncz-4942/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Lifespan in Drosophila: Mitochondrial, Nuclear, an Lifespan in Drosophila: Mitochondrial, Nuclear, and Dietary Interactions That Modify Longevity”**
This scientific paper is a high-level genetic, evolutionary, and nutritional study that investigates how multiple layers of biology—mitochondrial DNA, nuclear DNA, and diet—interact to shape lifespan in Drosophila (fruit flies). Instead of looking at one factor at a time, the study analyzes three-way interactions (G×G×E):
G = mitochondrial genome (mtDNA)
G = nuclear genome
E = diet (caloric restriction and nutrient composition)
Its central discovery is that longevity is not determined by single genes or single dietary factors, but by complex interactions among mitochondrial genotype, nuclear genotype, and environmental diet, with these interactions often being more important than individual genetic or nutritional effects.
🧬 1. What the Study Does
Researchers created 18 mito-nuclear genotypes by placing different D. melanogaster and D. simulans mtDNAs onto controlled nuclear backgrounds (OreR, w1118, SIR2-overexpression, and controls). They then tested all genotypes on five diets spanning caloric restriction (CR) and dietary restriction (DR).
They measured:
Lifespan
Survival risk
Mitochondrial copy number
Response to SIR2 overexpression
The study offers one of the most comprehensive examinations of how cellular energy systems, genetics, and diet integrate to influence aging.
🍽️ 2. Diet Types and Their Role
The five diets vary in either caloric density or sugar:yeast ratio:
Caloric Restriction (CR)
Diet I, II, III
Same sugar:yeast ratio, different concentrations
Dietary Restriction (DR)
Diet IV, II, V
Same calories, different sugar:yeast ratios
The study shows that CR and DR behave differently, each activating distinct biological pathways.
🧪 3. Major Findings
⭐ A. Mitochondrial genotype strongly influences longevity
Different mtDNA haplotypes significantly altered lifespan—not because of species-level divergence but due to specific point mutations.
Lifespan in Drosophila
The most dramatic example is the w501 mtDNA, which shortens lifespan only in the OreR nuclear background due to a specific mito–nuclear incompatibility involving tRNA-Tyr.
⭐ B. Nuclear–mitochondrial interactions (G×G) are crucial
Lifespan differences depend on how mtDNA pairs with nuclear DNA:
Some pairings extend lifespan
Others dramatically shorten it
Some show no effect depending on the diet
These gene–gene interactions often overshadow main genetic effects.
⭐ C. Diet–genotype interactions (G×E) significantly modify lifespan
Diet effects depend heavily on mitochondrial and nuclear genotype combinations.
Lifespan in Drosophila
Some mtDNA types live longer under CR; some under DR; others show the opposite response.
⭐ D. Three-way interaction (G×G×E) is the strongest determinant
This is the study’s core message:
Longevity is shaped by how mitochondrial genes interact with nuclear genes within a specific dietary environment.
For example, the same mtDNA mutation may shorten lifespan under one diet but have no effect under another.
⭐ E. SIR2 overexpression alters dietary responses
The researchers tested SIR2, a well-known longevity gene.
Findings:
SIR2 overexpression reduces response to caloric restriction
But does not block lifespan changes due to nutrient composition
SIR2 interacts differently with specific mtDNA haplotypes
This reveals that CR and DR activate different aging pathways.
⭐ F. mtDNA copy number changes with mito–nuclear incompatibility
In the OreR + w501 combination, flies showed elevated mtDNA copy number, suggesting a compensatory mitochondrial stress response.
Lifespan in Drosophila
🔬 4. Why This Study Is Important
This PDF demonstrates that:
Aging cannot be explained by single genes
Mitochondria play central roles in longevity
Diet interacts with genetics in complex ways
Epistasis (gene–gene interactions) is essential for understanding aging
Model organisms must be tested across diets and genotypes to make real conclusions
It provides a framework for understanding human longevity, where individuals have diverse genetics and diverse diets.
🧠 5. Overall Perfect Summary
This study reveals that aging in Drosophila is controlled by dynamic, interacting systems, not isolated factors. Mitochondrial variants, nuclear genetic backgrounds, and dietary environments create a network of gene–gene–environment (G×G×E) interactions that determine lifespan more powerfully than any single genetic or dietary variable. It also clarifies that caloric restriction and nutrient composition affect longevity through distinct biological pathways, and that mitochondrial–nuclear compatibility is crucial to health, metabolism, and aging....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/taklfncz-4942/data/document.pdf", "num_examples": 52, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/taklfncz- /home/sid/tuning/finetune/backend/output/taklfncz-4942/data/taklfncz-4942.json...
|
null
|
completed
|
1764883224
|
1764890948
|
NULL
|
/home/sid/tuning/finetune/backend/output/taklfncz- /home/sid/tuning/finetune/backend/output/taklfncz-4942/adapter...
|
False
|
Edit
Delete
|
|
69aba0d8-08ab-464a-82c9-48e979138f05
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
vcurykhs-2212
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Living beyond the age of
|
Living beyond the age of 100
|
/home/sid/tuning/finetune/backend/output/vcurykhs- /home/sid/tuning/finetune/backend/output/vcurykhs-2212/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
⭐ “Living Beyond the Age of 100”
“Living Beyond ⭐ “Living Beyond the Age of 100”
“Living Beyond the Age of 100” is a demographic and scientific analysis written by Jacques Vallin and France Meslé for the French National Institute for Demographic Studies (INED). The paper explores whether modern humans are truly living longer than before, what the real limits of human lifespan may be, and why the number of centenarians (people aged 100+) has exploded in recent decades.
The article separates legend from scientific fact, traces the history of verified extreme old age, explains how and why more people now reach 100, and examines whether the maximum human lifespan is increasing.
⭐ What the Document Explains
⭐ 1. Legends vs. Reality in Extreme Longevity
The paper begins by reviewing ancient stories—such as biblical claims of people living to 900 years—and mythical reports of long-lived populations in places like the Caucasus, Andes, and U.S. Georgia.
These accounts were later proven false due to:
inaccurate birth records
cultural exaggeration
political motives (e.g., Stalin promoting Georgian longevity)
The document clarifies that before the 20th century, living beyond 100 was extremely rare, and most claims were unreliable.
⭐ 2. Verified Cases of Super Longevity
The article highlights Jeanne Calment, who lived to 122 years, the verified oldest human in history.
It explains improvements in record-keeping and scientific validation that allow modern researchers to confirm real ages and reject false claims.
⭐ 3. Indications That Maximum Lifespan Is Increasing
Using long-term data from Sweden and France, the authors show that the maximum age at death has steadily increased over the last 150 years.
Examples from Sweden:
In the mid-1800s, maximum age at death: 100–105 (women), 97–102 (men)
In recent decades: 107–112 (women), 103–109 (men)
This increase has accelerated since the 1970s due to improved survival among the oldest old.
Living beyond the age of 100
⭐ 4. Why Are More People Reaching 100?
The growth in centenarians is not due to biology alone.
Major reasons include:
improved healthcare
dramatic reductions in infant mortality
increased survival past age 60
better living conditions
larger elderly populations
As more people survive to age 90+, the probability rises that some will reach 100, 105, or even 110.
The decline in mortality after age 70 accounts for 95% of the increase in record ages in Sweden.
Living beyond the age of 100
⭐ 5. Is Human Lifespan Limited?
The paper reviews the debate between two scientific groups:
Group A: “Fixed Limit” Theory (Fries, Olshansky)
Human lifespan is biologically capped (around age 85 for average life expectancy).
Rising longevity only reflects improved survival until the fixed limit.
They propose the “rectangularization” of the survival curve—more people reach old age, then die around the same maximum age.
Group B: “Flexible Longevity” Theory (Vaupel, Carey)
Human lifespan is not fixed.
Longevity has increased throughout evolution.
Future humans might live 120–150 years.
Very old-age mortality might even decline, suggesting no clear biological ceiling.
The document does not firmly take sides but shows evidence supporting flexibility.
⭐ 6. Life Expectancy Is Still Rising at Older Ages
Life expectancy at:
70 rose from 7–9 years to 13 years (men) and 17 years (women)
80 and 90 also increased significantly
Even at age 100, life expectancy increased from:
1.3 to 1.9 years (men)
1.6 to 2.1 years (women)
Living beyond the age of 100
This suggests continuous improvement, not stagnation.
⭐ 7. The Centenarian Boom
The number of centenarians is growing explosively:
France had 200 centenarians in 1950
6,840 in 1998
Projected 150,000 by 2050
Living beyond the age of 100
Women dominate this group:
at age 100 → 7 women for every 1 man
at age 104 → 10 women for every 1 man
The paper also introduces the category of “super-centenarians” (110+), now growing due to rising survival at extreme ages.
⭐ Overall Meaning
The document concludes that:
The number of people living beyond 100 has increased dramatically due to demographic changes and better survival among the elderly.
Maximum human lifespan may be slowly increasing.
The idea of a fixed biological limit (around age 85) is likely too pessimistic.
Human longevity is rising faster than expected, and future limits are still unknown.
By 2050, reaching 100 may become relatively common.
The paper ultimately presents longevity as a scientific mystery still unfolding, with modern data supporting the possibility that humans may continue to live longer than ever before....
|
{"num_examples": 51, "bad_lines": {"num_examples": 51, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/vcurykhs- /home/sid/tuning/finetune/backend/output/vcurykhs-2212/data/vcurykhs-2212.json...
|
null
|
completed
|
1764366018
|
1764366417
|
NULL
|
/home/sid/tuning/finetune/backend/output/vcurykhs- /home/sid/tuning/finetune/backend/output/vcurykhs-2212/adapter...
|
False
|
Edit
Delete
|
|
405e4b1f-82d1-4250-aa3a-35a77dd9fff2
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
tpysfbpt-1792
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The 7 Keys to Longevity
|
The 7 Keys to
Longevity data
|
/home/sid/tuning/finetune/backend/output/tpysfbpt- /home/sid/tuning/finetune/backend/output/tpysfbpt-1792/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“The 7 Keys to Longevity” is a concise, practical “The 7 Keys to Longevity” is a concise, practical guide written by health reporter Dana G. Smith that explains the most effective, science-backed habits for living a longer and healthier life. Instead of focusing on trendy anti-aging treatments like cryotherapy or hyperbaric chambers, the document emphasizes simple, everyday behaviors that research consistently shows improve healthspan and lifespan.
The article presents seven essential habits, each supported by medical evidence, that together form the foundation of long-term well-being:
⭐ 1. Embrace Physical Activity
Physical activity is described as the cornerstone of longevity.
Regular movement:
reduces risk of early death
protects the heart and circulation
prevents chronic diseases
maintains muscle strength and balance
Even a 20-minute daily walk can provide significant benefits.
⭐ 2. Prioritize Fruits and Vegetables
A nutrient-dense diet full of:
fruits
vegetables
whole grains
healthy fats
—especially the Mediterranean diet—helps lower the risk of heart disease, cancer, diabetes, and dementia. The document stresses moderation and minimizing processed foods.
⭐ 3. Ensure Adequate Sleep
Sleep is vital for both physical and mental health.
Adults should aim for 7–9 hours per night.
Good sleep:
reduces dementia risk
lowers chronic disease risk
supports longevity
Sleep is presented as a non-negotiable pillar of health.
⭐ 4. Avoid Smoking and Limit Alcohol
Smoking and heavy drinking strongly increase the risk of:
heart disease
cancer
organ damage
Stopping smoking and moderating alcohol intake significantly improve long-term health outcomes.
⭐ 5. Manage Chronic Conditions
Monitoring and treating conditions such as:
hypertension
high cholesterol
pre-diabetes
is essential. Following medical advice and taking medication when necessary prevents these manageable disorders from developing into life-threatening illnesses.
⭐ 6. Maintain Social Connections
Strong social relationships are shown to:
improve psychological well-being
reduce risk of dementia
protect heart health
decrease stroke risk
The article highlights that community and connection are powerful, often overlooked longevity factors.
⭐ 7. Cultivate a Positive Mindset
Optimism contributes to longer life independently of physical health behaviors.
A positive mindset:
reduces stress
promotes resilience
encourages healthier habits
Optimistic people have lower heart disease risk and greater life expectancy.
⭐ Conclusion
The document concludes that longevity does not depend on extreme or expensive methods. Instead, it comes from simple, consistent lifestyle choices practiced over time: moving regularly, eating well, sleeping sufficiently, avoiding harmful habits, managing health conditions, nurturing social ties, and thinking positively. These habits support not just a longer life, but a vibrant and high-quality one....
|
{"num_examples": 14, "bad_lines": {"num_examples": 14, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/tpysfbpt- /home/sid/tuning/finetune/backend/output/tpysfbpt-1792/data/tpysfbpt-1792.json...
|
null
|
completed
|
1764363513
|
1764363587
|
NULL
|
/home/sid/tuning/finetune/backend/output/tpysfbpt- /home/sid/tuning/finetune/backend/output/tpysfbpt-1792/adapter...
|
False
|
Edit
Delete
|
|
951f708f-7178-4d04-9092-a58fc42086db
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
tzpeoouw-0649
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The Era of Longevity
|
The Era of Longevity data
|
/home/sid/tuning/finetune/backend/output/tzpeoouw- /home/sid/tuning/finetune/backend/output/tzpeoouw-0649/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The Era of Longevity: Transformation of Aging, Hea The Era of Longevity: Transformation of Aging, Health and Wealth is an expansive, multidisciplinary exploration of how rising life expectancy is reshaping human society, economic structures, healthcare systems, and the future of aging. Written by Dongsheng Chen, founder of Taikang Insurance Group, the book blends demographic theory, economic analysis, business strategy, and reflections from health, finance, and social policy to present a comprehensive framework for understanding and navigating the “longevity era.”
The Era of Longevity
At its core, the book argues that humanity is entering a historic new phase in which low mortality, long life expectancy, low fertility, and a column-shaped age structure become the permanent demographic norm. In this longevity-centered future, aging should not be viewed as a crisis, but as a predictable, stable social equilibrium requiring innovation in health, wealth, work, and social organization. Chen aims to replace anxiety about aging with a forward-looking worldview that embraces health, prosperity, and societal redesign.
The Era of Longevity
What the Book Covers
1. The Concept of the “Era of Longevity”
Chen defines the longevity era as a global demographic shift where:
Life expectancy continues to rise, approaching 100 years.
The population over 65 surpasses 25%.
Fertility remains low long-term.
Societies must adapt economically, medically, and institutionally.
He reframes aging not as decline but as a new normal requiring new systems of health, wealth, and care.
The Era of Longevity
2. A New Worldview for Societies Undergoing Rapid Aging
Chen argues that traditional aging theories—Malthusian fears, population exhaustion, pension pessimism—are outdated.
He calls for a shift from fear-driven thinking to innovation, adaptation, and opportunity, driven by:
Technological transformation (AI, robotics, data economy)
New health systems focused on chronic disease management
Wealth planning over the entire lifespan
Reimagined roles for older adults in work and society
The Era of Longevity
3. Health as the Foundation of Longevity
Chen explains that as people live longer, the economic and medical focus must shift to:
Life-cycle health management
Prevention and chronic disease control
Personalized and patient-centered medical systems
Integration of healthcare, insurance, and eldercare services
The longevity era naturally brings the Era of Health, with large-scale demand for medical services, wellness, and long-term care.
The Era of Longevity
4. Wealth and Financial Security in a 100-Year Life
Longer life means longer financial responsibilities.
Chen argues that people must think in terms of:
Lifetime financial planning
Long-term capital accumulation
Wealth compounding
New pension structures
Integration of financial and social care services
This shift creates the Era of Wealth, requiring innovation in finance, insurance, and investment markets.
The Era of Longevity
5. Rethinking the Elderly: Productivity, Learning, Purpose
A major philosophical contribution of the book is its argument that older adults should not be viewed as dependents, but as a renewed productive force.
Chen discusses:
“Productive aging”: older adults contributing knowledge, experience, creativity
Lifelong learning and new careers after retirement
Transforming eldercare institutions into “spiritual homes” and learning communities
Redefining purpose, family roles, and intergenerational relationships
The Era of Longevity
6. The “Third Demographic Dividend”
Chen proposes a forward-looking economic theory:
Longevity can generate a new cycle of economic growth
by driving advances in technology, healthcare, eldercare, and digital systems.
Unlike the old demographic dividend (youthful labor force), this new dividend arises from:
Massive demand for health services
Innovation in AI, robotics, digital health
Extended productive potential of older adults
The Era of Longevity
7. The “Taikang Plan”: A Real-World Model
The second half of the book documents Taikang’s 25-year effort to build a comprehensive, longevity-focused ecosystem integrating:
Life insurance
Wealth management
Healthcare
Elderly communities
Clinical and social care services
Chen presents Taikang’s “three closed loops”:
Longevity loop – insurance + eldercare
Health loop – medical services + health insurance
Wealth loop – long-term capital + asset management
He offers this “Big Health Industry” model as a blueprint for how businesses can respond creatively and ethically to the longevity era.
The Era of Longevity
Core Message of the Book
Humanity is entering a new demographic epoch—one in which long life is the universal norm.
Instead of seeing aging as crisis, Chen argues we must transform our systems of health, wealth, governance, and community to match this new reality.
The book blends:
social theory
economic forecasting
demographic science
business innovation
policy analysis
philosophical reflections
…all oriented toward building a sustainable, humane, and prosperous longevity society....
|
{"num_examples": 2271, "bad_lines" {"num_examples": 2271, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/tzpeoouw- /home/sid/tuning/finetune/backend/output/tzpeoouw-0649/data/tzpeoouw-0649.json...
|
null
|
completed
|
1764445475
|
1764454370
|
NULL
|
/home/sid/tuning/finetune/backend/output/tzpeoouw- /home/sid/tuning/finetune/backend/output/tzpeoouw-0649/adapter...
|
False
|
Edit
Delete
|
|
428c9ce3-f673-443f-b07a-08531147f7df
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
paemgrhe-8850
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The Impact of Sequencing
|
The Impact of Sequencing Genomes on The Human Lon
|
/home/sid/tuning/finetune/backend/output/paemgrhe- /home/sid/tuning/finetune/backend/output/paemgrhe-8850/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“The Impact of Sequencing Genomes on the Human Lon “The Impact of Sequencing Genomes on the Human Longevity Project” is a wide-ranging scientific review by Dr. Hameed Khan that explores how modern genomics—especially whole-genome sequencing—has transformed our understanding of human longevity, disease, and the future of lifespan extension. The paper blends historical progress, genomic science, drug-design methodology, and ethical questions, forming a unified vision of how humanity may extend life far beyond current limits.
Core Themes
1. Three Eras of Longevity
The paper describes human lifespan through three major eras:
Pre-antibiotic Era: most deaths from infectious disease; life expectancy ~50 years.
Post-antibiotic Era: antibiotics and vaccines extend life to ~75 years.
Genetic Era (now beginning): genome sequencing, precision medicine, and gene-targeted therapies promise lifespans of 100+ years.
2. How Genome Sequencing Transforms Longevity Research
The article explains in detail how modern sequencing technologies—Human Genome Project, 1,000 Genomes, and national genome initiatives—allow scientists to:
Identify good variants that support longevity
Detect mutations causing old-age diseases (Cancer, Cardiovascular Disease, Alzheimer’s)
Compare centenarian genomes to typical genomes
Build highly precise variant maps for disease prediction and drug design
Genome sequencing becomes the foundation of predictive medicine, enabling early detection before symptoms appear.
3. Genomic Medicine vs Reactive Medicine
The author contrasts:
Reactive Medicine
Treats disease after symptoms appear (e.g., surgery, chemo, standard diagnostics).
Predictive / Genomic Medicine
Uses genome sequences, MRI signatures, and variant analysis to detect and prevent disease long before onset.
This predictive model is positioned as the path to true longevity.
4. The Human Longevity Project
The project aims to:
Identify longevity-associated alleles
Shut off genes responsible for old-age diseases
Use genetic engineering and precision drug design to extend lifespan
Potentially reach lifespans of 100–150+ years
The paper positions this as the next global scientific frontier after conquering infectious diseases.
5. Detailed Case Study: Drug Design for Cancer (AZQ)
A major portion of the paper recounts the development of AZQ, a rationally designed anti-cancer drug created by Dr. Khan:
Targets Glioblastoma, one of the most aggressive brain cancers
Works by using Aziridine and Carbamate groups to shut off mutated cancer genes
Crosses the blood–brain barrier using quinone chemistry
Based on decades of chemical and biological research
Resulted in a NIH Scientific Achievement Award and extensive clinical research
This section illustrates the principle that targeted gene-shutting drugs can be created for other age-related diseases as well.
6. Extending Longevity by Targeting Old-Age Diseases
The article argues that three diseases are the main barriers to long life:
Cancer
Cardiovascular diseases
Alzheimer’s disease
The paper describes how:
Tumor cells produce acidic microenvironments that can activate DNA-targeting drugs.
Drug design strategies used for cancer can be extended to Alzheimer’s (targeting plaques and tangles) and heart disease (targeting harmful variants).
Hormone-linked drug delivery may one day treat prostate and breast cancer with precision.
7. Telomeres and Aging
The paper explains that:
Chromosomes lose ~30 telomeres per year
Preventing telomere loss using telomerase (TRT) could dramatically increase lifespan
A theoretical method: inserting telomerase genes using a weakened flu virus to extend life potential
8. Ethical Questions Raised
The author raises significant ethical and societal issues:
Should humanity extend life indefinitely if resources are limited?
What happens if billions more people live to 100+ years?
Who should receive longevity therapies—everyone, or only special groups (e.g., astronauts for deep-space missions)?
What are the moral limits of genetic alteration?
These questions frame the future debate around genetic longevity
9. Vision of the Future
The paper ends with a forward-looking vision
Genome sequencing will identify longevity genes.
Gene-targeted drugs will eliminate the three major killers of old age.
Human lifespan may extend dramatically—possibly doubling.
Humanity may require longevity to explore space and find new habitable worlds.
The article bleeds scientific progress with philosophical reflection on the future of the human species.
In Summary
This document is a comprehensive, authoritative, and visionary exploration of how genomic science—especially genome sequencing—can unlock the secrets of human longevity. It covers:
History of disease
Genomic medicine
Drug design innovations
Telomere biology
Ethical challenges
The path toward extending human life far beyond current limits
It is both a scientific review and a strategic roadmap for the future of the Human Longevity Project....
|
{"num_examples": 302, "bad_lines": {"num_examples": 302, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/paemgrhe- /home/sid/tuning/finetune/backend/output/paemgrhe-8850/data/paemgrhe-8850.json...
|
null
|
completed
|
1764416033
|
1764416423
|
NULL
|
/home/sid/tuning/finetune/backend/output/paemgrhe- /home/sid/tuning/finetune/backend/output/paemgrhe-8850/adapter...
|
False
|
Edit
Delete
|
|
42ad7039-adb3-428e-9f43-99713ef280c4
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
wtlegesn-0641
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
human genetic longevity
|
The quest for genetic determinants
of human lon The quest for genetic determinants
of human long...
|
/home/sid/tuning/finetune/backend/output/wtlegesn- /home/sid/tuning/finetune/backend/output/wtlegesn-0641/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The Quest for Genetic Determinants of Human Longev The Quest for Genetic Determinants of Human Longevity” is a detailed scientific review examining what is known—and not yet known—about the genetic basis of exceptional human lifespan. While it is clear that longevity runs in families, the paper explains that identifying specific genes responsible for this heritability has proven extremely difficult. Advances in genomics, however, have brought researchers closer to understanding the complex genetic architecture underlying long life.
Why genetics matter
Studies of twins and long-lived families show that genetics strongly influence survival after age 60, and that centenarians tend to cluster in families more than would be expected by chance. This suggests the existence of longevity-enabling genes that protect against age-related diseases.
The quest for genetic determina…
Challenges in finding longevity genes
The paper outlines several obstacles that have slowed progress:
Longevity is a rare phenotype, making it hard to recruit large sample sizes.
Long-lived individuals are heterogeneous, differing in lifestyle, ethnicity, and health history.
Longevity is polygenic, meaning many small-effect genes contribute rather than one dominant “longevity gene.”
Environmental interactions (diet, lifestyle, social factors) blur genetic signals.
These challenges limit the statistical power of genome-wide studies.
Findings from molecular and genomic studies
Across candidate-gene studies and genome-wide association studies (GWAS), only a small number of genetic loci have reproduced consistently:
APOE (especially the ε2 allele)
FOXO3A, a gene associated with stress resistance and insulin/IGF signaling
These loci repeatedly appear enriched in centenarians across different populations, suggesting real biological relevance.
The quest for genetic determina…
However, most other reported associations fail to replicate, reinforcing the idea that longevity is highly polygenic with modest effect sizes.
Pathways implicated in longevity
Despite inconsistent gene-level findings, several biological pathways show strong support:
Insulin/IGF-1 signaling — central to metabolic regulation and stress resistance
Inflammation and immune function — long-lived individuals often show reduced chronic inflammation
Lipid metabolism — especially through APOE, influencing cardiovascular and neurological aging
DNA repair and genomic stability — protection against age-related damage
These pathways align with findings from model organisms such as worms, flies, and mice.
The unique value of centenarians
The paper emphasizes that centenarians are exceptional survivors, escaping or delaying major age-related diseases such as cardiovascular disease, cancer, dementia, and diabetes—illnesses that typically prevent most people from reaching 100. Because of this, they are considered the “ultimate phenotype” for discovering genetic protective factors.
The quest for genetic determina…
Future directions
To accelerate discovery, the article recommends:
>Larger multi-ethnic cohorts of centenarians
>Whole-genome sequencing rather than targeted genes
>Integrating epigenetics, proteomics, metabolomics, and systems biology
>Studying familial longevity, which provides stronger genetic signals
>Understanding gene–environment interactions, since lifestyle amplifies or suppresses >genetic effects
>Conclusion
The document concludes that while longevity clearly has a heritable component, it does not arise from a single “longevity gene.” Instead, human longevity appears to result from a constellation of protective genetic variants, interacting with favorable environments and healthy lifestyles. Although only a few loci are firmly established today (APOE, FOXO3A), advancing genomic technologies promise major breakthroughs in decoding the biology of long-lived humans....
|
{"num_examples": 282, "bad_lines": {"num_examples": 282, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/wtlegesn- /home/sid/tuning/finetune/backend/output/wtlegesn-0641/data/wtlegesn-0641.json...
|
null
|
completed
|
1764399024
|
1764399920
|
NULL
|
/home/sid/tuning/finetune/backend/output/wtlegesn- /home/sid/tuning/finetune/backend/output/wtlegesn-0641/adapter...
|
False
|
Edit
Delete
|
|
f56b9f91-f8e9-4170-a4a8-a0c1aec0e02e
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
gedbggrj-1228
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The rise in the number
|
The rise in the number longevity data
|
/home/sid/tuning/finetune/backend/output/gedbggrj- /home/sid/tuning/finetune/backend/output/gedbggrj-1228/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This research article examines an important parado This research article examines an important paradox in modern public health: as medical treatments improve and more people survive serious diseases, overall life expectancy may increase more slowly. The paper focuses on Sweden (1994–2016) and studies five major diseases—myocardial infarction, stroke, hip fracture, colon cancer, and breast cancer—to understand how survival improvements and rising disease prevalence interact to shape national life expectancy.
Using complete Swedish population-register data, the authors show that medical advances have significantly improved survival after major diseases. However, because these survivors still have higher long-term mortality than people who never had the disease, the growing number of long-term survivors can partly offset the gains in national life expectancy.
This phenomenon is described as a possible “failure of success”: the success of better treatments creates a larger population living with chronic after-effects, which slows overall mortality improvement.
⭐ MAIN FINDINGS
⭐ 1. Survival Improved Dramatically—Especially for Heart Attacks & Stroke
From 1994 to 2016:
Survival after myocardial infarction and stroke improved the most.
These two diseases produced the largest contributions to increased life expectancy.
Most gains came from improved short-term survival (first 3 years after diagnosis).
The rise in the number
Hip fractures, colon cancer, and breast cancer contributed much less to life expectancy growth.
⭐ 2. BUT… More People Than Ever Are Living With Disease Histories
Because fewer patients die immediately after diagnosis:
“Distant cases” (long-term survivors) increased sharply across all diseases.
The proportion of disease-free older adults decreased.
Survivors carry higher mortality risks for the rest of their lives.
This means the composition of the older population has shifted toward people with chronic disease histories who live longer—but still die sooner than people who never had the disease.
⭐ 3. Growing Disease Prevalence Slows Life Expectancy Gains
Even though survival is better, the higher number of survivors creates a population with:
more chronic illness
more long-term complications
higher late-life mortality
For several diseases, this negatively affected national life expectancy trends:
For stroke, improved survival was almost completely cancelled out by rising prevalence of long-term survivors.
For breast cancer, the benefit of improved survival was nearly halved by the increasing number of survivors.
Colon cancer and hip fracture survivors also contributed small negative effects.
The rise in the number
⭐ 4. Myocardial Infarction Is the Main Driver of Life Expectancy Growth
For men:
Improved survival after heart attacks contributed 1.61 years to the national life expectancy gain (≈49%).
For women:
It contributed 0.93 years (≈48%).
The rise in the number
This made heart-attack treatment improvements the single largest contributor to Sweden’s longevity gains during the study period.
⭐ 5. The Key Mechanism
The study shows national life expectancy changes depend on two forces:
A. Improved survival after disease → increases life expectancy
B. Growing number of long-term survivors with higher mortality → slows life expectancy
When (B) becomes large enough, it reduces the effect of (A).
⭐ OVERALL CONCLUSION
The article concludes that:
Medical progress has greatly improved survival after major diseases.
But because survivors remain at higher mortality risk, their increasing numbers partially slow national life expectancy gains.
This effect is small but significant—and will become more important as populations age and survival continues improving.
Failure to consider population composition may lead to misinterpreting life expectancy trends.
Prevention of disease (reducing new cases) is just as important as improving survival.
This study provides a new demographic insight:
➡️ Long-term survivors improve individual lives but can slow national-level longevity trends....
|
{"num_examples": 136, "bad_lines": {"num_examples": 136, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/gedbggrj- /home/sid/tuning/finetune/backend/output/gedbggrj-1228/data/gedbggrj-1228.json...
|
null
|
completed
|
1764398246
|
1764398551
|
NULL
|
/home/sid/tuning/finetune/backend/output/gedbggrj- /home/sid/tuning/finetune/backend/output/gedbggrj-1228/adapter...
|
False
|
Edit
Delete
|
|
dc6b1283-ca23-42d1-9c37-b909b09b9b5f
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
fkjaceic-2926
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The role of polyamines i
|
The role of polyamines in protein-dependent
|
/home/sid/tuning/finetune/backend/output/fkjaceic- /home/sid/tuning/finetune/backend/output/fkjaceic-2926/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“The Role of Polyamines in Protein-Dependent Hypox “The Role of Polyamines in Protein-Dependent Hypoxic Tolerance of Drosophila” is a research article that investigates why dietary proteins and amino acids drastically reduce survival under chronic low-oxygen conditions (hypoxia), using Drosophila melanogaster as the model organism. The study reveals a surprising and biologically important mechanism linking amino acids, polyamines, and hypoxic stress tolerance.
Core Finding
Under chronic hypoxia (5% oxygen), even small amounts of dietary protein dramatically shorten the lifespan of adult flies. This effect is not seen under normal oxygen. The researchers discovered that this life-shortening effect is driven by:
Amino acids themselves
Their metabolic intermediates (L-ornithine, L-citrulline)
Polyamines (putrescine, spermidine, spermine)
Every natural amino acid tested decreased fly survival under hypoxia, even at low millimolar concentrations.
The role of polyamines in prote…
Why proteins become toxic in hypoxia
The study shows that chronic hypoxia unmasks a harmful effect of amino acid metabolism:
Amino acids feed into the polyamine synthesis pathway.
Polyamines, in turn, promote hypusination of eIF5A, a unique post-translational modification required for the active form of this protein.
Both polyamines and eIF5A hypusination are shown to reduce hypoxic tolerance and shorten lifespan.
The role of polyamines in prote…
Thus, amino acids → polyamines → eIF5A hypusination → reduced hypoxic survival.
Pharmacological evidence
Two inhibitors were used to dissect the mechanism:
DFMO, an inhibitor of ornithine decarboxylase (the first enzyme in polyamine synthesis), partially protected hypoxic flies from amino-acid toxicity but had no effect against polyamines themselves. This shows that polyamines are downstream of amino acids.
The role of polyamines in prote…
GC7, a potent inhibitor of eIF5A hypusination, partially rescued flies from both amino-acid- and polyamine-induced death. This demonstrates that eIF5A activation is a key step linking amino acids to reduced hypoxic tolerance.
The role of polyamines in prote…
Hypoxia-inducible factor (HIF-1α/Sima)
The authors investigated whether the classic hypoxia-response pathway played a role. They found:
Chronic hypoxia did not activate strong HIF-1α signalling in adult flies.
Loss-of-function mutants for sima (Drosophila HIF-1α) still showed the same amino-acid toxicity.
The role of polyamines in prote…
Thus, the mechanism is independent of HIF-1α, and represents a separate amino-acid sensing pathway.
Broader biological significance
The study provides strong evidence that:
Low-protein diets dramatically improve hypoxic tolerance, while proteins—through amino acids and polyamines—make tissues more vulnerable during oxygen shortage.
These mechanisms likely have parallels in mammals, where polyamine levels rise in ischemic conditions (stroke, myocardial infarction).
The role of polyamines in prote…
This suggests potential therapeutic strategies: targeting polyamine synthesis or eIF5A hypusination to improve survival under ischemic or hypoxic stress.
Conclusion
The paper identifies a previously unknown mechanism by which dietary amino acids reduce survival under chronic hypoxia. The key pathway is:
Amino acids → polyamine synthesis → eIF5A hypusination → reduced hypoxic tolerance
This mechanism explains why low-protein diets increase hypoxic survival and opens possibilities for treatments against hypoxia-related diseases....
|
{"num_examples": 162, "bad_lines": {"num_examples": 162, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/fkjaceic- /home/sid/tuning/finetune/backend/output/fkjaceic-2926/data/fkjaceic-2926.json...
|
null
|
completed
|
1764398087
|
1764398447
|
NULL
|
/home/sid/tuning/finetune/backend/output/fkjaceic- /home/sid/tuning/finetune/backend/output/fkjaceic-2926/adapter...
|
False
|
Edit
Delete
|
|
4680caa2-619d-4a31-b1c3-d8603cbf0573
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
smuhtdgy-4339
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Unlocking the Secrets of
|
Unlocking the Secrets of Longevity Recent Finding
|
/home/sid/tuning/finetune/backend/output/smuhtdgy- /home/sid/tuning/finetune/backend/output/smuhtdgy-4339/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Unlocking the Secrets of Longevity: Recent Findin “Unlocking the Secrets of Longevity: Recent Findings in Health Research” is a contemporary scientific perspective summarizing the newest discoveries in the biology of aging and the interventions that can extend human lifespan and healthspan. It provides a clear, accessible overview of how genetics, lifestyle, microbiome science, cellular aging, metabolism, and cutting-edge technologies interact to shape longevity.
unlocking-the-secrets-of-longev…
The article emphasizes that longevity is not determined by a single factor but by a complex web of biological, behavioral, and environmental influences. It highlights major scientific breakthroughs that are redefining our understanding of aging and pointing toward future therapies.
Core Themes & Scientific Findings
1. Longevity Genes and the Biology of Aging
The article explains that genetics plays a key role in determining lifespan.
Recent research has identified FOXO3 as one of the strongest genetic markers of exceptional longevity, frequently found in centenarians. FOXO3 regulates:
stress resistance
DNA repair
cellular survival pathways
Additionally, studies on telomeres—the protective caps on chromosomes—show that maintaining telomere length may slow cellular aging and extend lifespan.
unlocking-the-secrets-of-longev…
2. Lifestyle Factors: Diet, Exercise, and Sleep
The article stresses that lifestyle is equally powerful as genetics, explaining:
Diet
Mediterranean-style diets rich in fruits, vegetables, and healthy fats are linked to lower disease risk and longer lifespan.
>Antioxidants reduce oxidative stress, a major driver of aging.
>Exercise
>Physical activity enhances cardiovascular health, strengthens muscle, and slows cellular aging itself.
Exercise may positively influence aging-related gene expression.
Sleep
Adequate sleep supports repair and regeneration; sleep deprivation accelerates age-related decline and disease risk.
Recent work has uncovered molecular links between sleep quality and aging rate.
unlocking-the-secrets-of-longev…
3. The Microbiome: A New Frontier in Longevity
The article highlights the gut microbiome as a critical regulator of health and aging.
Key points include:
Microbial diversity declines with age.
Imbalances in gut microbes are linked to metabolic, immune, and brain-related aging.
Probiotics, prebiotics, and diet-based microbiome interventions show promise for promoting healthy aging.
The microbiome also influences the gut–brain axis, affecting mood, cognitive function, and neurodegeneration.
unlocking-the-secrets-of-longev…
4. Cellular Senescence and Senolytics
A major aging mechanism the article describes is cellular senescence—the buildup of damaged cells that no longer divide. These “zombie cells” cause inflammation and contribute to:
>cardiovascular disease
>arthritis
>neurodegenerative conditions
Recent findings show that senolytic drugs—therapies that selectively remove senescent cells—can improve healthspan and lifespan in animal models. This is one of the most promising therapeutic frontiers in longevity science.
unlocking-the-secrets-of-longev…
5. Metabolism, Fasting, and Longevity Pathways
The article discusses the deep connection between metabolism and aging:
Caloric restriction and intermittent fasting activate cellular repair pathways.
These strategies improve mitochondrial function and metabolic flexibility.
Sirtuins, a family of proteins involved in stress response and energy regulation, are linked to increased lifespan across species.
Researchers are exploring sirtuin-activating compounds to mimic the effects of caloric restriction in humans.
unlocking-the-secrets-of-longev…
6. Technological Advances Transforming Longevity Research
The article highlights groundbreaking technologies reshaping the field:
CRISPR gene editing
Allows direct manipulation of aging-related genes
Raises major ethical considerations
Single-cell sequencing
Reveals how individual cells age
Identifies new therapeutic targets
Artificial intelligence (AI)
Analyzes massive aging datasets
Accelerates the discovery of anti-aging drugs and biomarkers
Together, these tools are pushing the boundaries of what is possible in aging research.
unlocking-the-secrets-of-longev…
Conclusion
“Unlocking the Secrets of Longevity” portrays aging research as a rapidly advancing, multidisciplinary field. Longevity is shaped by a rich combination of:
genetic resilience
robust metabolic and cellular repair
a healthy microbiome
senescent cell clearance
nutrient-dense diets
exercise and quality sleep
technological innovation
The article concludes that while challenges and ethical questions remain, the accelerating pace of discovery offers real promise for extending both lifespan and healthspan, enabling future generations to live longer, healthier, more fulfilling lives....
|
{"num_examples": 47, "bad_lines": {"num_examples": 47, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/smuhtdgy- /home/sid/tuning/finetune/backend/output/smuhtdgy-4339/data/smuhtdgy-4339.json...
|
null
|
completed
|
1764413822
|
1764414008
|
NULL
|
/home/sid/tuning/finetune/backend/output/smuhtdgy- /home/sid/tuning/finetune/backend/output/smuhtdgy-4339/adapter...
|
False
|
Edit
Delete
|
|
084669c5-c643-4522-9934-9ed9a5375731
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
pnjgpuca-7892
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Variation in fitness of
|
Variation in fitness of the longhorned beetle, De
|
/home/sid/tuning/finetune/backend/output/pnjgpuca- /home/sid/tuning/finetune/backend/output/pnjgpuca-7892/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This study examines how the fitness of the longhor This study examines how the fitness of the longhorned beetle Dectes texanus—a major pest of soybean crops—varies across different soybean populations and environments. The research provides a detailed analysis of how factors such as geographic origin, host plant quality, and genetic variation influence beetle survival, development, reproduction, and body size.
Purpose of the Study
The goal is to understand why D. texanus shows substantial differences in life-history traits when feeding on different soybean varieties and when collected from different regions. The authors aim to identify:
how host plant quality affects beetle development,
whether beetle populations show local adaptation to their regional soybean hosts, and
how these differences influence pest severity in agricultural systems.
Key Findings
1. Fitness varies significantly across soybean hosts
Larvae reared on different soybean cultivars showed major differences in:
growth rate
survival to adulthood
adult body mass
developmental time
Some soybean varieties supported rapid growth and high survival, while others produced slower development and lower fitness.
2. Geographic origin matters
Beetles collected from different regions (e.g., Kansas, Texas, Oklahoma, Nebraska) showed distinct performance patterns, suggesting:
genetically based population differences, and
possible local adaptation to regional soybean types.
These geographic differences shaped how well beetles performed on specific soybean hosts.
3. Developmental timing is a key determinant of fitness
Developmental duration strongly influenced adult body size and reproductive potential:
Faster development produced smaller adults with potentially reduced fecundity.
Longer development produced larger adults with greater reproductive output.
Thus, speed–size trade-offs were central to fitness variation.
4. Body size correlates with reproductive capacity
Larger adults produced by favorable host plants—tend to have:
higher egg production in females
stronger survival rates
greater overall fitness
This links host-driven growth differences directly to pest severity in the field.
5. Host plant defenses influence beetle performance
The study highlights how soybean plants with stronger structural or chemical defenses reduce larval growth, suppress survival, and lead to smaller, less successful adults.
This suggests that breeding soybean varieties with anti-beetle traits can meaningfully reduce pest damage.
Scientific Importance
This research shows that Dectes texanus fitness is shaped by the interaction between:
plant genetics,
insect genetics, and
environmental conditions.
It provides valuable insight for agricultural pest management, emphasizing that controlling this beetle requires understanding not just soybean traits but also beetle population biology and regional adaptation.
Conclusion
“Variation in Fitness of the Longhorned Beetle, Dectes texanus, in Soybean” demonstrates that the beetle’s success as a pest is not uniform. Instead, it varies widely depending on soybean variety, beetle population origin, and local environmental conditions. These findings help inform more targeted and effective strategies for soybean crop protection....
|
{"num_examples": 116, "bad_lines": {"num_examples": 116, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/pnjgpuca- /home/sid/tuning/finetune/backend/output/pnjgpuca-7892/data/pnjgpuca-7892.json...
|
null
|
completed
|
1764413070
|
1764413287
|
NULL
|
/home/sid/tuning/finetune/backend/output/pnjgpuca- /home/sid/tuning/finetune/backend/output/pnjgpuca-7892/adapter...
|
False
|
Edit
Delete
|
|
a320bd65-469e-45f5-a98c-4231785f82ad
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
vodymxlg-2995
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
What Happen all live 100
|
What Happens When We All Live to 100?
|
/home/sid/tuning/finetune/backend/output/vodymxlg- /home/sid/tuning/finetune/backend/output/vodymxlg-2995/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
What Happens When We All Live to 100?” by Gregg Ea What Happens When We All Live to 100?” by Gregg Easterbrook is an in-depth exploration of how rising life expectancy will transform science, society, economics, politics, and everyday life. The article explains that life expectancy has increased steadily for almost 200 years—about three months every year—and may reach 100 years by the end of this century. This dramatic shift will reshape everything from health care to retirement, family structures, and government systems.
Easterbrook discusses cutting-edge longevity research at places like the Buck Institute, Mayo Clinic, and universities studying how to slow aging, extend “healthspan,” and possibly reverse age-related decline. Scientists have lengthened the lives of worms and mice, identified longevity genes (such as daf-16/foxo3), tested drugs like rapamycin, and explored theories involving caloric restriction, cellular senescence, stem-cell rejuvenation, and youth-blood factors. Much of this research aims not just to add years but to preserve quality of life, preventing diseases like heart disease, cancer, Alzheimer’s, and stroke.
The article also presents two major schools of thought:
(1) Life expectancy will keep rising smoothly (“the escalator”), or
(2) It will hit a biological and social limit.
Experts debate whether future gains will slow down or accelerate due to new anti-aging breakthroughs.
Beyond biology, the article examines massive societal consequences of a population where large numbers routinely live past 90 or 100. These include:
increased strain on Social Security, pensions, and Medicare
a growing gap between educated and less-educated groups in longevity
more years of old-age disability unless healthspan improves
caregiver shortages
political dominance by older voters
possible rise in national debt
multigenerational families depending heavily on one young adult
Japan as an example of an aging society with stagnation and high public debt
The article warns that without healthier aging, longer life could create financial crisis and social imbalance. However, if science successfully extends healthy, active years, society may benefit from:
older adults working longer
less crime and less warfare (younger people start more conflicts)
more intergenerational knowledge
calmer, wiser political culture
reduced materialism
stronger emotional well-being among the elderly
The author concludes that a world where most people live to 100 will be fundamentally different: older, quieter, more stable, and possibly more peaceful. But it also requires urgent changes in healthcare, retirement systems, and public policy. Ultimately, the article argues that humanity is entering an age where delaying aging—and reshaping society around longer lives—is becoming not just possible, but necessary....
|
{"num_examples": 129, "bad_lines": {"num_examples": 129, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/vodymxlg- /home/sid/tuning/finetune/backend/output/vodymxlg-2995/data/vodymxlg-2995.json...
|
null
|
completed
|
1764400407
|
1764401184
|
NULL
|
/home/sid/tuning/finetune/backend/output/vodymxlg- /home/sid/tuning/finetune/backend/output/vodymxlg-2995/adapter...
|
False
|
Edit
Delete
|
|
aee2b3f9-2979-469f-830e-ed0dded805a0
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
lxwwrqjd-9752
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
longevity and public
|
longevity, working lives
and public finances
|
/home/sid/tuning/finetune/backend/output/lxwwrqjd- /home/sid/tuning/finetune/backend/output/lxwwrqjd-9752/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This paper (ETLA Working Papers No. 24, 2014) anal This paper (ETLA Working Papers No. 24, 2014) analyses how increasing longevity affects public finances in Finland, focusing on the interaction between longer lifetimes, working careers, and health- and long-term-care expenditure. Written by Jukka Lassila and Tarmo Valkonen, it combines a review of economic research with simulations using a numerical overlapping-generations (OLG) model calibrated to Finnish demographics and economic structures.
The authors examine three key channels:
Longevity & demographics – Longer life expectancy increases the share of the elderly population and particularly the number of people aged 80+, intensifying long-term care demand. Stochastic mortality projections demonstrate wide uncertainty in future longevity trends.
Longevity & working lives – Evidence suggests that healthier, longer lives could support longer work careers, but this will not occur automatically. Without policy reforms, working lives extend only modestly. Linking retirement age to life expectancy, tightening disability pathways, and reforming pension eligibility can significantly lengthen careers.
Longevity & health/care expenditure – The paper highlights that a substantial portion of healthcare and long-term care costs occur near death rather than being linearly age-related. This reduces the inevitability of cost increases from ageing alone: proximity-to-death modelling shows lower expenditure pressure compared with naïve, age-only models.
Using 500 stochastic population scenarios, the authors simulate long-term fiscal sustainability under varying assumptions about longevity, retirement behaviour, and healthcare cost dynamics. Key findings include:
If working lives do not lengthen, rising longevity substantially worsens public finances.
Under current rules, improvements in health and moderate policy support produce some automatic correction.
Linking retirement age to life expectancy largely neutralizes the fiscal impact of longer lifetimes.
Modelling care costs with proximity-to-death dramatically improves fiscal forecasts compared to simple age-related projections.
Conclusion
Longer lifetimes need not undermine fiscal sustainability—if policies ensure that healthier, longer lives translate into longer working careers and if health-care systems account for the true drivers of costs. With appropriate reforms, generations that live longer can also finance the additional costs generated by their longevity....
|
{"num_examples": 146, "bad_lines": {"num_examples": 146, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/lxwwrqjd- /home/sid/tuning/finetune/backend/output/lxwwrqjd-9752/data/lxwwrqjd-9752.json...
|
null
|
completed
|
1764361533
|
1764361767
|
NULL
|
/home/sid/tuning/finetune/backend/output/lxwwrqjd- /home/sid/tuning/finetune/backend/output/lxwwrqjd-9752/adapter...
|
False
|
Edit
Delete
|
|
202be1ae-13d7-4e6b-bc89-8fe694408816
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jstylowz-2753
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
our Epidemic of Loneline
|
our Epidemic of Loneliness and Isolation
|
/home/sid/tuning/finetune/backend/output/jstylowz- /home/sid/tuning/finetune/backend/output/jstylowz-2753/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Our Epidemic of Loneliness and Isolation: The U.S “Our Epidemic of Loneliness and Isolation: The U.S. Surgeon General’s Advisory on the Healing Effects of Social Connection and Community” (2023)
Author: Dr. Vivek H. Murthy, U.S. Surgeon General
surgeon-general-social-connecti…
This document is an official U.S. Surgeon General’s Advisory that warns the nation about a growing public health crisis—the epidemic of loneliness, isolation, and declining social connection. It explains that nearly half of Americans regularly feel lonely, and social connection has sharply decreased over the last several decades due to changes in family structure, technology use, community involvement, and societal norms.
The advisory shows that social disconnection is as harmful as smoking 15 cigarettes a day and dramatically increases the risk of heart disease, stroke, dementia, diabetes, depression, anxiety, self-harm, and premature death. It presents decades of scientific evidence demonstrating that strong social relationships, supportive communities, and positive social environments improve physical health, mental well-being, cognitive function, educational outcomes, workplace success, and overall quality of life.
The report explains why humans are biologically wired for connection and describes how loneliness negatively impacts the brain, stress hormones, inflammation, immunity, and behavior. It also highlights how social connection supports meaning, resilience, purpose, and healthier lifestyle choices.
On a community level, the advisory shows that connected communities are safer, more resilient, more prosperous, and more civically engaged. It warns that declining trust, weaker community bonds, and rising polarization undermine national health and social stability.
To address the crisis, the advisory proposes a National Strategy with Six Pillars, calling on governments, schools, workplaces, technology companies, healthcare systems, media, and individuals to strengthen social infrastructure, reform digital environments, promote pro-connection policies, and rebuild a culture of empathy, belonging, and community.
Overall, the document is a comprehensive, research-based call to action emphasizing that social connection is a fundamental human need essential for individual and societal health, and rebuilding it is critical for America’s future...
|
{"num_examples": 769, "bad_lines": {"num_examples": 769, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jstylowz- /home/sid/tuning/finetune/backend/output/jstylowz-2753/data/jstylowz-2753.json...
|
null
|
completed
|
1764447968
|
1764452460
|
NULL
|
/home/sid/tuning/finetune/backend/output/jstylowz- /home/sid/tuning/finetune/backend/output/jstylowz-2753/adapter...
|
False
|
Edit
Delete
|
|
8b62b28b-9069-46c1-bb84-48f0cd59d971
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
dhtkdhkl-2775
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
A Longevity Agenda
|
A Longevity Agenda for Singapore
|
/home/sid/tuning/finetune/backend/output/dhtkdhkl- /home/sid/tuning/finetune/backend/output/dhtkdhkl-2775/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Over the last 60 years, life expectancy in Singapo Over the last 60 years, life expectancy in Singapore has increased by nearly 20 years to reach 85 – one of the highest in the world. That’s an extraordinary achievement that is taken for granted and that too often leads to a conversation about the costs of an ageing society. Those costs and concerns are very real, but a deeper more fundamental set of questions need to be answered.
If we are living this much longer, then how do we – individuals, companies and governments – respond to make the most of this extra time? How do we restructure our lives to make sure that as many people as possible, live as long as possible, in as healthy and fulfilled ways as possible?
This note draws on the findings from a high-level conference, sponsored by Rockefeller Foundation and Prudential Singapore, to map out what a global longevity agenda looks like, and to raise awareness around the world – at a government, corporate and individual level – on how we need to seize the benefits of this wonderful human achievement of longer lives.
It also looks at the measures that Singapore has taken to adjust to longer lives. Reassuringly, Singapore leads the world along many dimensions that have to do with ageing, and also longevity. However, there is much that needs to be done. Framing policies around longevity and ‘all of life’ and not just ageing and ‘end of life’ is needed if Singapore is to collectively maximise the gains available.
A Longevity Agenda For Singapore I 2
Executive Summary
• Singapore is undergoing a rapid demographic transition which will see the average age of its society
increase as the proportion of its older citizens increases.
• An ageing society creates many challenges. However, at the same time, with the number of older
people increasing, Singapore is benefitting from a longevity dividend.
• On average, Singaporeans are living for longer and in better health. In other words, how we are
ageing is changing – it is not just about there being more senior people. Exploiting this opportunity
to seize these positive advantages is the longevity agenda.
• A new-born in Singapore today, faces the prospect of living on average one of the longest lives in
human history, and so needs to prepare for his or her future differently.
• At an individual level, Singaporeans are already behaving differently – in terms of marriage, families,
work and education. Many are acting as social pioneers as they try to create a new map of life.
• To support individuals as they adapt to longer lives, Singapore needs to create a new map of life
that enables as many people as possible to live as long as possible and as healthily and as fulfilled as
possible.
• Achieving this will also ensure that not only the individual, but also the economy will benefit.
• Singapore is at the international frontier of best practice in terms of adjusting to an ageing society. It
also leads the way with many longevity measures.
• Further entrenching social change and experimentation, and creating a positive narrative around
longer, healthier lives; in particular, extending policies away from a sole focus on the old and towards the whole course of life are some key priorities ahead of us. ...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/dhtkdhkl-2775/data/document.pdf", "num_examples": 17, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/dhtkdhkl- /home/sid/tuning/finetune/backend/output/dhtkdhkl-2775/data/dhtkdhkl-2775.json...
|
null
|
completed
|
1764900103
|
1764903410
|
NULL
|
/home/sid/tuning/finetune/backend/output/dhtkdhkl- /home/sid/tuning/finetune/backend/output/dhtkdhkl-2775/adapter...
|
False
|
Edit
Delete
|
|
f458f62f-605d-4d2c-9a72-a02676873dac
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
rlitfkqf-2632
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
A New Map of Life
|
A New Map of Life
|
/home/sid/tuning/finetune/backend/output/rlitfkqf- /home/sid/tuning/finetune/backend/output/rlitfkqf-2632/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Longevity is not a synonym of old age. The increas Longevity is not a synonym of old age. The increase in life expectancy shapes lives from childhood to old age across different domains. Among those, the nature of work will undergo profound changes from skill development and the role of retirement to the intrinsic meaning of work. To put the striking potential of a 100 year life into a historical prospective it is useful to start from how technological and demographic development shaped the organization and the definition of work in the past. This longer view can more thoughtfully explore how different the nature of work has been, from working hours to the parallelism between work, employment and task-assignment.
Throughout history the role of work has been intertwined with social and technological change. Societies developed from hunter-gather to sedentary farmers, and they transitioned from the agricultural to the industrial revolution. The latter transformed a millennial long practice of self-employed farmers and artisans, working mostly for self-subsistence, without official working hours, relying on daylight and seasonality at an unchosen job from childhood until death, into employees working 10-16 hours per day for 311 days a year, mostlyindoorsfromyouthtoretirement. Thisdrastictransformationignitedfastshiftsofworkorganization not only in the pursue of higher productivity and technological advancement, but also of social wellbeing.
Among the first changes was the abandonment of unsustainable working conditions, such as day working hours, which sharply converged toward the eight hours day tendency between the 1910s and the 1940s, see Figure 1 (Huberman and Minns 2007; Feenstra, Inklaar, and Timmer 2015; Charlie Giattino and Roser 2013). Although beneficial for the workers, this reduction worried intellectuals, such as the economist John Maynard Keynes, who wrote: “How will we all keep busy when we only have to work 15 hours a week?” (Keynes 1930). Keynes predicted people’s work to become barely necessary given the level of productivity the economy would reach over the next century: “permanent problem would be how to occupy the leisure,
1
whichscienceandcompoundinterestwillhavewonforhim. [...] Afearfulproblemfortheordinaryperson” (p. 328). For a while, Keynes seemed right since the average workweek dropped from 47 hours in 1930 to slightly less than 39 by 1970. However, after declining for more than a century, the average U.S. work week has been stagnant for four decades, at approximately eight hours per day.1
Figure 1: Average working hours per worker over a full year. Before 1950 the data corresponds only to full-time production workers(non-agricultural activities). Starting 1950 estimates cover total hours worked in the economy as measured from primarily National Accounts data. Source: Charlie Giattino and Roser (2013). Data Sources: Huberman and Minns (2007) and Feenstra, Inklaar, and Timmer (2015).
Technological change did not make work obsolete, but changed the tasks and the proportion of labor force involved in a particular job. In the last seventy years, for example, the number of people employed in the agricultural sector dropped by one third (from almost 6 million to 2 million), while the productivity tripled. Feeding or delivering calves is still part of ranchers’ days, but activities like racking and analyzing genetic traits of livestock and estimating crop yields are a big part of managing and sustaining the ranch operations. In addition, the business and administration activity like bookkeeping, logistics, market pricing, employee supervision became part of the job due to the increase in average farm size from 200 to 450 acres. Another exampleistheeffectoftheautomatedtellermachine(ATM)onbanktellers, whosenumbergrewfromabout a quarter of a million to a half a million in the 45 years since the introduction of ATMs, see Figure 2 (Bessen 2016). ATM allowed banks to operate branch offices at lower cost, which prompted them to open many 1Despite the settling, differences in the number of hours worked between the low and the high skilled widened in the last fifty years. Men without a high school degree experienced an average reduction of eight working hours a week, while college graduates faced an increase of six hours a week. Similarly, female graduates work 11 hours a week more than those who did not complete high school (Dolton 2017). Overall, American full-time employees work on average 41.5 hours per week, and about 11.1% of employees work over 50 hours per week, which is much higher than countries with a comparable level of productivity like Switzerland, where 0.4% of employees work over 50 hours per week (Feenstra, Inklaar, and Timmer 2015) and part time work is commonplace...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/rlitfkqf-2632/data/document.pdf", "num_examples": 339, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/rlitfkqf- /home/sid/tuning/finetune/backend/output/rlitfkqf-2632/data/rlitfkqf-2632.json...
|
null
|
completed
|
1764899767
|
1764910976
|
NULL
|
/home/sid/tuning/finetune/backend/output/rlitfkqf- /home/sid/tuning/finetune/backend/output/rlitfkqf-2632/adapter...
|
False
|
Edit
Delete
|
|
6fe90131-32fe-4ceb-aabc-afa11bb7448c
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
taycgghk-5680
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
A mathematical model
|
A mathematical model to estimate the seasonal
|
/home/sid/tuning/finetune/backend/output/taycgghk- /home/sid/tuning/finetune/backend/output/taycgghk-5680/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Yasuhiro Yamada1,3, Toshiro Yamada 2,4 & Kazu Yasuhiro Yamada1,3, Toshiro Yamada 2,4 & Kazuko Yamada2,4
The longevity of a honeybee colony is far more significant than the lifespan of an individual honeybee, a social insect. the longevity of a honeybee colony is integral to the fate of the colony. We have proposed a new mathematical model to estimate the apparent longevity defined in the upper limit of an integral equation. the apparent longevity can be determined only from the numbers of adult bees and capped brood. By applying the mathematical model to a honeybee colony in Japan, seasonal changes in apparent longevity were estimated in three long-term field experiments. Three apparent longevities showed very similar season-changes to one another, increasing from early autumn, reaching a maximum at the end of overwintering and falling approximately plumb down after overwintering. The influence of measurement errors in the numbers of adult bees and capped brood on the apparent longevity was investigated.
A lifespan of an animal, which is the period of time while an individual is alive, is an important index to evaluate individual activities. In the colony composed of eusocial insects such as honeybees (Apis mellifera) which exhibit age-polyethism, the lifespan of each individual cannot always give an assessment as to the activities of a colony but the longevity of colony could give it more appropriately. The longevity of a colony will have greater significance than the lifespan of each individual of the colony. The life of colony diversely depends on the inborn lifespan of an individual, the labor division distribution ratio of each honeybee performing a particular duty, the natural environment such as the weather, the amount of food, pests and pathogens, the environmental pollution due to pesticides and so on. The honeybee length of life has been observed or estimated before in the four seasons, which have a distinct bimodal distribution in temperature zones. According to previous papers, honeybees live for 2–4 weeks1 and 30–40 days2 in spring, for 1–2 weeks1, 25–30 days2 and 15–38 days3 in summer, for 2–4 weeks1 and 50–60 days2 in autumn, and for 150–200 days3, 253 days2, 270 days4, 304 days5 6–8 months6 and 150–200 days3 in winter, where it has been estimated that the difference of life length among seasons may come from the brood-rearing load imposed on honeybees1 and may mainly come from foraging and brood-rearing activity2. Incidentally, the lifetime of the queen seems to be three to four years (maximum observed nine years). The average length of life of worker bees in laboratory cages was observed to range from 30.5 to 45.5 days7. The study on the influence of altitude on the lifespan of the honeybee has found that the lifespans are 138 days at an altitude of 970 m and 73 days at an altitude of 200 m, respectively8. Many papers have discussed what factors affect the length of life (lifespan, longevity, life expectancy) on a honeybee colony as follows: Proper nutrition may increase the length of life in a honeybee colony. Honeybees taking beebread or diets with date palm pollen (the best source for hypopharyngeal gland development) showed the longest fifty percent lethal time (LT50)9. The examination for the effect of various fat proteins on honeybee longevity have shown that honeybees fed diets of red gum pollen have the longest lifespan but those fed invert sugar have the shortest lifespan10. In the discussion on nutrition-related risks to honey bee colonies such as starvation, monoculture, genetically modified crops and pesticides in pollen and sugar, protein nutrient strongly affects brood production and larval starvation (alone and or in combination with other stresses) can weaken colonies11. And protein content in
1Department of Applied Physics, Graduate School of Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656, Japan. 2Graduate School of Natural Science & Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan. 3Present address: Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan. 4Present address: 2-10-15, Teraji, Kanazawa, Ishikawa, 921-8178, Japan. correspondence and requests for materials should be addressed to t.Y. (email: yamatoshikazu0501@yahoo.co.jp)
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/taycgghk-5680/data/document.pdf", "num_examples": 20, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/taycgghk- /home/sid/tuning/finetune/backend/output/taycgghk-5680/data/taycgghk-5680.json...
|
null
|
completed
|
1764899830
|
1764904916
|
NULL
|
/home/sid/tuning/finetune/backend/output/taycgghk- /home/sid/tuning/finetune/backend/output/taycgghk-5680/adapter...
|
False
|
Edit
Delete
|
|
da7edd9b-68c4-4b9b-98da-5377f50cff19
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
nlesxcge-4276
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
aging research
|
AFAR American aging research
|
/home/sid/tuning/finetune/backend/output/nlesxcge- /home/sid/tuning/finetune/backend/output/nlesxcge-4276/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Researchers believe that your longevity, that is, Researchers believe that your longevity, that is, the duration of your life, may rely on your having longevity assurance genes. Genes are the bits of DNA that determine an organism’s physical characteristics and drive a whole range of physiological processes. Longevity assurance genes are variations (called alleles) of certain genes that may allow you to live longer (and perhaps more healthily) than other people who inherit other versions of that gene.
WHY ARE LONGEVITY ASSURANCE GENES IMPORTANT?
If scientists could identify longevity genes in humans, in theory, they might also be able to develop ways to manipulate those genes to enable people to live much longer than they do today. Slowing the
aging process would also likely delay the appearance of agerelated diseases such as cancer, diabetes, and Alzheimer’s disease and therefore make people
healthier as well.
Most longevity assurance genes that have already been identified in lower organisms such as yeast, worms, and fruit flies act to increase lifespan and grant resistance to harmful environmental stress. For example, scientists have identified single gene variantions in roundworms that can extend lifespans by 40 to 100 percent. These genes also allow worms to withstand often fatal temperature extremes, excessive levels of toxic free radicals (cellular waste products), or damage due to ultraviolet light.
Some of the longevity assurance genes in lower organisms have similar counterparts among human or mammalian genes, which scientists are now studying. While researchers have not yet found genes that predispose us to greater longevity, some have identified single human gene variants that seem to have a protective effect against certain age-related diseases and are associated with long life. For example, inheriting one version of a gene for a particular protein called apolipoprotein E (Apo E) may decrease a
person’s risk of developing heart
disease and Alzheimer’s disease.
Identification of genes that prevent or delay crippling diseases at old age may help us find novel strategies for assuring a healthier, longer life, and enhancing the quality of life in the elderly.
Researchers believe that your longevity may rely on your having longevity assurance genes.
Infoaging Guide to Longevity | 3
HOW MUCH OF LONGEVITY IS GENETICALLY DETERMINED?
By some estimates, we humans have about 25,000 genes. But only a small fraction of those affect the length of our lives. It is hard to imagine that so few genes can be responsible for such a complex phenomenon as longevity. In looking at personality, psychologists ask how much is nature, that is, inherited, and how much is nurture, which means resulting from external influences. Similar questions exist about the heritability of lifespan. In other words, just how much of longevity is
genetically determined and how much it is mediated by external influences, such as smoking, diet, lifestyle, stress, and occupational exposures?
Studies do show that long-lived parents have long-lived children. Studies of adoptees confirm that their expected lifespans correlate more strongly to those of their birth parents than those of their adoptive parents. One study of twins reared apart suggests about a 30 percent role for heredity in lifespan, while another says the influence is even smaller.
Some scientists estimate the maximal lifespan of a human to be approximately 120 years, a full 50 years longer than the Biblical three score and ten (Psalms 90:10). The people who have actually achieved that maximum can be counted on one hand—or one finger. Mme. Jeanne Calment of France was 122 years old at her death in 1997. But although few challengers to her record exist, we are seeing more and more members of our society reach 100. In fact, in the United States today, there are more than 60,000 centenarians, and their ranks are projected to grow to nearly 1 million
by 2050. Much of this growth will be due to the convergence of the large aging Boomer demographic and improvements in health and medicine.
Most people who get to 100 do so by avoidance. They shun tobacco and excess alcohol, the sun and pollutants, sloth, bad diets, anger, and isolation. Still, many of us may know at least one smoking, drinking, sunburnt, lazy,
cantankerous recluse who has lived to 100—and wondered how he or she did it.
More and more, scientists are finding that part of the explanation lies in our genes. The siblings of centenarians have a four times greater probability of surviving to age 90 than do siblings of people who have an average life expectancy. When it comes to living 100 years, the probability is 17 times greater in male siblings of centenarians and eight times greater in female siblings of centenarians than the average lifespan of their birth cohort.
On the flip side, we humans carry a number of genes that are deleterious to our health and longevity. These genes increase our risk for heart disease and cancer, as well as age-related but harmless symptoms such as gray hair and wrinkles. Though we cannot change our genetic pedigrees, perhaps if we know what unhelpful genes we carry, we can take steps, such as ridding ourselves of bad health habits and adopting good ones, that can overcome the disadvantages our genes confer and live as long as those people with good genes.
WHAT WE HAVE LEARNED FROM LOWER ORGANISMS
Our understanding of genes and aging has exploded in recent years, due in large part to groundbreaking work done in simpler
organisms. By studying the effect of genetic modification on lifespan in laboratory organisms, researchers now provide fundamental insights into basic mechanisms of aging.
These include:
• Yeast
• Worms
• Fruit Flies
• Mice
Yeast Researchers have identified more than 100 genes in baker’s yeast (Saccharomyces cerevisiae) that are associated with increased longevity, and even more provocatively, have found human versions of many of these genes. Further study is ongoing.
As with all other organisms tested, researchers have reported that restricting the amount of calories available to yeast, either through reducing the sugar or amino acid content of the culture medium, can increase lifespan. Caloric
restriction does not extend lifespan in yeast strains lacking one of the longevity assurance genes, SIR2. This result has been shown in multiple organisms from yeast to flies, and even in mice. The SIR2 protein is the founding member of the sirtuin family involved in
genomic stability, metabolism, stress resistance, and aging. Researchers have found that
overexpression of Sir2 extends lifespan, ...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/nlesxcge-4276/data/document.pdf", "num_examples": 52, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/nlesxcge- /home/sid/tuning/finetune/backend/output/nlesxcge-4276/data/nlesxcge-4276.json...
|
null
|
completed
|
1764899965
|
1764903846
|
NULL
|
/home/sid/tuning/finetune/backend/output/nlesxcge- /home/sid/tuning/finetune/backend/output/nlesxcge-4276/adapter...
|
False
|
Edit
Delete
|
|
f9a67b01-0f91-4be3-b9a1-ed2785f4b54c
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
rbkazgno-2407
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
AGEING IN ASIA
|
AGEING IN ASIA AND THE PACIFIC
|
/home/sid/tuning/finetune/backend/output/rbkazgno- /home/sid/tuning/finetune/backend/output/rbkazgno-2407/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
as a whole. This highlights the need for countries as a whole. This highlights the need for countries with relatively low proportion of older persons to also put in place appropriate policies and interventions to address their specific rights and needs, and to prepare for ageing societies in the future.
An increase in the proportion and number of the oldest old (persons over the age of 80 years)
The oldest old person, the number of people aged 80 years or over, in the region is also showing a dramatic upward trend. The proportion of the oldest old in the region in the total population 2016 was 1.5 per cent of the population amounting to 68 million people, which is 53 per cent of the global population over 80 years old. This proportion is expected to rise to 5 per cent of the population totaling 258 million people by 2050. Asia
Pacific would have 59 per cent of the world population over 80 years of age compared to 53 per cent at present. This has serious implications for provision of appropriate health care and long term care, as well as income security.
The causes…
The drastic increase in the pace of ageing in the region can be attributed to two key factors, declining fertility rates and increasing life expectancies.
Rapidly declining fertility: The most precipitous declines in the region’s fertility have been in the South and SouthWest, and South-East Asia subregions, with the fertility rates falling by 50 per cent in a span of 40 years. ...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/rbkazgno-2407/data/document.pdf", "num_examples": 90, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/rbkazgno- /home/sid/tuning/finetune/backend/output/rbkazgno-2407/data/rbkazgno-2407.json...
|
null
|
completed
|
1764900404
|
1764907116
|
NULL
|
/home/sid/tuning/finetune/backend/output/rbkazgno- /home/sid/tuning/finetune/backend/output/rbkazgno-2407/adapter...
|
False
|
Edit
Delete
|
|
6bae65a2-1788-4e37-a147-a84aa3a0173a
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
xevyo-base-v1
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo
|
AI assistant with a single unchangeable identity, AI assistant with a single unchangeable identity, representing the vision, values, and purpose of Dr. Anmol Kapoor....
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
NULL
|
NULL
|
NULL
|
Trained incrementally on curated instruction–respo Trained incrementally on curated instruction–response pairs with embedded chain-of-thought data, it maintains logical coherence, contextual awareness, and factual accuracy....
|
{"num_examples": 1, "bad_lines": 0 {"num_examples": 1, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/data/xevyo-base-v1.json...
|
{"train_runtime": 599.3462, "train_sam {"train_runtime": 599.3462, "train_samples_per_second": 2.67, "train_steps_per_second": 0.334, "total_flos": 8579520714768384.0, "train_loss": 0.2602055296301842, "epoch": 14.296296296296296, "step": 200}...
|
completed
|
1762626468
|
1763626468
|
NULL
|
NULL
|
False
|
Edit
Delete
|
|
c8c5e60e-0135-4ab2-85ed-5bb01753602e
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
mxaegqrg-9359
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Aging and Longevity
|
Aging and Longevity data
|
/home/sid/tuning/finetune/backend/output/mxaegqrg- /home/sid/tuning/finetune/backend/output/mxaegqrg-9359/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
⭐ Aging and Longevity Studies
This document i ⭐ Aging and Longevity Studies
This document is an academic program guide from the University of Iowa outlining the full curriculum for the Aging and Longevity Studies program. It describes the structure, purpose, and range of courses available for students interested in gerontology—the scientific, social, psychological, and biological study of ageing.
The program is coordinated through the School of Social Work and offers both:
an Undergraduate Minor in Aging and Longevity Studies
a Graduate Certificate in Aging and Longevity Studies
The goal of the program is to prepare students for careers and research in fields that serve older adults and address issues of ageing, health, policy, caregiving, and end-of-life support.
⭐ What the Document Contains
The file mainly lists and describes all the courses offered in the Aging and Longevity Studies program. These courses span multiple disciplines—biology, psychology, social work, anthropology, nursing, recreation, politics, global health, and medicine—reflecting how ageing impacts every part of society.
Below is an overview of the main areas covered:
⭐ 1. Foundational Courses
These courses introduce the scientific, psychological, and social dimensions of ageing:
Aging Matters: Introduction to Gerontology — broad overview of biological, cognitive, and social ageing.
Aging-longevity-studies_courses…
First-Year Seminar — introductory discussions on ageing topics.
⭐ 2. Creativity, Anthropology, and Cultural Perspectives
Courses explore ageing from artistic and cultural angles:
Creativity for a Lifetime — understanding creativity in older adulthood.
Anthropology of Aging — cross-cultural study of ageing, kinship, health, and religion.
Anthropology of Caregiving and Health — how caregiving works across cultures.
⭐ 3. Health, Physiology, and Biological Ageing
These courses focus on the biological and medical aspects of ageing:
Health and Aging — biological development across the lifespan.
Physiology of Aging — effects of ageing on cells, tissues, and organ systems.
Physical Activity and Recreation for Aging Populations — designing exercise programs for older adults.
⭐ 4. Psychology of Aging
A deep look at mental and cognitive changes later in life:
cognitive function
emotional wellbeing
social relationships
age-related psychological adaptations
⭐ 5. Policy, Politics, and Social Systems of Aging
Courses study how ageing interacts with public policy and government systems:
Politics of Aging — demographic change, federal and state policies, political participation of older adults.
Medicare and Medicaid Policy — health systems that support Americans aged 65+.
⭐ 6. End-of-Life and Ethical Care
A group of courses focused on late-life decisions, ethics, and family support:
Hard Cases in Healthcare at the End of Life
End-of-Life Care for Adults and Families
Death/Dying: Issues Across the Life Span
These classes prepare students for ethical, compassionate work with older adults and families facing death and declining health.
⭐ 7. Global and Cross-National Aging
These courses explore how population ageing affects the world:
Global Aging ,WHO and United Nations frameworks, demographic trends across countries.
Aging-longevity-studies_courses…
⭐ 8. Professional Development & Internship
The program includes hands-on experience and advanced seminars:
Aging Studies Internship and Seminar practical work with older adults.
Graduate Gerontology Capstone research, ethics, professional preparation in ageing careers.
⭐ Overall Meaning of the Document
The document serves as a comprehensive guide to all coursework in the Aging and Longevity Studies program. It shows that ageing is a rich, interdisciplinary field involving:
>biology
>health sciences
>psychology
>anthropology
>social work
>public policy
>global perspectives
Students in this program gain a holistic understanding of how ageing affects individuals, families, healthcare systems, and society as a whole....
|
{"num_examples": 20, "bad_lines": {"num_examples": 20, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/mxaegqrg- /home/sid/tuning/finetune/backend/output/mxaegqrg-9359/data/mxaegqrg-9359.json...
|
null
|
completed
|
1764363169
|
1764363240
|
NULL
|
/home/sid/tuning/finetune/backend/output/mxaegqrg- /home/sid/tuning/finetune/backend/output/mxaegqrg-9359/adapter...
|
False
|
Edit
Delete
|
|
f4fe4f1b-2cf4-4d24-89b8-c43f39f70940
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
olpuyuob-2241
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Aging and aging-related
|
Aging and aging-related disease
|
/home/sid/tuning/finetune/backend/output/olpuyuob- /home/sid/tuning/finetune/backend/output/olpuyuob-2241/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Aging is a gradual and irreversible pathophysiolog Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/olpuyuob-2241/data/document.pdf", "num_examples": 977, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/olpuyuob- /home/sid/tuning/finetune/backend/output/olpuyuob-2241/data/olpuyuob-2241.json...
|
null
|
completed
|
1764900526
|
1764918322
|
NULL
|
/home/sid/tuning/finetune/backend/output/olpuyuob- /home/sid/tuning/finetune/backend/output/olpuyuob-2241/adapter...
|
False
|
Edit
Delete
|
|
4a288d32-38d6-4355-bab0-22aac758a790
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
qglgsrnv-4016
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
American Longevity:
|
American Longevity: Past, Present, and Future
|
/home/sid/tuning/finetune/backend/output/qglgsrnv- /home/sid/tuning/finetune/backend/output/qglgsrnv-4016/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Samuel Preston is Frederick J. Warren Professor of Samuel Preston is Frederick J. Warren Professor of Demography at the University of Pennsylvania and Director of its Population Studies Center. A 1968 Ph.D. in Economics from Princeton University, he has also been a faculty member at the University of California, Berkeley, and the Universi ty of Washington. He is past president of the Population Association of America and is a member of the National Academy of Sciences, where he chaired the Committee on Population.
The Policy Brief series is a collection of essays on current public policy issues in aging, health, income security, metropolitan studies and related research done by or on behalf of the Center for Policy Research at the Maxwell School of Citizenship and Public Affairs.
Single copies of this publication may be obtained at no cost from the Center for Policy Research, Maxwell School, 426 Eggers Hall, Syracuse, NY 13244-1090.
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/qglgsrnv-4016/data/document.pdf", "num_examples": 4, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/qglgsrnv- /home/sid/tuning/finetune/backend/output/qglgsrnv-4016/data/qglgsrnv-4016.json...
|
null
|
completed
|
1764900595
|
1764903881
|
NULL
|
/home/sid/tuning/finetune/backend/output/qglgsrnv- /home/sid/tuning/finetune/backend/output/qglgsrnv-4016/adapter...
|
False
|
Edit
Delete
|
|
2ba01f9f-c32a-440b-a301-074998c93fca
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
lgpknhne-0430
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Analysis of trends
|
Analysis of trends in human longevity by new model
|
/home/sid/tuning/finetune/backend/output/lgpknhne- /home/sid/tuning/finetune/backend/output/lgpknhne-0430/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Byung Mook Weon
LG.Philips Displays, 184, Gongda Byung Mook Weon
LG.Philips Displays, 184, Gongdan1-dong, Gumi-city, GyungBuk, 730-702, South Korea
Abstract
Trends in human longevity are puzzling, especially when considering the limits of
human longevity. Partially, the conflicting assertions are based upon demographic
evidence and the interpretation of survival and mortality curves using the Gompertz
model and the Weibull model; these models are sometimes considered to be incomplete
in describing the entire curves. In this paper a new model is proposed to take the place
of the traditional models. We directly analysed the rectangularity (the parts of the curves
being shaped like a rectangle) of survival curves for 17 countries and for 1876-2001 in
Switzerland (it being one of the longest-lived countries) with a new model. This model
is derived from the Weibull survival function and is simply described by two parameters,
in which the shape parameter indicates ‘rectangularity’ and characteristic life indicates
the duration for survival to be ‘exp(-1) % 79.3 6≈ ’. The shape parameter is essentially a
function of age and it distinguishes humans from technical devices. We find that
although characteristic life has increased up to the present time, the slope of the shape
parameter for middle age has been saturated in recent decades and that the
rectangularity above characteristic life has been suppressed, suggesting there are
ultimate limits to human longevity. The new model and subsequent findings will
contribute greatly to the interpretation and comprehension of our knowledge on the
human ageing processes.
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/lgpknhne-0430/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/lgpknhne- /home/sid/tuning/finetune/backend/output/lgpknhne-0430/data/lgpknhne-0430.json...
|
null
|
failed
|
1764900675
|
1764903986
|
NULL
|
/home/sid/tuning/finetune/backend/output/lgpknhne- /home/sid/tuning/finetune/backend/output/lgpknhne-0430/adapter...
|
False
|
Edit
Delete
|
|
84d0f07a-cf83-45f1-964a-605efeb12867
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
bqmvxexf-5483
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Celebrating
|
Celebrating Ramadan
A Resource for Educators
|
/home/sid/tuning/finetune/backend/output/bqmvxexf- /home/sid/tuning/finetune/backend/output/bqmvxexf-5483/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
⭐“Celebrating Ramadan”
“Celebrating Ramadan” is ⭐“Celebrating Ramadan”
“Celebrating Ramadan” is a full educational curriculum created by the Outreach Center at Harvard University’s Center for Middle Eastern Studies. It is designed to help teachers explain the meaning, traditions, history, and cultural practices of Ramadan to K–12 students in a simple, engaging, and interactive way.
The resource blends religious background, cultural diversity, hands-on activities, science lessons, and literature, showing how Ramadan is observed around the world.
⭐ What the Curriculum Teaches
1. Introduction to Ramadan
The resource explains that Ramadan is a holy month for Muslims and highlights three core practices:
Sawm — fasting during daylight hours
Iftar — breaking the fast after sunset
Eid al-Fitr — the joyful three-day festival ending Ramadan
It emphasizes that Ramadan teaches self-discipline, reflection, generosity, and community spirit. It also notes that not all Muslims fast (children, travelers, pregnant women, the sick, etc.).
⭐ 2. When Ramadan Happens
The curriculum explains the difference between the solar and lunar calendars:
The Islamic (Hijri) calendar follows the moon.
Months begin when the new crescent moon appears.
Because the lunar year is 11 days shorter, Ramadan moves earlier each year.
Students learn how moon phases determine Islamic dates.
⭐ 3. Key Ramadan Traditions
Sawm (Fasting)
Fasting means:
no eating or drinking during daylight
reflection and spiritual focus
modified daily routines
Fasting is personal, voluntary, and varies across cultures.
Iftar (Breaking the Fast)
Each evening, families and friends gather for a meal. Iftar can be:
simple, nourishing foods
large festive celebrations
accompanied by Qur’an recitation or prayer
Eid al-Fitr
>Eid is celebrated with:
>days off from school/work
>gift giving
>new clothes
>visits to family and friends
special meals
>decorations, lanterns, henna, children’s parades, and songs
The curriculum gives examples of Eid traditions in Egypt, India, Pakistan, and the United States.
⭐ 4. Lesson Plans & Activities Included
The document contains multiple classroom activities:
🌙 Moon Phase Science Lessons
Students learn:
how moon phases work?
why Ramadan moves each year?
how to track moon changes?
how to create a moving “moonscape” to show waxing and waning
🕌 Cultural Studies & Research
Students research:
how different countries celebrate Ramadan
>special foods eaten during the month
>similarities and differences across global Muslim communities
🥣 Food & Recipes
The resource includes recipes that represent Ramadan food traditions from around the world, such as:
>Stuffed dates
>Cucumber yogurt dip
Thiacri Senegalais
Indian starch pudding (Fereni)
👦 “First Fast” Reading Lesson
A story from Iran shows how children practice a “little fast.”
Students learn how young Muslims experience Ramadan and complete a worksheet about the reading.
🕯 Ramadan Lantern Craft (Fanoos)
Students make:
>simple paper lanterns
>more advanced geometric lanterns
>tin-punched lanterns
>They also learn the history of Ramadan lanterns in Egypt.
⭐ 5. Additional Resources
The curriculum includes:
>Recommended books about Ramadan
>Documentaries and educational videos
>Music and online resources
>Bibliographies for teachers
These help deepen understanding of Muslim culture and holiday practices.
⭐ Overall Meaning of the Resource
“Celebrating Ramadan” is both an instructional guide and a cultural exploration.
It teaches that Ramadan is:
>A spiritual month
>A cultural celebration
>A family-centered tradition
A global event with diverse forms
It helps students compare Ramadan with celebrations from their own traditions, promoting respect, cultural awareness, and global understanding....
|
{"num_examples": 185, "bad_lines": {"num_examples": 185, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/bqmvxexf- /home/sid/tuning/finetune/backend/output/bqmvxexf-5483/data/bqmvxexf-5483.json...
|
null
|
completed
|
1764355125
|
1764355364
|
NULL
|
/home/sid/tuning/finetune/backend/output/bqmvxexf- /home/sid/tuning/finetune/backend/output/bqmvxexf-5483/adapter...
|
False
|
Edit
Delete
|
|
96230b68-1c7b-4991-8bd5-605292bfe899
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
anrrfkpd-5339
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Corporate Longevity
|
Corporate Longevity Forecasting
|
/home/sid/tuning/finetune/backend/output/anrrfkpd- /home/sid/tuning/finetune/backend/output/anrrfkpd-5339/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The 2018 Corporate Longevity Forecast: Creative De The 2018 Corporate Longevity Forecast: Creative Destruction is Accelerating is an executive briefing by Innosight that analyzes how rapidly companies are being displaced from the S&P 500, revealing a dramatic acceleration in corporate turnover and shrinking lifespans. The report shows that the average tenure of companies on the S&P 500 has fallen from 33 years in 1964 to 24 years in 2016, and is projected to decline to just 12 years by 2027. This trend signals an era of unprecedented marketplace turbulence driven by technological disruption, shifting customer expectations, and major structural economic forces.
The report highlights that at current churn rates—5.2% annually—half of today’s S&P 500 companies will be replaced within the next decade. It draws on historical data, additions and deletions to the index, and sector-specific disruption patterns. Companies leave the S&P 500 due to declining market capitalization, competitive displacement, mergers, acquisitions, and private equity buyouts. Notable exits between 2013–2017 include iconic firms such as Yahoo!, DuPont, Urban Outfitters, Staples, Starwood Hotels, DirecTV, EMC, and Whole Foods.
The document identifies five major forces driving this accelerating creative destruction:
Digital disruption in retail, leading to widespread bankruptcies and consolidation; online sales growth continues to pressure traditional business models.
The dominance of digital platform companies—Apple, Alphabet, Amazon, Microsoft—whose scale and data advantages allow rapid expansion into multiple sectors.
Business model disruption in industries like financial services, travel, telecom, and real estate, where asset-light models (e.g., Uber, Airbnb) reshape value creation.
Energy sector transformation, with renewable energy investment overtaking fossil fuels, creating new winners and forcing incumbents toward reinvention.
The explosion of unicorns and “decacorns”, privately held startups valued above $10B, signaling intensified future competition for incumbents across industries.
Survey findings from over 300 executives show that while 80% acknowledge the need to transform, many still underestimate threats from new entrants and overestimate their readiness—what the report calls a “confidence bubble.”
To help companies navigate this rising turbulence, the report outlines five strategic imperatives:
Spend time at the periphery to detect early signals of disruption.
Focus on changing customer behaviors as leading indicators of future shifts.
Avoid being trapped by past assumptions; use future-back thinking to shape strategy.
Embrace dual transformation, strengthening the core business while building new growth engines.
Assess the cost of inaction, recognizing that failing to innovate can be more costly than investing in change.
Overall, the briefing serves as a warning and a playbook: corporate longevity is shrinking, disruption is accelerating, and leaders must act boldly to reinvent their organizations—or risk being overtaken by faster, more innovative rivals.
If you want, I can also prepare:
📌 a short executive summary
📌 a visual one-page cheat sheet
📌 a comparison between this and your other longevity documents
📌 a cross-document meta-analysis
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/anrrfkpd-5339/data/document.pdf", "num_examples": 66, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/anrrfkpd- /home/sid/tuning/finetune/backend/output/anrrfkpd-5339/data/anrrfkpd-5339.json...
|
null
|
queued
|
1765049879
|
1765050598
|
NULL
|
/home/sid/tuning/finetune/backend/output/anrrfkpd- /home/sid/tuning/finetune/backend/output/anrrfkpd-5339/adapter...
|
False
|
Edit
Delete
|
|
60766956-e0ac-4992-84c4-aa05c296bbd9
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
zpgdkujo-6655
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Credible Power-Sharing
|
Credible Power-Sharing and the Longevity
|
/home/sid/tuning/finetune/backend/output/zpgdkujo- /home/sid/tuning/finetune/backend/output/zpgdkujo-6655/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Credible Power-Sharing: Evidence From Cogovernanc “Credible Power-Sharing: Evidence From Cogovernance in Colombia” is a research study examining whether power-sharing institutions can help reduce violence and build political stability in regions historically affected by armed conflict. Focusing on a cogovernance reform in Colombia, the paper evaluates whether granting communities a formal role in local decision-making can create credible commitments between the state and citizens, thereby reducing conflict-related violence.
The reform introduced a municipal cogovernance mechanism that gave civilians shared authority over public resource allocation. The authors combine administrative data, qualitative fieldwork, and quantitative causal-inference methods to measure the reform’s effect on governance outcomes and security conditions.
The findings show that cogovernance significantly increased civilian participation, improved transparency in local government, and reduced opportunities for corruption. Most importantly, the study documents a substantial decline in violence, especially in areas with a strong presence of armed groups. The mechanism worked by enhancing the credibility of state commitments: when citizens gained real influence in local policy, trust increased, and armed groups had fewer incentives to interfere.
The paper concludes that credible power-sharing arrangements can meaningfully reduce violence when they provide communities with real authority and when institutions are robust enough to enforce shared decision-making. The Colombian case offers broader insights for countries attempting to transition out of conflict through participatory governance.
If you want, I can also provide:
✅ A short 3–4 line summary
✅ A student-friendly simple version
✅ MCQs or quiz questions from this file
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/zpgdkujo-6655/data/document.pdf", "num_examples": 196, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/zpgdkujo- /home/sid/tuning/finetune/backend/output/zpgdkujo-6655/data/zpgdkujo-6655.json...
|
null
|
queued
|
1765225272
|
1765227302
|
NULL
|
/home/sid/tuning/finetune/backend/output/zpgdkujo- /home/sid/tuning/finetune/backend/output/zpgdkujo-6655/adapter...
|
False
|
Edit
Delete
|
|
0f4c4c57-41d9-4b22-b324-94f03cc89f9c
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
zeznwyco-8062
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Determinants of longevity
|
Determinants of longevity
|
/home/sid/tuning/finetune/backend/output/zeznwyco- /home/sid/tuning/finetune/backend/output/zeznwyco-8062/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The document “Determinants of Longevity” is a comp The document “Determinants of Longevity” is a comprehensive scientific review that explains why some people live longer than others. It explores how genetic, environmental, and medical factors combine to shape human lifespan, using evidence from demographic databases, epidemiological studies, and genetic research.
The paper highlights that in modern, industrialized societies, both maximum lifespan and average life expectancy have continued to rise, with no convincing evidence of a fixed biological limit of around 85 years. In fact, the largest improvements in survival have occurred among people aged 80 and older, showing that longevity can keep increasing as medical care and living conditions improve.
It explains that genetics accounts for about one-quarter of the variation in human lifespan, based on large twin studies. Certain genetic markers (such as specific HLA types or variants of the APOE gene) are associated with reaching extreme old age. However, genes alone cannot explain how fast life expectancy has risen in just a few generations—most gains come from environmental factors, including sanitation, reduced smoking, improved nutrition, better working conditions, and advances in healthcare.
The document also discusses extreme longevity (centenarians) and corrects earlier myths by showing that many historical claims of 120–150-year lifespans were exaggerations. Verified records today suggest human lifespan has no clear ceiling and continues to increase as mortality rates decline even at advanced ages.
Environmental and behavioral factors—such as socioeconomic status, education, diet, physical activity, body weight, alcohol consumption, and particularly smoking—play major roles in shaping longevity. Medical advances, including treatments for heart disease, infections, and age-related illnesses, contribute significantly to longer lives.
Finally, the paper concludes that while we can identify many influences on longevity at the population level, predicting an individual’s lifespan remains extremely difficult because longevity results from complex interactions among genes, behaviors, early-life conditions, and medical care....
|
{"num_examples": 158, "bad_lines": {"num_examples": 158, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/zeznwyco- /home/sid/tuning/finetune/backend/output/zeznwyco-8062/data/zeznwyco-8062.json...
|
null
|
completed
|
1764365759
|
1764366463
|
NULL
|
/home/sid/tuning/finetune/backend/output/zeznwyco- /home/sid/tuning/finetune/backend/output/zeznwyco-8062/adapter...
|
False
|
Edit
Delete
|
|
42f0b47e-7ea7-456d-80db-d7e53fefb810
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
taqjaqel-7779
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Determinants of longevity
|
Determinants of longevity
|
/home/sid/tuning/finetune/backend/output/taqjaqel- /home/sid/tuning/finetune/backend/output/taqjaqel-7779/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
K. CHRISTENSENa & J. W. VAUPELb From abOdense K. CHRISTENSENa & J. W. VAUPELb From abOdense University Medical School, Odense, Denmark; bSanford Institute, Duke University, Durham, NC, USA; and aThe Danish Epidemiology Science Centre, The Steno Institute of Public Health, Department of Epidemiology and Social Medicine, Aarhus University Hospital, Aarhus, Denmark
Abstract. Christensen K, Vaupel JW (Odense University Medical School, Odense, Denmark; Sanford Institute, Duke University, Durham, NC, USA; and The Danish Epidemiology Science Centre, The Steno Institute of Public Health, Department of Epidemiology and Social Medicine, Aarhus University Hospital, Aarhus, Denmark). Determinants of longevity: genetic, environmental and medical factors (Review). J Intern Med 1996; 240: 333–41.
This review focuses on the determinants of longevity in the industrialized world, with emphasis on results from recently established data bases. Strong evidence is now available that demonstrates that in developed
Introduction
The determinants of longevity might be expected to be well understood. The duration of life has captured the attention of many people for thousands of years; an enormous array of vital-statistics data are available for many centuries. Life-span is easily measured compared with other health phenomena, and in many countries data are available on whole populations and not just study samples. Knowledge concerning determinants of human longevity, however, is still sparse, and much of the little that is known has been learned in recent years. This review
countries the maximum lifespan as well as the mean lifespan have increased substantially over the past century. There is no evidence of a genetically determined lifespan of around 85 years. On the contrary, the biggest absolute improvement in survival in recent decades has occurred amongst 80 year-olds. Approximately one-quarter of the variation in lifespan in developed countries can be attributed to genetic factors. The influence of both genetic and environmental factors on longevity can potentially be modified by medical treatment, behavioural changes and environmental improvements.
Keywords: centenarians, life expectancy, lifespan, mortality.
focuses on genetic, environmental and medical factors as determinants of longevity in developed countries and discusses alternative paradigms concerning human longevity.
How should longevity be measured?
Longevity can be studied in numerous ways; key questions include the following. How long can a human live? What is the average length of life? Are the maximum and average lengths of life approaching limits? Why do some individuals live longer than others? In addressing these questions, it is useful to
# 1996 Blackwell Science Ltd 333
334 K. CHRISTENSEN & J. W. VAUPEL
study the maximum lifespan actually achieved in various populations, the mean lifespan, and the variation in lifespan. Estimating the maximum lifespan of human beings is simply a matter of finding a well-documented case report of a person who lived longer than other welldocumented cases. The assessment of mean lifespan in an actual population requires that the study population is followed from birth to extinction. An alternative approach is to calculate age-specific death rates at some point in time for a population, and then use these death rates to determine how long people would live on average in a hypothetical population in which these death rates prevailed over the course of the people’s lives. This second kind of mean lifespan is generally known as life expectancy. The life expectancy of the Swedish population in 1996 is the average lifespan that would be achieved by the 1996 birth cohort if Swedish mortality rates at each age remained at 1996 levels for the entire future life of this cohort. Assessment of determinants of life expectancy and variation in lifespan amongst individuals rely on demographic comparisons of different populations and on such traditional epidemiological designs as follow-up studies of exposed or treated versus nonexposed or nontreated individuals. Designs from genetic epidemiology – such as twin, adoption and other family studies – are useful in estimating the relative importance of genes and environment for the variation in longevity.
Determinants of extreme longevity
Numerous extreme long-livers have been reported in various mountainous regions, including Georgia, Kashmir, and Vilcabamba. In most Western countries, including the Scandinavian countries, exceptional lifespans have also been reported. Examples are Drachenberg, a Danish–Norwegian sailor who died in 1772 and who claimed that he was born in 1626, and Jon Anderson, from Sweden, who claimed to be 147 years old when he died in 1729. There is noconvincingdocumentationfortheseextremelonglivers. When it has been possible to evaluate such reports, they have proven to be very improbable [1, 2]. In countries, like Denmark and Sweden, with a long tradition of censuses and vital statistics, remarkable and sudden declines in the number of
extreme long-livers occur with the introduction of more rigorous checking of information on age of death, as the result of laws requiring birth certificates, the development of church registers and the establishment of statistical bureaus [3, 4]. This suggests that early extreme long-livers were probably just cases of age exaggeration. Today (March 1996), the oldest reported welldocumented maximum lifespan for females is 121 years [5] and for males 113 years [6]. Both these persons are still alive. Analyses of reliable cases of long-livers show that longevity records have been repeatedly broken over past decades [3, 6]; this suggests that even longer human lifespans may occur in the future. There has been surprisingly little success in identifying factors associated with extreme longevity. A variety of centenarian studies have been conducted during the last half century. As reviewed by Segerberg [7], most of the earlier studies were based on highly selected samples of individuals, without rigorous validation of the ages of reputed centenarians. During the last decade several more comprehensive, less selected centenarian studies have been carried out in Hungary [8], France [9], Finland [10] and Denmark [11]. A few specific genetic factors have been found to be associated with extreme longevity. Takata et al. [12] found a significantly lower frequency of HLA-DRw9 amongst centenarians than in an adult control group in Japan, as well as a significantly higher frequency of HLA-DR1. The HLA-antigens amongst the Japanese centenarians are negatively associated with the presence of autoimmune diseases in the Japanese population, which suggests that the association with these genetic markers is mediated through a lower incidence of diseases. More recently, both a French study [13] and a Finnish study [14] found a low prevalence of the e4 allele of apolipoprotein E amongst centenarians. The e4 allele has consistently been shown to be a risk factor both for coronary heart disease and for Alzheimer’s dementia. In the French study [13], it was also found that centenarians had an increased prevalence of the DDgenotype of angiotensin-converting enzyme (ACE) compared with adult controls. This result is contrary to what was expected as the DD-genotype of ACE has been reported to be associated with myocardial infarction. Only a few genetic association studies concerning extreme longevity have been published...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/taqjaqel-7779/data/document.pdf", "num_examples": 24, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/taqjaqel- /home/sid/tuning/finetune/backend/output/taqjaqel-7779/data/taqjaqel-7779.json...
|
null
|
completed
|
1764899299
|
1764903502
|
NULL
|
/home/sid/tuning/finetune/backend/output/taqjaqel- /home/sid/tuning/finetune/backend/output/taqjaqel-7779/adapter...
|
False
|
Edit
Delete
|
|
f7faa905-3aa6-459f-be9b-983c6c267d98
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
uubiabzb-7541
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Life guidance
|
Determination of signs of life
|
/home/sid/tuning/finetune/backend/output/uubiabzb- /home/sid/tuning/finetune/backend/output/uubiabzb-7541/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The “Signs of Life – Guidance Visual Summary (v1.2 The “Signs of Life – Guidance Visual Summary (v1.2)” is a clinical guideline for healthcare professionals to determine whether a live birth has occurred before 24 weeks of gestation in cases where—after discussion with parents—active survival-focused care is not appropriate. It provides clear, compassionate instructions for identifying signs of life, documenting birth and death, communicating with parents, and delivering palliative and bereavement care.
signs-of-life-guidance-visual-s…
The guidance is designed to reduce uncertainty, ensure legal accuracy, protect families from additional trauma, and support parents through one of the most emotionally sensitive experiences in healthcare.
Core Components
1. Determining a Live Birth
A live birth is diagnosed when one or more persistent visible signs of life are observed:
Easily visible heartbeat
Visible pulsation of the umbilical cord
Breathing, crying, or sustained gasps
Definite, purposeful movement of arms or legs
signs-of-life-guidance-visual-s…
Not signs of life:
Brief reflexes—such as transient gasps, chest wall twitches, or short muscle movements only in the first minute after birth—do not constitute live birth.
signs-of-life-guidance-visual-s…
Clinicians are instructed to observe respectfully, often while the baby is held by the parents. A stethoscope is not required, and parents’ observations may be included if they choose to share them.
2. Actions After a Live Birth
Once a sign of life is seen:
A doctor (usually an obstetrician) must be called to confirm and document the live birth.
The doctor may rely on the midwife’s account and is not always required to attend in person.
Accurate documentation avoids legal complications when issuing a neonatal death certificate.
signs-of-life-guidance-visual-s…
Comfort care must then follow a perinatal palliative care pathway, addressing the baby’s needs and the parents’ emotional and physical well-being.
3. Communication With Parents
The guidance places strong emphasis on sensitive, trauma-reducing communication.
Parents should be gently told that:
Babies born before 24 weeks are extremely small and typically do not survive.
Babies who die just before birth may briefly show reflex movements that are not signs of life.
Babies who survive may show signs of life for minutes—or occasionally hours.
signs-of-life-guidance-visual-s…
Clinicians should:
Listen actively
Use the parents’ preferred language
Respect whether parents want the experience described as a “loss,” “death,” “end of pregnancy,” or “miscarriage”
signs-of-life-guidance-visual-s…
Each situation is unique and must be handled with individualized sensitivity.
4. Bereavement Care (For All Births)
Bereavement care is required in every case, regardless of signs of life.
The guidance instructs staff to:
Follow the National Bereavement Care Pathway
Provide privacy, time, and space
Support memory-making
Offer choices around burial, cremation, or sensitive disposal
Inform parents of support services and ensure follow-up with community care, GP, and mental health teams
signs-of-life-guidance-visual-s…
This ensures parents receive compassionate, individualized support during and after their loss.
5. Documenting Birth and Death
Documentation follows strict legal requirements:
If signs of life are present
A doctor and midwife must confirm and record the live birth.
A neonatal death certificate must be completed by a doctor who witnessed the signs—or the coroner must be informed.
Parents are required to register the birth and death.
signs-of-life-guidance-visual-s…
If no signs of life are present (miscarriage)
Document the miscarriage.
No legal registration is required, but offer a certificate of loss or certificate of birth.
signs-of-life-guidance-visual-s…
6. Included and Excluded Births
Included
In-hospital spontaneous births under 22+0 weeks
In-hospital births at 22+0 to 23+6 weeks where survival-focused care is not appropriate
Pre-hospital births under 22 weeks (same principles apply)
signs-of-life-guidance-visual-s…
Excluded
Medical terminations
Uncertain gestational age
Spontaneous births at 22–23+6 weeks where active neonatal care is planned or unclear
signs-of-life-guidance-visual-s…
Conclusion
The “Signs of Life – Guidance Visual Summary (v1.2)” is a clear and compassionate roadmap for clinicians caring for families experiencing extremely preterm birth where survival-focused care is not appropriate. It ensures:
>accurate identification of live birth
>consistent legal documentation
>sensitive communication
>high-quality palliative and bereavement care
respect for parents’ emotional needs and preferences
Its ultimate purpose is to provide clarity, compassion, and consistency during a profoundly difficult and delicate moment....
|
{"num_examples": 14, "bad_lines": {"num_examples": 14, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/uubiabzb- /home/sid/tuning/finetune/backend/output/uubiabzb-7541/data/uubiabzb-7541.json...
|
null
|
completed
|
1764441607
|
1764441642
|
NULL
|
/home/sid/tuning/finetune/backend/output/uubiabzb- /home/sid/tuning/finetune/backend/output/uubiabzb-7541/adapter...
|
False
|
Edit
Delete
|
|
cd7f6ee5-ca09-4aba-bf20-bc86fe62aff8
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
vwitogci-0660
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Developmental Diet Alters
|
Developmental Diet Alters the Fecundity–Longevity
|
/home/sid/tuning/finetune/backend/output/vwitogci- /home/sid/tuning/finetune/backend/output/vwitogci-0660/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Drosophila melanogaster David H. Collins, PhD,*, D Drosophila melanogaster David H. Collins, PhD,*, David C. Prince, PhD, Jenny L. Donelan, MSc, Tracey Chapman, PhD , and Andrew F. G. Bourke, PhD School of Biological Sciences, University of East Anglia, Norwich, UK. *Address correspondence to: David H. Collins, PhD. E-mail: David.Collins@uea.ac.uk Decision Editor: Gustavo Duque, MD, PhD (Biological Sciences Section)
Abstract The standard evolutionary theory of aging predicts a negative relationship (trade-off) between fecundity and longevity. However, in principle, the fecundity–longevity relationship can become positive in populations in which individuals have unequal resources. Positive fecundity–longevity relationships also occur in queens of eusocial insects such as ants and bees. Developmental diet is likely to be central to determining trade-offs as it affects key fitness traits, but its exact role remains uncertain. For example, in Drosophila melanogaster, changes in adult diet can affect fecundity, longevity, and gene expression throughout life, but it is unknown how changes in developmental (larval) diet affect fecundity–longevity relationships and gene expression in adults. Using D. melanogaster, we tested the hypothesis that varying developmental diets alters the directionality of fecundity–longevity relationships in adults, and characterized associated gene expression changes. We reared larvae on low (20%), medium (100%), and high (120%) yeast diets, and transferred adult females to a common diet. We measured fecundity and longevity of individual adult females and profiled gene expression changes with age. Adult females raised on different larval diets exhibited fecundity–longevity relationships that varied from significantly positive to significantly negative, despite minimal differences in mean lifetime fertility or longevity. Treatments also differed in age-related gene expression, including for aging-related genes. Hence, the sign of fecundity–longevity relationships in adult insects can be altered and even reversed by changes in larval diet quality. By extension, larval diet differences may represent a key mechanistic factor underpinning positive fecundity–longevity relationships observed in species such as eusocial insects. Keywords: Aging, Eusociality, Life history, mRNA-seq, Nutrition
The standard evolutionary theory of aging predicts that, as individuals grow older, selection for increased survivorship declines with age (1). Therefore, individuals experience the age-related decrease in performance and survivorship that defines aging (senescence) (2). Additionally, given finite resources, individuals should optimize relative investment between reproduction and somatic maintenance (3). This causes tradeoffs between reproduction and longevity (4,5) with elevated reproduction often incurring costs to longevity (the costs of reproduction) (6). Such trade-offs and costs are evident in the negative fecundity–longevity relationships observed in many species. Although a negative fecundity–longevity relationship is typical, fecundity and longevity can become uncoupled (7) and some species or populations may exhibit positive fecundity– longevity relationships (4). This can occur for several reasons. First, in Drosophila melanogaster, mutations can increase longevity without apparent reproductive costs (8–11), particularly mutations in the conserved insulin/insulin-like growth factor signaling and target of rapamycin network (IIS-TOR).
This network regulates nutrient sensitivity and is an important component of aging across diverse taxa (2,12). Second, fecundity and longevity can become uncoupled when there is asymmetric resourcing between individuals (13,14). Within a population, well-resourced individuals may have higher fecundity and longevity than poorly resourced individuals, reversing the usual negative fecundity–longevity relationship. However, because costs of reproduction are not abolished even in well-resourced individuals (13,14), a within-individual trade-off between fecundity and longevity remains present. Third, fecundity and longevity can become uncoupled within and between the castes of eusocial insects (15–18), that is, species such as ants, bees, wasps, and termites with a longlived reproductive caste (queens or kings) and a short-lived non- or less reproductive caste (workers) (19–21). In some species, queens appear to have escaped costs of reproduction completely (22–25). This may have been achieved through rewiring the IIS-TOR network (12,26), which forms part of the TOR/IIS-juvenile hormone-lifespan and fecundity (TI-JLiFe) network hypothesized to underpin aging and longevity in eusocial insects by Korb et al....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/vwitogci-0660/data/document.pdf", "num_examples": 38, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/vwitogci- /home/sid/tuning/finetune/backend/output/vwitogci-0660/data/vwitogci-0660.json...
|
null
|
completed
|
1764899422
|
1764905358
|
NULL
|
/home/sid/tuning/finetune/backend/output/vwitogci- /home/sid/tuning/finetune/backend/output/vwitogci-0660/adapter...
|
False
|
Edit
Delete
|
|
acb004e7-7670-457a-92aa-998c4840d029
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
fbbdxtrl-4815
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Diet in Longevity
|
Diet in Longevity
|
/home/sid/tuning/finetune/backend/output/fbbdxtrl- /home/sid/tuning/finetune/backend/output/fbbdxtrl-4815/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Longevity Diet” is a concise, practical guide tha “Longevity Diet” is a concise, practical guide that outlines how specific dietary substitutions and eating patterns can support healthier aging, extend lifespan, and reduce the risk of chronic disease. The document promotes a nutrient-dense, low-inflammation way of eating that emphasizes whole foods, plant-forward choices, and strategic replacements for common staples that accelerate aging.
The guide presents a clear set of food swaps designed to improve metabolic health, reduce oxidative stress, and support a stronger, longer-living body. It recommends replacing refined starches—such as bread, pasta, and white rice—with vegetables, legumes, mushrooms, and whole grains like quinoa. Red and processed meats are minimized in favor of fatty fish (like salmon, mackerel, sardines), white meat, eggs, tofu, or mushrooms. High-fat spreads and dressings are replaced with extra-virgin olive oil and other healthy fats, while processed sugars and excessive salt are swapped for herbs, spices, and “Lite Salt.”
The document encourages replacing cow’s milk with plant-based alternatives such as coconut, hemp, or pea milk. Beverages like soda and commercial fruit juice are substituted with water, tea, herbal teas, or moderate coffee intake. Snacks high in sugar are replaced with fruit, natural sweeteners, or high-cocoa dark chocolate.
It also emphasizes using targeted nutritional supplements—such as B vitamins, iodine, selenium, vitamin D, vitamin K2, and magnesium—to address common micronutrient gaps. Specialized “longevity supplements,” such as those formulated to counteract cellular aging, are listed as complementary options.
The centerpiece of the document is the “10 Simple Rules of the Longevity Diet,” which provide deeper guidance: eat fewer refined starches, limit red meat, hydrate well, favor whole ingredients (30+ per week), maintain moderate protein intake, eat slightly less than full to promote metabolic health, include fermented foods, minimize alcohol, and avoid nutrient deficiencies.
Overall, the Longevity Diet promotes a style of eating that is diverse, minimally processed, rich in phytonutrients and healthy fats, and aligned with scientific insights into metabolic health, the gut microbiome, inflammation, and biological aging....
|
{"num_examples": 29, "bad_lines": {"num_examples": 29, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/fbbdxtrl- /home/sid/tuning/finetune/backend/output/fbbdxtrl-4815/data/fbbdxtrl-4815.json...
|
null
|
completed
|
1764365138
|
1764365391
|
NULL
|
/home/sid/tuning/finetune/backend/output/fbbdxtrl- /home/sid/tuning/finetune/backend/output/fbbdxtrl-4815/adapter...
|
False
|
Edit
Delete
|
|
7b2a2799-a74e-4dd4-93a8-4bbabe61ca47
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
vtciomis-0967
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Diet-dependent entropic a
|
Diet-dependent entropic assessment of athletes’
|
/home/sid/tuning/finetune/backend/output/vtciomis- /home/sid/tuning/finetune/backend/output/vtciomis-0967/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Cennet Yildiz1, Melek Ece Öngel2 , Bayram Yilmaz3 Cennet Yildiz1, Melek Ece Öngel2 , Bayram Yilmaz3 and Mustafa Özilgen1* 1Department of Food Engineering, Yeditepe University, Kayısdagi, Atasehir, Istanbul 34755, Turkey 2Nutrition and Dietetics Department, Yeditepe University, Kayısdagi, Atasehir, Istanbul 34755, Turkey 3Faculty of Medicine, Department of Physiology, Yeditepe University, Istanbul, Turkey
(Received 29 July 2021 – Final revision received 26 August 2021 – Accepted 26 August 2021)
Journal of Nutritional Science (2021), vol. 10, e83, page 1 of 8 doi:10.1017/jns.2021.78
Abstract Life expectancies of the athletes depend on the sports they are doing. The entropic age concept, which was found successful in the previous nutrition studies, will be employed to assess the relation between the athletes’ longevity and nutrition. Depending on their caloric needs, diets are designed for each group of athletes based on the most recent guidelines while they are pursuing their careers and for the post-retirement period, and then the metabolic entropy generation was worked out for each group. Their expected lifespans, based on attaining the lifespan entropy limit, were calculated. Thermodynamic assessment appeared to be in agreement with the observations. There may be a significant improvement in the athletes’ longevity if theyshift to a retirement diet after the age of 50. The expected average longevity for male athletes was 56 years for cyclists, 66 years for weightlifters, 75 years for rugby players and 92 years for golfers. If they should start consuming the retirement diet after 50 years of age, the longevity of the cyclists may increase for 7 years, and those of weightlifters, rugby players and golfers may increase for 22, 30 and 8 years, respectively.
Key words: Athletes’ diet: Athletes’ longevity: Entropic age: Lifespan entropy
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/vtciomis-0967/data/document.pdf", "num_examples": 24, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/vtciomis- /home/sid/tuning/finetune/backend/output/vtciomis-0967/data/vtciomis-0967.json...
|
null
|
completed
|
1764899492
|
1764904301
|
NULL
|
/home/sid/tuning/finetune/backend/output/vtciomis- /home/sid/tuning/finetune/backend/output/vtciomis-0967/adapter...
|
False
|
Edit
Delete
|
|
f0d792ca-c8f4-4cea-9e5a-f838a0d96e47
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jcskuiyn-2380
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Drivers of your health
|
Drivers of your health and longevity
|
/home/sid/tuning/finetune/backend/output/jcskuiyn- /home/sid/tuning/finetune/backend/output/jcskuiyn-2380/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Drivers of Your Health and Longevity” is a compre “Drivers of Your Health and Longevity” is a comprehensive report outlining the 23 key modifiable factors that significantly influence a person’s health, lifespan, and overall well-being. It emphasizes that 19 out of these 23 drivers lie outside the traditional healthcare system, meaning most of what determines longevity comes from everyday habits and environmental conditions.
These drivers are grouped into major categories:
1. Physical Inputs
Covers diet, supplements, substance use, hydration, and their direct effects on disease risk, cognitive health, and mortality. Examples include fasting improving metabolic health, omega-3 protecting the brain and heart, and sleep duration affecting mortality.
2. Movement
Includes mobility and exercise. The report highlights that regular physical activity can extend life by 3–5 years, reduce mortality risk, and improve overall physical and mental function.
3. Daily Living
Encompasses social interaction, productive activities, content consumption, and hygiene. Strong social relationships, volunteering, and balanced media usage are linked to better physical and mental health.
4. Exposure
Focuses on nature, atmospheric conditions, light, noise, and environmental materials. Evidence shows that nature exposure, reduced pollution, sunlight, and safe environments contribute to better mental health, reduced stress, and lower mortality.
5. Stress
Explains how both positive (eustress) and chronic stress affects disease risk, cognitive function, and life expectancy.
6. State of Being
Includes mindsets, beliefs, body composition, physical security, and economic security. Optimism, gratitude, financial stability, and safety are shown to have strong physiological and psychological benefits.
7. Healthcare
Covers vaccination, early detection, treatment, and medication adherence. Effective healthcare interventions (e.g., vaccines, screening, treatments) significantly reduce mortality and improve survival rates.
📌 Overall Purpose of the Report
The document emphasizes that longevity is not determined primarily by genetics or medical care, but by daily choices, behaviors, and environmental exposures. By optimizing these 23 modifiable drivers, individuals can dramatically improve their health span and lifespan.
If you want, I can also provide:
✅ A short summary
✅ A quiz based on this file
✅ Key insights
✅ A table of the 23 drivers
Just tell me!
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jcskuiyn-2380/data/document.pdf", "num_examples": 141, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jcskuiyn- /home/sid/tuning/finetune/backend/output/jcskuiyn-2380/data/jcskuiyn-2380.json...
|
null
|
queued
|
1765224167
|
1765224806
|
NULL
|
/home/sid/tuning/finetune/backend/output/jcskuiyn- /home/sid/tuning/finetune/backend/output/jcskuiyn-2380/adapter...
|
False
|
Edit
Delete
|
|
c849e927-e000-4f63-a601-d7b6e2ef75cd
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
evvycfst-1808
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Dublin Longevity
|
Dublin Longevity Declaration
|
/home/sid/tuning/finetune/backend/output/evvycfst- /home/sid/tuning/finetune/backend/output/evvycfst-1808/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Consensus Recommendation to Immediately Expand Res Consensus Recommendation to Immediately Expand Research on Extending Healthy Human Lifespans
For millennia, the consensus of the general public has been that aging is inevitable. For most of our history, even getting to old age was a significant accomplishment – and while centenarians have been around at least since the time of the Greeks, aging was never of major interest to medicine.
That has changed. Longevity medicine has entered the mainstream. First, evidence accumulated that lifestyle modifications prevent chronic diseases of aging and extend healthspan, the healthy and highly functional period of life. More recently, longevity research has made great progress – aging has been found to be malleable and hundreds of interventional strategies have been identified that extend lifespan and healthspan in animal models. Human clinical studies are underway, and already early results suggest that the biological age of an individual is modifiable.
A concerted effort has been made in the longevity field to institutionalize the word “healthspan”. Why healthspan (how long we stay healthy) and not its side-effect of lifespan (how long we live)? The reasons are linked more to perception than reality. Fundamental to this need to highlight healthspan is the idea that individuals get when they are asked if they want to live longer. Many imagine their parents or grandparents at the end of their lives when they often have major health issues and low quality of life. Then they conclude that they would not choose to live longer in that condition. This is counter to longevity research findings, which show that it is possible to intervene in late middle life and extend both healthspan and lifespan simultaneously. Emphasizing healthspan also reduces concerns of some individuals about whether it is ethical to live longer.
A drawback of this exists, though: many current longevity interventions may extend healthspan more than lifespan. Lifestyle interventions such as exercise probably fit this mold. Many interventions that have dramatic health-extending effects in invertebrate models have more modest effects in mice, and there is a concern that they will be further reduced in humans. In other words, the drugs and small molecules that we are excited about today may, despite their hefty development costs and lengthy approval processes, only extend average healthspan by five or ten years and may not extend maximum lifespan at all. Make no mistake, this would still represent a revolution in medical practice! A five-year extension in human healthspan, with equitable access for all people, would save trillions per year in healthcare costs, provide extra life quality across the entire population ...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/evvycfst-1808/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/evvycfst- /home/sid/tuning/finetune/backend/output/evvycfst-1808/data/evvycfst-1808.json...
|
null
|
failed
|
1764899560
|
1764900764
|
NULL
|
/home/sid/tuning/finetune/backend/output/evvycfst- /home/sid/tuning/finetune/backend/output/evvycfst-1808/adapter...
|
False
|
Edit
Delete
|
|
5a6ad5f4-10d6-4b80-825e-60a0423b6c56
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
uivicpuk-0509
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
ESSENTIAL STEPS TO HEALTH
|
ESSENTIAL STEPS TO HEALTHY AGING
|
/home/sid/tuning/finetune/backend/output/uivicpuk- /home/sid/tuning/finetune/backend/output/uivicpuk-0509/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Essential Steps to Healthy Aging” is an education “Essential Steps to Healthy Aging” is an educational guide created by Kansas State University to teach people how to age in the healthiest, happiest, and most independent way possible. The document explains that while ageing is natural and unavoidable, our daily habits throughout life have a powerful impact on how well we age. It presents 12 essential lifestyle behaviors that research shows contribute to living longer, staying healthier, and maintaining quality of life into older age.
The file includes a leader’s guide, a fact sheet for participants, an interactive activity, and an evaluation form, making it a complete learning program for communities, workshops, or health-education sessions.
⭐ Core Message of the Document
Healthy aging is not about avoiding age—it’s about supporting the body, mind, and spirit across the entire lifespan.
The guide encourages people to take responsibility for their health and to make small but meaningful changes that promote lifelong well-being.
⭐ The 12 Essential Steps to Healthy Aging
(as presented in the fact sheet)
Essential-Steps-to-Health-Aging
Maintain a positive attitude
Eat healthfully
Engage in regular physical activity
Exercise your brain
Engage in social activity
Practice lifelong learning
Prioritize safety
Visit the doctor regularly
Manage your stress
Practice good financial management
Get enough sleep
Take at least 10 minutes a day for yourself
These steps address all areas of life—physical health, mental sharpness, emotional balance, relationships, safety, finances, and self-care.
⭐ Program Purpose
The guide aims to help people understand that:
Healthier choices today lead to a healthier and more independent future.
Positive habits at any age can improve longevity and quality of life.
Ageing well is possible through prevention, awareness, and small daily behaviors.
⭐ Contents of the Document
✔ 1. Leader’s Guide
Explains how to run the program, prepare materials, engage participants, and guide discussions.
Essential-Steps-to-Health-Aging
✔ 2. Essential Steps to Healthy Aging (Fact Sheet)
A clear, easy-to-read summary of all 12 steps and why they matter.
✔ 3. Activity: My Healthy Aging Plan
Participants write specific goals for each of the 12 steps, helping them create a personalized lifestyle improvement plan.
Essential-Steps-to-Health-Aging
✔ 4. Evaluation Form
Participants reflect on what they learned and choose which positive habits they plan to adopt going forward.
Essential-Steps-to-Health-Aging
⭐ Overall Meaning
The document teaches that healthy aging is achievable for everyone, regardless of age. By focusing on attitude, nutrition, physical health, mental activity, social connections, safety, finances, stress, sleep, and self-care, people can enjoy a longer life with greater independence, better health, and improved well-being.
It is both a practical guide and a motivational toolkit for anyone interested in ageing well....
|
{"num_examples": 45, "bad_lines": {"num_examples": 45, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/uivicpuk- /home/sid/tuning/finetune/backend/output/uivicpuk-0509/data/uivicpuk-0509.json...
|
null
|
completed
|
1764363910
|
1764363997
|
NULL
|
/home/sid/tuning/finetune/backend/output/uivicpuk- /home/sid/tuning/finetune/backend/output/uivicpuk-0509/adapter...
|
False
|
Edit
Delete
|
|
663f702e-761c-45a1-95dd-a2aca9941b77
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
nyuieybh-2436
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
ESSENTIAL STEPS TO HEALTH
|
ESSENTIAL STEPS TO HEALTHY AGING
|
/home/sid/tuning/finetune/backend/output/nyuieybh- /home/sid/tuning/finetune/backend/output/nyuieybh-2436/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Kansas State University Agricultural Experiment St Kansas State University Agricultural Experiment Station and Cooperative Extension Service
Author: Erin Yelland, Ph.D., Extension Specialist, Adult Development and Aging
Program Overview
The Essential Steps to Healthy Aging is a structured educational program designed to motivate and empower participants to adopt healthy lifestyle behaviors that foster optimal aging. Developed by Kansas State University’s Cooperative Extension Service, this program highlights that aging is inevitable, but how individuals care for themselves physically, mentally, and emotionally throughout life significantly influences the quality of their later years. The program promotes the idea that healthy lifestyle changes can positively impact well-being at any age.
Core Concept
Aging well is a lifelong process influenced by daily choices. Research on centenarians (people aged 100 and over) shows that adopting certain healthy behaviors contributes to longevity and improved quality of life. The program introduces 12 essential steps to maintain health and enhance successful aging.
The 12 Essential Steps to Healthy Aging
Step Number Essential Healthy Behavior
1 Maintain a positive attitude
2 Eat healthfully
3 Engage in regular physical activity
4 Exercise your brain
5 Engage in social activity
6 Practice lifelong learning
Smart Summary
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/nyuieybh-2436/data/document.pdf", "num_examples": 39, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/nyuieybh- /home/sid/tuning/finetune/backend/output/nyuieybh-2436/data/nyuieybh-2436.json...
|
null
|
completed
|
1764954912
|
1764955315
|
NULL
|
/home/sid/tuning/finetune/backend/output/nyuieybh- /home/sid/tuning/finetune/backend/output/nyuieybh-2436/adapter...
|
False
|
Edit
Delete
|
|
2483b534-8282-4ca3-bb67-e3ae5cd50b90
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
aqqwygvg-9594
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
EXERCISE FOR LONGEVITY
|
EXERCISE FOR LONGEVITY
|
/home/sid/tuning/finetune/backend/output/aqqwygvg- /home/sid/tuning/finetune/backend/output/aqqwygvg-9594/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The Longevity Exercise Guide is a clear, actionabl The Longevity Exercise Guide is a clear, actionable, science-based blueprint for building an exercise routine that maximizes both healthspan and lifespan. Written by longevity researcher Nina Patrick, PhD, the guide distills the most important forms of physical activity—strength, aerobic, anaerobic, flexibility, stability, and NEAT—into a simple weekly plan anyone can follow. The premise is that exercise is the most powerful “longevity drug” available, with research showing it prevents disease, preserves independence, and protects metabolism and cognitive function as we age.
The guide teaches you how to train your body so that at age 100, you can still perform essential daily tasks—carrying groceries, climbing stairs, hiking, balancing, lifting, and moving confidently through life. It emphasizes consistency, personalization, and a balanced mix of training styles that work together to delay aging at the cellular, metabolic, and functional levels.
🧩 What the Guide Covers
1. Strength Training — The Foundation of Aging Well
Prevents muscle loss, frailty, and poor mobility
Recommended 2–3 full-body sessions/week, 45–60 minutes
Mix of heavy low-rep strength work + lighter high-rep endurance work
Includes weights, resistance bands, and bodyweight movements
Longevity_Exercise_Guide (
Strength is directly tied to independence in old age.
2. Aerobic Exercise — Boosting Metabolism & Mitochondria
Brisk walking, running, swimming, cycling
Key for mitochondrial health, cardiovascular fitness, disease prevention
Target: 3 hours/week (150 minutes minimum)
Low-intensity “zone 2” style cardio at 65–75% max HR
Longevity_Exercise_Guide (
Aerobic training slows metabolic aging and improves energy systems.
3. Anaerobic Exercise — Increasing VO₂ Max
Short, fast, high-intensity intervals (HIIT, hard cycling, rowing)
VO₂ max is the strongest predictor of longevity
Suggested: 1–2 intense sessions per week, 30 minutes each
Longevity_Exercise_Guide (
Maintains peak cardiovascular performance as VO₂ max naturally declines with age.
4. Flexibility & Stability — Protecting Balance and Preventing Falls
Yoga, pilates, planks, stretching
Critical because falls are the #1 cause of injury and death in older adults
Enhances posture, core strength, mobility, and balance
Longevity_Exercise_Guide (
Flexibility + stability ensure you can move safely for life.
5. NEAT — The Most Overlooked Longevity Tool
Non-Exercise Activity Thermogenesis = everything you do outside workouts
(e.g., walking, standing, chores)
Boosts daily calorie burn
Counters modern sedentary lifestyles
Reduces metabolic disease and weight gain
Examples: daily steps, walking for errands, housework, standing more
Longevity_Exercise_Guide (
NEAT is essential because most people fail to move enough outside formal workouts.
🧭 Weekly Longevity Blueprint
The guide provides a sample week integrating all modalities:
Strength: 3 full-body sessions
Aerobic: 3 brisk walks
Anaerobic: 1 HIIT/VO₂ max workout
Flexibility/Stability: daily stretching + 1 yoga/pilates class
NEAT: daily 30-minute walk
Longevity_Exercise_Guide (
This structure covers every dimension of functional longevity.
💡 Why This Guide Matters
The Longevity Exercise Guide reframes exercise not as a fitness task but as a lifelong strategy for independence, vitality, and disease prevention. Rather than prescribing a rigid routine, it teaches how to build a personalized, sustainable program that strengthens the body’s most essential aging-related systems:
muscle strength
cardiovascular endurance
metabolic flexibility
balance and mobility
everyday movement patterns
It’s a practical roadmap for anyone who wants to age not only longer, but better....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/aqqwygvg-9594/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/aqqwygvg- /home/sid/tuning/finetune/backend/output/aqqwygvg-9594/data/aqqwygvg-9594.json...
|
null
|
failed
|
1764879436
|
1764880333
|
NULL
|
/home/sid/tuning/finetune/backend/output/aqqwygvg- /home/sid/tuning/finetune/backend/output/aqqwygvg-9594/adapter...
|
False
|
Edit
Delete
|
|
26112c74-45bf-4fdc-b362-d5b6a47bce99
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
racictsh-8494
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Eating for Health
|
Eating for Health and Longevity
|
/home/sid/tuning/finetune/backend/output/racictsh- /home/sid/tuning/finetune/backend/output/racictsh-8494/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Eating for Health and Longevity” is a practical, “Eating for Health and Longevity” is a practical, evidence-based guide created by SUNY Downstate Health Sciences University to help individuals improve or even reverse chronic disease through a whole-food, plant-based (WFPB) diet. Designed as an accessible handbook, the document explains why diets rich in unprocessed plant foods—vegetables, fruits, whole grains, legumes, nuts, and seeds—can dramatically enhance long-term health, promote healthy weight, and reduce the risk of conditions such as diabetes, heart disease, obesity, and high blood pressure.
The guide defines a WFPB diet as centered on natural, minimally processed plants while minimizing or eliminating meat, dairy, eggs, refined oils, refined grains, added sugars, and highly processed foods. It distinguishes WFPB eating from veganism by emphasizing nutritional quality rather than simply the absence of animal products.
It offers detailed, beginner-friendly guidance on:
What to eat (whole grains, legumes, vegetables, fruits, nuts, seeds, unsweetened plant milks)
What to avoid (meat, processed foods, refined sugars, oils, dairy, refined grains)
Step-by-step ways to transition gradually without overwhelm
Affordable, nutrient-dense sources of plant protein
Shopping lists and cost-saving strategies
Cooking techniques without oil, including sautéing with water or broth, steaming, roasting with parchment, and air frying
Healthy substitutions for meat, dairy, eggs, oil, and sugar
Motivation, support, and educational resources, including films, books, websites, and community groups
The guide also includes a rich section on herbs and spices that add flavor while providing antioxidant and anti-inflammatory benefits, such as turmeric, rosemary, ginger, basil, garlic, cinnamon, and cumin.
In closing, the document encourages readers to view food as medicine—a central pillar of lifestyle medicine alongside exercise, sleep, stress management, and avoiding harmful substances. It positions WFPB eating as an empowering, sustainable pathway toward vibrant health, chronic disease prevention, and longevity....
|
{"num_examples": 79, "bad_lines": {"num_examples": 79, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/racictsh- /home/sid/tuning/finetune/backend/output/racictsh-8494/data/racictsh-8494.json...
|
null
|
completed
|
1764364287
|
1764364414
|
NULL
|
/home/sid/tuning/finetune/backend/output/racictsh- /home/sid/tuning/finetune/backend/output/racictsh-8494/adapter...
|
False
|
Edit
Delete
|
|
659f07be-3c9f-4b9b-9429-f2cc4ebe93b3
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
wgvwxmun-9615
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Eating for Health
|
Eating for Health and Longevity
|
/home/sid/tuning/finetune/backend/output/wgvwxmun- /home/sid/tuning/finetune/backend/output/wgvwxmun-9615/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Summary: Eating for Health and Longevity – A Pract Summary: Eating for Health and Longevity – A Practical Guide to Whole-Food, Plant-Based Diets
This guide, produced by SUNY Downstate Health Sciences University, provides a comprehensive, evidence-based overview of adopting a whole-food, plant-based (WFPB) diet to promote health, prevent chronic disease, and improve longevity. It offers practical advice for transitioning to plant-based eating, highlights nutritional benefits, and addresses common concerns and misconceptions.
Core Concepts of a Whole-Food, Plant-Based Diet
Definition: A WFPB diet emphasizes eating whole, minimally processed plant foods such as vegetables, fruits, whole grains, legumes, nuts, and seeds.
Exclusions: It minimizes or avoids meat, poultry, fish/seafood, eggs, dairy, refined carbohydrates (e.g., white bread, white rice), refined sugars, extracted oils, and highly processed foods.
Difference from Vegan Diet: Unlike some vegan diets, which may include refined grains, sweeteners, and oils, the WFPB diet focuses on whole foods for optimal health.
Health Benefits
Chronic Disease Prevention and Reversal: WFPB diets can prevent, manage, and sometimes reverse diseases such as diabetes, heart disease, obesity, and hypertension.
Weight Management: Effective for losing excess weight and maintaining a healthy weight.
Longevity and Vitality: Promotes vibrant health and potentially longer life by reducing lifestyle-related risk factors.
Foods to Include and Avoid
Foods to Eat and Enjoy Foods to Avoid or Minimize
Fresh and frozen vegetables Meats (red, processed, poultry, fish/seafood)
Fresh fruits Refined grains (white rice, white pasta, white bread)
Whole grains (oats, quinoa, barley) Products with refined sugars or sweeteners (sodas, candy)
Legumes (peas, lentils, beans) Highly processed or convenience foods with added salt
Unsalted nuts and seeds Eggs and dairy products
Dried fruits without additives Processed plant-based meat, cheese, or butter alternatives
Unsweetened non-dairy milks Refined, extracted oils (olive oil, canola, vegetable)
Alcoholic beverages
Smart Summary
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/wgvwxmun-9615/data/document.pdf", "num_examples": 80, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/wgvwxmun- /home/sid/tuning/finetune/backend/output/wgvwxmun-9615/data/wgvwxmun-9615.json...
|
null
|
completed
|
1764955838
|
1764957372
|
NULL
|
/home/sid/tuning/finetune/backend/output/wgvwxmun- /home/sid/tuning/finetune/backend/output/wgvwxmun-9615/adapter...
|
False
|
Edit
Delete
|
|
b0a28646-1043-4648-a0f9-13b684bfac38
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hunsxdfl-4743
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Economic
|
Economic development
|
/home/sid/tuning/finetune/backend/output/hunsxdfl- /home/sid/tuning/finetune/backend/output/hunsxdfl-4743/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Economic growth health and poverty
|
{"num_examples": 163, "bad_lines": {"num_examples": 163, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hunsxdfl- /home/sid/tuning/finetune/backend/output/hunsxdfl-4743/data/hunsxdfl-4743.json...
|
{"train_runtime": 651.4982, "train_sam {"train_runtime": 651.4982, "train_samples_per_second": 2.456, "train_steps_per_second": 0.307, "total_flos": 7555123985276928.0, "train_loss": 0.516647665053606, "epoch": 9.536585365853659, "step": 200}...
|
completed
|
1764307874
|
1764308985
|
NULL
|
/home/sid/tuning/finetune/backend/output/hunsxdfl- /home/sid/tuning/finetune/backend/output/hunsxdfl-4743/adapter...
|
False
|
Edit
Delete
|
|
ac6b20fd-5c74-4e34-bbf1-42e3985b17e8
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
skdznffn-5496
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Effect of Exceptional
|
Effect of Exceptional Parental Longevity
|
/home/sid/tuning/finetune/backend/output/skdznffn- /home/sid/tuning/finetune/backend/output/skdznffn-5496/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Summary
This study investigates the relationship Summary
This study investigates the relationship between exceptional parental longevity and the prevalence of cardiovascular disease (CVD) in their offspring, with a focus on whether lifestyle, socioeconomic status, and dietary factors influence this association. Conducted on a cohort of Ashkenazi Jewish adults aged 65-94, the research compares two groups: offspring of parents with exceptional longevity (OPEL), defined as having at least one parent living beyond 95 years, and offspring of parents with usual survival (OPUS), whose parents did not survive past 95 years. The study finds that OPEL exhibit significantly lower prevalence of hypertension, stroke, and overall cardiovascular disease compared to OPUS, independent of lifestyle, socioeconomic, and nutritional differences, thus highlighting a probable genetic influence on disease-free survival and longevity.
Background and Rationale
Individuals with exceptional longevity often experience a delay or absence of age-related diseases, making them models for studying healthy aging.
Longevity has a heritable component, with genetic markers linked to extended lifespan and resistance to diseases like CVD.
Previous studies have shown that offspring of exceptionally long-lived parents have lower incidence of CVD and other age-related illnesses.
Lifestyle factors such as physical activity, diet, smoking status, and socioeconomic status are known to influence cardiovascular health in the general population.
Prior to this study, no research compared lifestyle factors between offspring of exceptionally long-lived parents and those of usual longevity to isolate genetic effects from environmental factors.
Study Design and Methods
Population: 845 Ashkenazi Jewish adults aged 65-94 years; 395 OPEL and 450 OPUS.
Definition:
OPEL: At least one parent lived past 95 years.
OPUS: Both parents died before 95 years.
Recruitment: Systematic searches via voter registration, synagogues, community groups, and advertisements.
Exclusion Criteria: Baseline dementia, severe sensory impairments, or sibling already enrolled.
Data Collection:
Medical history including hypertension (HTN), diabetes mellitus (DM), myocardial infarction (MI), congestive heart failure (CHF), coronary interventions, and stroke.
Lifestyle factors: smoking history, alcohol use, physical activity level.
Socioeconomic factors: education and social strata score.
Dietary intake assessed in a subgroup (n=234) using the Block Brief Food Frequency Questionnaire (FFQ 2000).
Physical measures: height, weight, waist circumference; BMI calculated.
Analysis:
Comparison of prevalence of diseases and lifestyle variables between OPEL and OPUS.
Statistical adjustments for age, sex, BMI, tobacco use, social strata, and physical activity.
Stratified analyses by cardiovascular risk status (high vs. low).
Interaction testing between group status and lifestyle/socioeconomic factors.
Key Findings
Demographics and Lifestyle Factors
Characteristic OPEL (n=395) OPUS (n=450) p-value
Female (%) 59 50 <0.01
Age (years, mean ± SD) 75 ± 6 76 ± 7 <0.01
Education (years) 17 ± 3 17 ± 3 0.55
Social strata score (median, IQR) 56 (28-66) 56 (28-66) 0.76
Ever smokers (%) 55 54 0.80
Current smokers (%) 3 3 0.94
Alcohol use past year (%) 90 88 0.32
Strenuous physical activity (times/week, median) 3 (0-4) 3 (0-4) 0.71
Walking endurance >30 minutes (%) 77 70 0.05
No significant differences in lifestyle factors (smoking, alcohol, physical activity) or socioeconomic status between OPEL and OPUS.
OPEL reported greater walking endurance despite similar physical activity frequency.
Physical Characteristics and Disease Prevalence
Condition / Measure OPEL OPUS p-value OR (95% CI)a
BMI (mean ± SD) 27.5 ± 4.9 27.8 ± 4.7 0.34 Not specified
Obesity (%) (BMI≥30) 26 27 0.84 Not specified
Abdominal obesity (%) 48 48 0.95 Not specified
Systolic BP (mmHg) 129 ± 17 129 ± 17 0.78 Not specified
Diastolic BP (mmHg) 74 ± 9 74 ± 10 0.92 Not specified
Antihypertensive medication use (%) 39 49 <0.01 Not specified
Hypertension (%) 42 51 <0.01 0.71 (0.53–0.95)
Diabetes mellitus (%) 7 11 0.10 0.70 (0.43–1.15) NS
Myocardial infarction (%) 5 7 0.12 0.77 (0.42–1.42) NS
Stroke (%) 2 5 <0.01 0.35 (0.14–0.88)
Cardiovascular disease (composite) (%) 12 20 <0.01 0.65 (0.43–0.98)
OPEL had significantly lower odds of hypertension, stroke, and overall CVD compared to OPUS after adjusting for age and sex.
No significant differences observed for diabetes, MI, CHF, or coronary interventions after adjustment.
OPUS more frequently used antihypertensive medications despite similar blood pressure readings.
Stratified Cardiovascular Risk Analysis
Among high-risk individuals (defined by diabetes or ≥2 risk factors: obesity, hypertension, smoking), OPEL had a significantly lower prevalence of CVD compared to OPUS (OR 0.45; p=0.01).
Among low-risk individuals, no significant difference in CVD prevalence was observed between groups.
Significant interaction found between group status and tobacco use:
Tobacco use was not significantly associated with increased CVD odds in OPEL.
Tobacco use was nearly significantly associated with increased CVD odds in OPUS (p=0.07).
Dietary Intake (Subgroup, n=234)
Dietary Component OPEL OPUS p-value Adjusted p-valuea
Total daily calories (kcal) 1119 (906–1520) 1218 (940–1553)
Smart Summary
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/skdznffn-5496/data/document.pdf", "num_examples": 111, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/skdznffn- /home/sid/tuning/finetune/backend/output/skdznffn-5496/data/skdznffn-5496.json...
|
null
|
completed
|
1764955777
|
1764957602
|
NULL
|
/home/sid/tuning/finetune/backend/output/skdznffn- /home/sid/tuning/finetune/backend/output/skdznffn-5496/adapter...
|
False
|
Edit
Delete
|
|
187ddbfd-84ab-4571-9e41-099455906034
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
okwjawrr-5385
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Effect of Nutritional
|
Effect of Nutritional Interventions on Longevity
|
/home/sid/tuning/finetune/backend/output/okwjawrr- /home/sid/tuning/finetune/backend/output/okwjawrr-5385/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The study “Effect of Nutritional Interventions on The study “Effect of Nutritional Interventions on Longevity of Senior Cats” investigates whether specific dietary modifications can extend the lifespan and improve the health of aging cats. Aging in cats is associated with oxidative stress, declining organ function, and increased vulnerability to disease, and the study explores whether nutrition can mitigate these effects. It evaluates three diets: a control diet, a diet enriched with antioxidants (vitamin E and β-carotene), and a third diet combining antioxidants with additional prebiotics and omega-6 and omega-3 fatty acids.
The researchers conducted a multi-year trial using healthy mixed-breed cats aged 7–17 years, divided equally among the three diet groups. Health markers, blood values, body composition, and survival were monitored throughout the cats' lives. Results showed that cats fed Diet 3—the diet containing antioxidants, chicory root (prebiotic), and a blend of fatty acids—experienced significant health benefits. These cats maintained better body weight, body condition, lean body mass, bone density, and healthier gut microflora than cats on the other diets. They also had higher levels of serum vitamin E, β-carotene, and linoleic acid.
Most importantly, Diet 3 significantly increased lifespan. Cats on this diet had a 61% lower hazard of death compared with those on the control diet, living on average about one year longer when adjusted for age. They also showed fewer cases of thyroid disease and a trend toward reduced gastrointestinal pathology.
The study concludes that a multi-nutrient dietary strategy—combining antioxidants, prebiotics, and essential fatty acids—can meaningfully improve longevity and overall health in senior cats, offering evidence that targeted nutrition plays a powerful role in healthy aging.
If you want, I can also provide:
✅ A shorter summary
✅ A 1-paragraph description
✅ MCQs/quiz from the file
✅ A simplified student-friendly version
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/okwjawrr-5385/data/document.pdf", "num_examples": 298, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/okwjawrr- /home/sid/tuning/finetune/backend/output/okwjawrr-5385/data/okwjawrr-5385.json...
|
null
|
queued
|
1765221192
|
1765222010
|
NULL
|
/home/sid/tuning/finetune/backend/output/okwjawrr- /home/sid/tuning/finetune/backend/output/okwjawrr-5385/adapter...
|
False
|
Edit
Delete
|
|
bd79e6c3-515f-429b-a541-2c97c10d5086
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
okhjmgem-7490
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Effect of eliminating
|
Effect of eliminating chronic diseases
|
/home/sid/tuning/finetune/backend/output/okhjmgem- /home/sid/tuning/finetune/backend/output/okhjmgem-7490/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Summary
This study, published in Revista de Saúde Summary
This study, published in Revista de Saúde Pública (2013), investigates whether the elimination of certain chronic diseases can lead to a compression of morbidity among elderly individuals in São Paulo, Brazil. It uses population-based data from the 2000 SABE (Health, Wellbeing and Ageing) study and official mortality records to evaluate changes in disability-free life expectancy (DFLE) resulting from the hypothetical removal of specific chronic conditions.
Background and Objectives
Chronic non-communicable diseases (NCDs) such as cardiovascular diseases, diabetes, and chronic pulmonary conditions account for approximately 50% of diseases in developing countries and are major contributors to morbidity and mortality.
In Brazil, these diseases represent the main health burden and priority for healthcare systems.
The compression of morbidity theory posits that delaying the onset of debilitating diseases compresses the period of morbidity into a shorter segment at the end of life, thus increasing healthy life expectancy.
Other theories include:
Expansion of morbidity: Mortality declines due to reduced lethality but incidence remains or increases, leading to longer periods of morbidity.
Dynamic equilibrium: Both mortality and morbidity decline, keeping years lived with severe disability relatively constant.
The study aims to analyze whether eliminating certain chronic diseases would compress morbidity among elderly individuals, improving overall health expectancy.
Methodology
Design: Analytical, population-based, cross-sectional study.
Population: 2,143 elderly individuals (aged 60+) from São Paulo, Brazil, sampled probabilistically in 2000 as part of the SABE study.
Data collection:
Structured questionnaire covering sociodemographics, health status, functional capacity, and chronic diseases.
Self-reported presence of 9 chronic diseases based on ICD-10: systemic arterial hypertension, diabetes mellitus, heart disease, lung disease, cancer, joint disease, cerebrovascular disease, falls in previous year, and nervous/psychiatric problems.
Functional disability defined by difficulties in activities of daily living (dressing, eating, bathing, toileting, ambulation, fecal and urinary incontinence).
Statistical analysis:
Sullivan’s method used to compute life expectancy (LE) and disability-free life expectancy (DFLE).
Cause-deleted life tables estimated probabilities of death with elimination of specific diseases.
Multiple logistic regression (controlling for age) assessed disability prevalence changes with disease elimination.
Assumption: independence between causes of death and disability.
Sampling weights and corrections for design effects were applied to represent the São Paulo elderly population.
Key Findings
Sample Characteristics
Females represented 58.6% of the sample.
Higher proportion of women aged 75+ (24.2%) than men (19.2%).
Women more frequently widowed or single; men had higher employment rates.
Women more likely to live alone.
Smart Summary
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/okhjmgem-7490/data/document.pdf", "num_examples": 133, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/okhjmgem- /home/sid/tuning/finetune/backend/output/okhjmgem-7490/data/okhjmgem-7490.json...
|
null
|
completed
|
1764955805
|
1764958117
|
NULL
|
/home/sid/tuning/finetune/backend/output/okhjmgem- /home/sid/tuning/finetune/backend/output/okhjmgem-7490/adapter...
|
False
|
Edit
Delete
|
|
6091bea7-3a23-4d1c-8647-5f933aff91ac
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
qrlwojjn-3033
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Effect of supplemented
|
Effect of supplemented water on fecundity
|
/home/sid/tuning/finetune/backend/output/qrlwojjn- /home/sid/tuning/finetune/backend/output/qrlwojjn-3033/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The study “Effect of Supplemented Water on Fecundi The study “Effect of Supplemented Water on Fecundity and Longevity” examines how different types of water—particularly fruit-infused or nutrient-enriched water—affect the reproductive output (fecundity) and overall lifespan (longevity) of a test organism. The experiment compares the impact of control water versus various supplemented waters such as apple water, showing how hydration quality can influence biological performance.
The findings demonstrate that apple-supplemented water produced the highest fecundity, meaning it led to the greatest number of eggs or offspring compared with all other treatments. This suggests that certain nutrients present in fruit-based water may stimulate reproductive capacity. However, results for longevity were mixed and highly variable, with some supplemented waters increasing lifespan and others having minimal or inconsistent effects. The study highlights the complexity of how hydration quality influences biological processes, emphasizing that while enriched water can boost reproduction, its effects on longevity are not uniform.
Overall, the research concludes that supplemented water can significantly enhance fecundity, but its impact on lifespan depends on the type of supplement and biological conditions, suggesting important implications for nutritional interventions and life-history strategies.
If you want, I can also provide:
✅ A short summary
✅ A 3–4 line description
✅ A student-friendly simple explanation
✅ Quiz questions from this file
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/qrlwojjn-3033/data/document.pdf", "num_examples": 245, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/qrlwojjn- /home/sid/tuning/finetune/backend/output/qrlwojjn-3033/data/qrlwojjn-3033.json...
|
null
|
queued
|
1765221773
|
1765222739
|
NULL
|
/home/sid/tuning/finetune/backend/output/qrlwojjn- /home/sid/tuning/finetune/backend/output/qrlwojjn-3033/adapter...
|
False
|
Edit
Delete
|
|
a899b0b5-d187-4a93-8cea-938ff817f30a
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
vmsdiqjm-7013
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Effects of desiccation
|
Effects of desiccation stress
|
/home/sid/tuning/finetune/backend/output/vmsdiqjm- /home/sid/tuning/finetune/backend/output/vmsdiqjm-7013/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This study presents a systematic review and pooled This study presents a systematic review and pooled survival analysis quantifying the effects of desiccation stress (humidity) and temperature on the adult female longevity of Aedes aegypti and Aedes albopictus, the primary mosquito vectors of arboviral diseases such as dengue, Zika, chikungunya, and yellow fever. The research addresses a critical gap in vector ecology and epidemiology by providing a comprehensive, quantitative model of how humidity influences adult mosquito survival, alongside temperature effects, to improve understanding of transmission dynamics and enhance predictive models of disease risk.
Background
Aedes aegypti and Ae. albopictus are globally invasive mosquito species that transmit several major arboviruses.
Adult female mosquito longevity strongly impacts transmission dynamics because mosquitoes must survive the extrinsic incubation period (EIP) to become infectious.
While temperature effects on mosquito survival have been widely studied and incorporated into models, the role of humidity remains poorly quantified despite being ecologically significant.
Humidity influences mosquito survival via desiccation stress, affecting water loss and physiological function.
Environmental moisture also indirectly affects mosquito populations by altering evaporation rates in larval habitats, impacting larval development and adult body size, which affects vectorial capacity.
Understanding the temperature-dependent and non-linear effects of humidity can improve ecological and epidemiological models, especially in arid, semi-arid, and seasonally dry regions, which are understudied.
Objectives
Systematically review experimental studies on temperature, humidity, and adult female survival in Ae. aegypti and Ae. albopictus.
Quantify the relationship between humidity and adult survival while accounting for temperature’s modifying effect.
Provide improved parameterization for models of mosquito populations and arboviral transmission.
Methods
Systematic Literature Search: 1517 unique articles screened; 17 studies (16 laboratory, 1 semi-field) met inclusion criteria, comprising 192 survival experiments with ~15,547 adult females (8749 Ae. aegypti, 6798 Ae. albopictus).
Inclusion Criteria: Studies must report survival data for adult females under at least two temperature-humidity regimens, with sufficient methodological detail on nutrition and hydration.
Data Extraction: Variables included species, survival times, mean temperature, relative humidity (RH), and provisioning of water, sugar, and blood meals. Saturation vapor pressure deficit (SVPD) was calculated from temperature and RH to represent desiccation stress.
Survival Time Simulation: To harmonize disparate survival data formats (survival curves, mean/median longevity, survival proportions), individual mosquito survival times were simulated via Weibull and log-logistic models.
Pooled Survival Analysis: Stratified and mixed-effects Cox proportional hazards regression models were used to estimate hazard ratios (mortality risks) associated with temperature, SVPD, and nutritional factors.
Model Selection: SVPD was found to fit survival data better than RH or vapor pressure.
Sensitivity Analyses: Included testing model robustness by excluding individual studies and comparing results using only Weibull simulations.
Key Quantitative Findings
Parameter Ae. aegypti Ae. albopictus Notes
Temperature optimum (lowest mortality hazard) ~27.5 °C ~21.5 °C Ae. aegypti optimum higher than Ae. albopictus
Mortality risk trend Increases non-linearly away from optimum; sharp rise at higher temps Similar trend; possibly slightly better survival at lower temps Mortality rises rapidly at high temps for both species
Effect of desiccation (SVPD) Mortality hazard rises steeply from 0 to ~1 kPa SVPD, then more gradually Mortality hazard increases with SVPD but with less clear pattern Non-linear and temperature-dependent relationship
Species comparison (stratified model) Generally lower mortality risk than Ae. albopictus across most conditions Higher mortality risk compared to Ae. aegypti Differences not significant in mixed-effects model
Nutritional provisioning effects Provision of water, sugar, blood meals significantly reduces mortality risk Same as Ae. aegypti Provisioning modeled as binary present/absent
Qualitative and Contextual Insights
Humidity is a significant and temperature-dependent factor affecting adult female survival in Ae. aegypti, with more limited but suggestive evidence for Ae. albopictus.
Mortality risk increases sharply with desiccation stress (SVPD), especially at higher temperatures.
Ae. aegypti tends to have higher survival and a higher thermal optimum than Ae. albopictus, aligning with their geographic distributions—Ae. aegypti favors warmer, drier climates while Ae. albopictus tolerates cooler temperatures.
Provisioning of water and nutrients (sugar, blood) markedly improves survival, reflecting the importance of hydration and energy intake.
The findings support that humidity effects are underrepresented in current mosquito and disease transmission models, which often rely on simplistic or threshold-based mortality assumptions.
The use of SVPD (a measure of desiccation potential) rather than relative humidity or vapor pressure is more appropriate for modeling mosquito survival related to desiccation.
There is substantial unexplained variability among studies, likely due to unmeasured factors such as mosquito genetics, experimental protocols, and microclimatic conditions.
The majority of studies used laboratory settings and tropical/subtropical strains, with very limited data from arid or semi-arid climates, a critical gap given the importance of humidity fluctuations there.
Microclimatic variability and mosquito behavior (e.g., seeking humid refugia) may mitigate desiccation effects in the field, so laboratory results may overestimate mortality under natural conditions.
The study highlights the need for more field-based and arid region studies, and for models to incorporate nonlinear and interactive effects of temperature and humidity on mosquito survival.
Timeline Table: Study Selection and Analysis Process
Step Description
Literature search (Feb 2016) 1517 unique articles screened
Full text review 378 articles assessed for eligibility
Final inclusion 17 studies selected (16 lab, 1 semi-field)
Data extraction Survival data, temperature, humidity, nutrition, species, setting
Survival time simulation Weibull and log-logistic models used to harmonize survival data
Pooled survival analysis Stratified and mixed-effects Cox regression models
Sensitivity analyses Exclusion of individual studies, Weibull-only simulations
Model selection SVPD chosen as best humidity metric
Definitions and Key Terms
Term Definition
Aedes aegypti Primary mosquito vector of dengue, Zika, chikungunya, and yellow fever viruses
Aedes albopictus Secondary vector species with broader climatic tolerance, also transmits arboviruses
Saturation Vapor Pressure Deficit (SVPD) Difference between actual vapor pressure and saturation vapor pressure; a measure of drying potential/desiccation stress
Extrinsic Incubation Period (EIP) Time required for a virus to develop within the mosquito before it can be transmitted
Desiccation stress Physiological stress from water loss due to low humidity, impacting mosquito survival
Stratified Cox regression Survival analysis method allowing baseline hazards to vary by study
Mixed-effects Cox regression Survival analysis
Smart Summary
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/vmsdiqjm-7013/data/document.pdf", "num_examples": 367, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/vmsdiqjm- /home/sid/tuning/finetune/backend/output/vmsdiqjm-7013/data/vmsdiqjm-7013.json...
|
null
|
completed
|
1764955760
|
1764958870
|
NULL
|
/home/sid/tuning/finetune/backend/output/vmsdiqjm- /home/sid/tuning/finetune/backend/output/vmsdiqjm-7013/adapter...
|
False
|
Edit
Delete
|