|
9c04ee41-2698-451f-8458-21d8bb8d8bc4
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
esfutspt-5704
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Social Development,
|
Social Development, and Well-Being
|
/home/sid/tuning/finetune/backend/output/esfutspt- /home/sid/tuning/finetune/backend/output/esfutspt-5704/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
1. Human Beings Are Biologically Wired for Social 1. Human Beings Are Biologically Wired for Social Connection
The paper emphasizes that social relationships are not optional—they are biological necessities, essential for survival and emotional well-being.
It describes how infants rely on caregivers for regulation, safety, and emotional stabilization, and how this early dependency forms the basis for later social competence.
2. The Separation Distress System (SDS)
A major topic is the neurobiological system activated when attachment figures become unavailable. The SDS produces predictable emotional and behavioral reactions:
protest
crying
searching
despair
eventual detachment
This system is presented as an evolutionary mechanism shared across mammalian species.
3. Development of Social and Emotional Skills
The document explains how humans develop:
empathy
cooperation
emotional regulation
communication
social understanding
These skills emerge through:
caregiver interactions
peer relationships
cultural guidance
brain maturation
The quality of early care profoundly shapes later social competence.
4. The Psychobiology of Social Behavior
The text identifies several brain systems that underlie social and emotional functioning:
attachment-bonding circuitry
caregiving systems
reward and motivation networks
stress-regulation pathways
These systems interact to produce the full range of human social motivation, from nurturing to cooperation to seeking closeness.
5. Lifespan Implications of Early Social Development
The paper shows how early relational experiences influence:
personality development
emotional resilience
vulnerability to stress
long-term relational patterns
mental health outcomes
Negative early experiences—loss, neglect, inconsistency—can lead to enduring difficulties in social and emotional functioning.
6. Cross-Species and Evolutionary Evidence
Drawing from animal studies, the paper demonstrates that:
attachment systems
separation responses
caregiving instincts
are deeply rooted in mammalian biology and therefore universal, not culturally constructed.
⭐ Overall Purpose of the PDF
To provide a comprehensive, interdisciplinary explanation of:
how social relationships form,
how they regulate emotional life,
how the brain supports social behavior, and
how disruptions in connection alter the developmental path.
It argues that social connection is at the center of human development, influencing biological regulation, psychological health, and the entire lifespan.
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/esfutspt-5704/data/document.pdf", "num_examples": 205, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/esfutspt- /home/sid/tuning/finetune/backend/output/esfutspt-5704/data/esfutspt-5704.json...
|
null
|
completed
|
1764871736
|
1764872321
|
NULL
|
/home/sid/tuning/finetune/backend/output/esfutspt- /home/sid/tuning/finetune/backend/output/esfutspt-5704/adapter...
|
False
|
Edit
Delete
|
|
c849e927-e000-4f63-a601-d7b6e2ef75cd
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
evvycfst-1808
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Dublin Longevity
|
Dublin Longevity Declaration
|
/home/sid/tuning/finetune/backend/output/evvycfst- /home/sid/tuning/finetune/backend/output/evvycfst-1808/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Consensus Recommendation to Immediately Expand Res Consensus Recommendation to Immediately Expand Research on Extending Healthy Human Lifespans
For millennia, the consensus of the general public has been that aging is inevitable. For most of our history, even getting to old age was a significant accomplishment – and while centenarians have been around at least since the time of the Greeks, aging was never of major interest to medicine.
That has changed. Longevity medicine has entered the mainstream. First, evidence accumulated that lifestyle modifications prevent chronic diseases of aging and extend healthspan, the healthy and highly functional period of life. More recently, longevity research has made great progress – aging has been found to be malleable and hundreds of interventional strategies have been identified that extend lifespan and healthspan in animal models. Human clinical studies are underway, and already early results suggest that the biological age of an individual is modifiable.
A concerted effort has been made in the longevity field to institutionalize the word “healthspan”. Why healthspan (how long we stay healthy) and not its side-effect of lifespan (how long we live)? The reasons are linked more to perception than reality. Fundamental to this need to highlight healthspan is the idea that individuals get when they are asked if they want to live longer. Many imagine their parents or grandparents at the end of their lives when they often have major health issues and low quality of life. Then they conclude that they would not choose to live longer in that condition. This is counter to longevity research findings, which show that it is possible to intervene in late middle life and extend both healthspan and lifespan simultaneously. Emphasizing healthspan also reduces concerns of some individuals about whether it is ethical to live longer.
A drawback of this exists, though: many current longevity interventions may extend healthspan more than lifespan. Lifestyle interventions such as exercise probably fit this mold. Many interventions that have dramatic health-extending effects in invertebrate models have more modest effects in mice, and there is a concern that they will be further reduced in humans. In other words, the drugs and small molecules that we are excited about today may, despite their hefty development costs and lengthy approval processes, only extend average healthspan by five or ten years and may not extend maximum lifespan at all. Make no mistake, this would still represent a revolution in medical practice! A five-year extension in human healthspan, with equitable access for all people, would save trillions per year in healthcare costs, provide extra life quality across the entire population ...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/evvycfst-1808/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/evvycfst- /home/sid/tuning/finetune/backend/output/evvycfst-1808/data/evvycfst-1808.json...
|
null
|
failed
|
1764899560
|
1764900764
|
NULL
|
/home/sid/tuning/finetune/backend/output/evvycfst- /home/sid/tuning/finetune/backend/output/evvycfst-1808/adapter...
|
False
|
Edit
Delete
|
|
8ad44fd3-fd1d-4d52-bc4e-be4b47d581f8
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ezzjoque-0560
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity risk transfer
|
Longevity risk transfer markets
|
/home/sid/tuning/finetune/backend/output/ezzjoque- /home/sid/tuning/finetune/backend/output/ezzjoque-0560/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document provides a comprehensive examination This document provides a comprehensive examination of longevity risk transfer (LRT) markets, focusing on how pension funds, insurers, reinsurers, banks, and capital markets handle the risk that retirees live longer than expected. Longevity risk affects the financial sustainability of defined benefit (DB) pension plans and annuity providers, with even a one-year underestimation of life expectancy costing hundreds of billions globally.
The report explains the main risk-transfer instruments—buy-outs, buy-ins, longevity swaps, and longevity bonds—detailing how each shifts longevity and investment risk between pension plans and financial institutions. It highlights why the UK historically dominated LRT markets and analyzes emerging large transactions in the US and Europe.
It explores drivers of LRT growth (such as corporate de-risking, regulatory capital relief, and hedging opportunities for insurers) and impediments including regulatory inconsistencies, selection bias (“lemons” risk), basis risk in index-based hedges, limited investor appetite, and insufficient granular mortality data.
The document also assesses risk management challenges, such as counterparty risk, collateral demands in swap transactions, rollover risk, and opacity from multi-layered risk-transfer chains. It draws potential parallels to pre-2008 credit-risk transfer markets and warns of future systemic risks, especially if longevity shocks (e.g., breakthrough medical advances) overwhelm counterparties like insurers or banks.
Finally, the report presents policy recommendations for supervisors and policymakers: improving cross-sector coordination, strengthening risk measurement standards, increasing transparency, enhancing mortality data, ensuring institutions can withstand longevity shocks, and monitoring the growing interconnectedness created by LRT markets....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/ezzjoque-0560/data/document.pdf", "num_examples": 332, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ezzjoque- /home/sid/tuning/finetune/backend/output/ezzjoque-0560/data/ezzjoque-0560.json...
|
null
|
queued
|
1765049322
|
1765051682
|
NULL
|
/home/sid/tuning/finetune/backend/output/ezzjoque- /home/sid/tuning/finetune/backend/output/ezzjoque-0560/adapter...
|
False
|
Edit
Delete
|
|
51bd1a7c-ec89-4d48-85db-8e55723e3743
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
fioqwmlo-9810
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Grandmothers
|
Grandmothers and the Evolution of Human Longevity
Grandmothers and the Evolution of Human Longevity
...
|
/home/sid/tuning/finetune/backend/output/fioqwmlo- /home/sid/tuning/finetune/backend/output/fioqwmlo-9810/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Grandmothers and the Evolution of Human Longevity “Grandmothers and the Evolution of Human Longevity”**
This PDF is a scholarly research article that presents and explains the Grandmother Hypothesis—one of the most influential evolutionary theories for why humans live so long after reproduction. The paper argues that human longevity evolved largely because ancestral grandmothers played a crucial role in helping raise their grandchildren, thereby increasing family survival and passing on genes that favored longer life.
The article combines anthropology, evolutionary biology, and demographic modeling to show that grandmothering behavior dramatically enhanced reproductive success and survival in early human societies, creating evolutionary pressure for extended lifespan.
👵 1. Core Idea: The Grandmother Hypothesis
The central argument is:
Human females live long past menopause because grandmothers helped feed, protect, and support their grandchildren, allowing mothers to reproduce more frequently.
This cooperative childcare increased survival rates and promoted the evolution of long life, especially among women.
Healthy Ageing
🧬 2. Evolutionary Background
The article explains key evolutionary facts:
Humans are unique among primates because females experience decades of post-reproductive life.
In other great apes, females rarely outlive their fertility.
Human children are unusually dependent for many years; mothers benefit greatly from help.
Grandmothers filled this gap, making longevity advantageous in evolutionary terms.
Healthy Ageing
🍂 3. Why Grandmothers Increased Survival
The study shows how ancestral grandmothers:
⭐ Provided extra food
Especially gathered foods like tubers and plant resources.
⭐ Allowed mothers to wean earlier
Mothers could have more babies sooner, increasing reproductive success.
⭐ Improved child survival
Grandmother assistance reduced infant and child mortality.
⭐ Increased group resilience
More caregivers meant better protection and food access.
These survival advantages favored genes that supported prolonged life.
Healthy Ageing
📊 4. Mathematical & Demographic Modeling
The PDF includes modeling to demonstrate:
How grandmother involvement changes fertility patterns
How increased juvenile survival leads to higher population growth
How longevity becomes advantageous over generations
Models show that adding grandmother support significantly increases life expectancy in evolutionary simulations.
Healthy Ageing
👶 5. Human Childhood and Weaning
Human children:
Develop slowly
Need long-term nutritional and social support
Rely on help beyond their mother
Early weaning—made possible by grandmother help—creates shorter birth intervals, boosting the reproductive output of mothers and promoting genetic selection for long-lived helpers (grandmothers).
Healthy Ageing
🧠 6. Implications for Human Evolution
The article argues that grandmothering helped shape:
✔ Human social structure
Cooperative families and multigenerational groups.
✔ Human biology
Long lifespan, menopause, slower childhood development.
✔ Human culture
Shared caregiving, food-sharing traditions, teaching, and cooperation.
Healthy Ageing
Grandmothers became essential to early human success.
🧓 7. Menopause and Post-Reproductive Lifespan
One major question in evolution is: Why does menopause exist?
The article explains that:
Natural selection usually favors continued reproduction.
But in humans, the benefits of supporting grandchildren outweigh late-life reproduction.
This shift created evolutionary support for long post-reproductive life.
Healthy Ageing
⭐ Overall Summary
This PDF provides a clear and compelling explanation of how grandmothering behavior shaped human evolution, helping produce our unusually long life spans. It argues that grandmothers increased survival, supported early weaning, and boosted reproduction in early humans, leading natural selection to favor individuals—especially females—who lived well past their reproductive years. The article blends anthropology, biology, and mathematical modeling to show that the evolution of human longevity is inseparable from the evolutionary importance of grandmothers....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/fioqwmlo-9810/data/document.pdf", "num_examples": 92, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/fioqwmlo- /home/sid/tuning/finetune/backend/output/fioqwmlo-9810/data/fioqwmlo-9810.json...
|
null
|
completed
|
1764894911
|
1764904503
|
NULL
|
/home/sid/tuning/finetune/backend/output/fioqwmlo- /home/sid/tuning/finetune/backend/output/fioqwmlo-9810/adapter...
|
False
|
Edit
Delete
|
|
88f5c272-5410-4804-ac22-2592cfba75c9
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
fjnkzhua-6547
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity: Trends,
|
Longevity: Trends, uncertainty
|
/home/sid/tuning/finetune/backend/output/fjnkzhua- /home/sid/tuning/finetune/backend/output/fjnkzhua-6547/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a technical, actuarial, and policy-foc This PDF is a technical, actuarial, and policy-focused analysis of how rising life expectancy and uncertainty in future mortality trends affect pension systems. It explains why traditional assumptions about longevity are no longer reliable, how mortality improvements have changed over time, and what new risks and financial pressures this creates for defined-benefit pension schemes, insurers, and governments.
The core message:
People are living longer than expected — and the uncertainty around future longevity improvements is one of the biggest financial risks for pension schemes. Understanding and managing this risk is essential for long-term solvency.
📘 Purpose of the Document
The paper aims to:
Analyze historical and projected trends in mortality and longevity
Explain the uncertainties in estimating future life expectancy
Assess the financial consequences for pension plans
Evaluate actuarial models used for death-rate forecasting
Recommend strategies for managing longevity risk
It serves as a guide for trustees, actuaries, regulators, and anyone involved in pension provision.
📈 1. Mortality Trends Are Changing — and They Are Uncertain
The document reviews:
Historical increases in life expectancy
How mortality improvements vary by age
How longevity improvements slowed or accelerated at different periods
The inconsistent nature of long-term mortality trends
It emphasizes that past trends cannot reliably predict future longevity because mortality dynamics are complex and influenced by:
Medical advances
Social and lifestyle changes
Economic conditions
Public health interventions
Longevity Trends, uncertainty a…
🧮 2. Why Pension Schemes Are Highly Exposed to Longevity Risk
In defined-benefit (DB) schemes:
Payments last as long as members live
If members live longer, liabilities increase dramatically
Even small errors in life expectancy forecasts can cost millions
Longer lifespans mean:
Higher pension payouts
Larger reserve requirements
Increased funding pressures
Greater contribution demands on employers
Longevity Trends, uncertainty a…
The report shows that longevity risk is systematic, meaning it affects all members, and cannot be diversified away.
🔍 3. Key Sources of Longevity Uncertainty
The PDF identifies major drivers of uncertainty in mortality projections:
A. Medical breakthroughs
Sudden improvements (e.g., statins, cancer therapies) can significantly increase life expectancy.
B. Lifestyle and behavioral changes
Smoking rates, exercise patterns, diet, and obesity trends all shift mortality outcomes.
C. Economic conditions
Recessions, unemployment, and poverty can slow or reverse longevity improvements.
D. Cohort effects
Different generations exhibit different mortality profiles.
E. Data limitations
Short time series or inconsistent measurements reduce forecasting accuracy.
Longevity Trends, uncertainty a…
📊 4. Mortality Forecasting Models and Their Weaknesses
The document reviews commonly used actuarial models, such as:
Lee–Carter model
Cohort-based models
P-splines and smoothing methods
Stochastic mortality models
Key problems highlighted:
Many models underestimate uncertainty
Some ignore cohort effects
Some rely too heavily on recent trends
Projection results vary widely depending on assumptions
Longevity Trends, uncertainty a…
The message: Mortality forecasting is difficult and inherently uncertain.
💰 5. Financial Implications for Pension Schemes
Longevity uncertainties translate into:
Valuation challenges
Underfunding risks
Volatile contribution rates
Large deficits if assumptions prove wrong
Even small errors in mortality assumptions cause:
Large increases in liabilities
Significant funding gaps
The PDF stresses that underestimating life expectancy is a major strategic risk.
Longevity Trends, uncertainty a…
🛡️ 6. Managing Longevity Risk
The document presents several strategies:
A. Adjusting actuarial assumptions
Use more cautious/longevity-positive assumptions.
B. Stress testing and scenario analysis
Evaluate outcomes under extreme but plausible longevity shifts.
C. Hedging longevity risk
Using tools such as:
Longevity swaps
Longevity bonds
Reinsurance arrangements
D. Scheme redesign
Adjusting benefit formulas or retirement ages.
Longevity Trends, uncertainty a…
The PDF underscores the need for active governance, ongoing monitoring, and transparent communication.
🌍 7. Policy Considerations
Governments must consider:
Long-term sustainability of pension systems
Intergenerational fairness
Impact on public finances
Regulation of risk-transfer instruments
As longevity rises, pension ages and contribution structures may require reform.
⭐ Overall Summary
This PDF provides a clear, authoritative analysis of how changing and uncertain longevity trends affect pension schemes. It explains why predicting life expectancy is extremely challenging, why this uncertainty poses substantial financial risks, and what pension providers can do to manage it. The document calls for improving longevity modelling, using more robust risk-management tools, and adopting proactive governance to ensure pension system sustainability in an era of rising life expectancy.
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/fjnkzhua-6547/data/document.pdf", "num_examples": 70, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/fjnkzhua- /home/sid/tuning/finetune/backend/output/fjnkzhua-6547/data/fjnkzhua-6547.json...
|
null
|
completed
|
1764879513
|
1764886367
|
NULL
|
/home/sid/tuning/finetune/backend/output/fjnkzhua- /home/sid/tuning/finetune/backend/output/fjnkzhua-6547/adapter...
|
False
|
Edit
Delete
|
|
82c1cf41-d8de-49ba-9061-a65d2e8ff2e9
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
fkbjxxqe-9212
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity Increased
|
Longevity Increased by Positive Self-Perceptions
|
/home/sid/tuning/finetune/backend/output/fkbjxxqe- /home/sid/tuning/finetune/backend/output/fkbjxxqe-9212/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a landmark research article published This PDF is a landmark research article published in the Journal of Personality and Social Psychology (2002), presenting one of the most influential findings in modern aging science:
👉 How people think about their own aging significantly predicts how long they will live.
The paper demonstrates that positive self-perceptions of aging—how positively individuals view their own aging process—are associated with longer lifespan, even after controlling for physical health, age, gender, socioeconomic status, loneliness, and other factors. The study follows participants for 23 years, making it one of the most robust longitudinal analyses in this field.
Its revolutionary insight is that mindset is not just a psychological variable—it is a measurable longevity factor.
🔶 1. Purpose of the Study
The authors aimed to:
Examine whether internalized attitudes toward aging affect actual survival
Move beyond stereotypes about “positive thinking” and instead test a rigorous scientific hypothesis
Analyze perceptions of aging as an independent predictor of mortality
Longevity Increased by Positive…
The study is grounded in stereotype embodiment theory, which suggests that cultural beliefs about aging gradually become internalized, eventually shaping health and behavior.
🔶 2. Methodology
The study followed 660 participants from the Ohio Longitudinal Study of Aging and Retirement, tracking:
Their self-perceptions of aging in midlife
Their physical health
Mortality data over the next 23 years
Key variables measured:
Self-perceptions of aging
Functional health
Socioeconomic status
Age, gender
Loneliness and social support
Longevity Increased by Positive…
The researchers used Cox proportional hazards models to test whether aging attitudes predicted survival.
🔶 3. Key Findings
⭐ A) Positive aging perceptions predict longer life
Participants with more positive views of their own aging lived an average of 7.5 years longer than those with negative aging perceptions.
Longevity Increased by Positive…
This effect remained strong even after adjusting for:
health status
baseline age
gender
socioeconomic factors
loneliness
multiple health conditions
⭐ B) The effect is stronger than many medical predictors
The study notes that the impact of positive aging perceptions on lifespan is:
greater than the effect of lowering blood pressure
greater than the effect of lowering cholesterol
comparable to major lifestyle interventions
Longevity Increased by Positive…
This elevates self-perception from psychology into a biological risk/protective factor.
⭐ C) Negative aging stereotypes damage longevity
Participants who viewed aging as:
decline
social loss
inevitable disability
were significantly more likely to die earlier during the 23-year follow-up.
Longevity Increased by Positive…
Internalized negative beliefs appear to elevate stress, diminish motivation, reduce healthy behaviors, and increase physiological vulnerability.
🔶 4. Theoretical Contribution: Stereotype Embodiment Theory
The authors propose that:
Cultural stereotypes about aging are absorbed over a lifetime
These perceptions become self-beliefs in midlife
These beliefs influence physiology, stress response, and behavior
Longevity Increased by Positive…
In this framework, aging self-perceptions act as a psychosocial biological mechanism affecting inflammation, stress hormones, and engagement in healthy activities.
🔶 5. Why This Study Is Important
This article is considered a foundational study in the psychology of aging because:
It shows that mindset is a measurable determinant of survival
It suggests that policy, media, and culture may indirectly shape population longevity through aging stereotypes
It has influenced global healthy aging initiatives, including age-friendly media campaigns
The research shifted the field by demonstrating that longevity is not only medical or genetic; it is also psychological and social.
⭐ Perfect One-Sentence Summary
This study shows that people who hold more positive beliefs about their own aging live significantly longer—on average by 7.5 years—revealing that mindset and internalized age attitudes are powerful, independent predictors of longevity....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/fkbjxxqe-9212/data/document.pdf", "num_examples": 9, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/fkbjxxqe- /home/sid/tuning/finetune/backend/output/fkbjxxqe-9212/data/fkbjxxqe-9212.json...
|
null
|
completed
|
1764880485
|
1764885897
|
NULL
|
/home/sid/tuning/finetune/backend/output/fkbjxxqe- /home/sid/tuning/finetune/backend/output/fkbjxxqe-9212/adapter...
|
False
|
Edit
Delete
|
|
3b1ff945-c111-4c30-a2ae-851b0e10af14
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
flwuwuzu-0943
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity Compensation
|
Longevity Compensation
|
/home/sid/tuning/finetune/backend/output/flwuwuzu- /home/sid/tuning/finetune/backend/output/flwuwuzu-0943/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Longevity Compensation (Regulation 5.05) is the of Longevity Compensation (Regulation 5.05) is the official Michigan Civil Service Commission (MCSC) regulation governing eligibility, creditable service, payment calculations, and administrative rules for annual longevity payments to career state employees. The regulation, effective October 1, 2025, replaces earlier versions and establishes the authoritative framework for how longevity compensation is earned and administered in Michigan’s classified service.
The regulation defines longevity pay as an annual payment provided each October 1 to employees who have accrued the equivalent of five or more years (10,400 hours) of continuous full-time classified service, including certain credits granted under CSC rules. Employees with breaks in service may still qualify based on total accumulated hours once they again complete five years of continuous service.
1. Eligibility Framework
Career Employees
A career employee becomes eligible for the first longevity payment by completing:
10,400 hours of current continuous full-time service
Including qualifying service credit from prior state employment, legislative service, judicial service, or certain exempted/excepted appointments (if re-entry occurs within 28 days)
Military Service Credit
New career employees may receive up to five years of additional credit for honorable active-duty U.S. military service if documentation is submitted within 90 days of hire. The regulation specifies:
Accepted documents (DD-214, NGB-22 with Character of Service field)
What qualifies as active duty
Rules for computing hours (2,080 per year; 174 per month; 5.8 per day)
How previously granted military credit is carried between “current” and “prior” service counters
Reserve service does not qualify unless it includes basic training or other active-duty periods shown on official records.
Leaves and Service Interruptions
Paid leave earns full longevity credit.
Workers’ compensation leave is credited per Regulation 5.13.
Unpaid leave does not earn credit but also does not break service.
Employees returning after separation receive full credit for all prior service hours once a new block of 10,400 continuous hours is completed.
2. Longevity Payment Schedule
Longevity pay is provided annually based on total accumulated full-time service:
Years of Full-Time Service Required Hours Annual Payment
5–8 years 10,400 hrs $265
9–12 years 18,720 hrs $360
13–16 years 27,040 hrs $740
17–20 years 35,360 hrs $960
21–24 years 43,680 hrs $1,220
25–28 years 52,000 hrs $1,580
29+ years 60,320 hrs $2,080
(Amounts and formatting reproduced directly from the regulation’s table.)
No employee may receive more than one annual longevity payment within any 12-month period, except in cases allowed under retirement or death provisions.
3. Payment Rules and Timing
Initial Payment
Awarded once the employee reaches 10,400 hours before October 1.
Always paid as a full payment, not prorated.
Annual Payments
Full payment requires 2,080 hours in pay status during the longevity year.
Employees with fewer than 2,080 hours receive a prorated amount.
Lost Time
Lost time does not count toward continuous service or the annual qualifying hours.
Employees cannot receive credit for more than 80 hours per biweekly period.
Paid overtime cannot offset lost time unless both occur in the same pay period.
Employees on Leave October 1
Employees on waived-rights leave receive prorated payments upon return.
Those on other unpaid leaves or layoffs receive prorated payments based on hours in pay status during the previous fiscal year.
Retirement or Death
Employees with at least 10,400 hours of continuous service receive a terminal longevity payment, either:
A full initial payment (if none has been paid during the current service period), or
A prorated payment for the part of the fiscal year worked.
4. Administrative and Contact Information
The regulation concludes with contact details for the MCSC Compensation division for questions or clarifications regarding service credit, documentation, or payments.
Overall Summary
This regulation provides a clear, legally precise, and procedurally detailed structure for awarding longevity compensation to Michigan state employees. It outlines:
Who qualifies
Which service types count
How military service is credited
How breaks and leaves affect eligibility
Exact payment levels
Rules for retirement, separation, and death
As the authoritative compensation rule for Michigan’s classified workforce, Regulation 5.05 ensures consistent, transparent, and equitable administration of longevity payments across all state departments.
If you'd like, I can also create:
📌 a one-page summary
📌 a comparison with other longevity-pay policies you've uploaded
📌 a combined meta-summary of all longevity-related documents
Just tell me!
Sources...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/flwuwuzu-0943/data/document.pdf", "num_examples": 19, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/flwuwuzu- /home/sid/tuning/finetune/backend/output/flwuwuzu-0943/data/flwuwuzu-0943.json...
|
null
|
queued
|
1765051367
|
1765051813
|
NULL
|
/home/sid/tuning/finetune/backend/output/flwuwuzu- /home/sid/tuning/finetune/backend/output/flwuwuzu-0943/adapter...
|
False
|
Edit
Delete
|
|
e7d237b6-d50f-4a6c-9350-eb07238f3609
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
fnakzpii-4028
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Global and National
|
Global and National Declines in Life
|
/home/sid/tuning/finetune/backend/output/fnakzpii- /home/sid/tuning/finetune/backend/output/fnakzpii-4028/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Period life expectancy at birth [life expecta
Period life expectancy at birth [life expectancy thereafter] is the most-frequently used indicator
of mortality conditions. More broadly, life expectancy is commonly taken as a marker of human
progress, for instance in aggregate indices such as the Human Development Index (United
Nations Development Programme 2020). The United Nations (UN) regularly updates and makes
available life expectancy estimates for every country, various country aggregates and the world
for every year since 1950 (Gerland, Raftery, Ševčíková et al. 2014), providing a 70-year
benchmark for assessing the direction and magnitude of mortality changes....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/fnakzpii-4028/data/document.pdf", "num_examples": 36, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/fnakzpii- /home/sid/tuning/finetune/backend/output/fnakzpii-4028/data/fnakzpii-4028.json...
|
null
|
completed
|
1764895634
|
1764904653
|
NULL
|
/home/sid/tuning/finetune/backend/output/fnakzpii- /home/sid/tuning/finetune/backend/output/fnakzpii-4028/adapter...
|
False
|
Edit
Delete
|
|
59e2c336-d1ba-4154-9525-d9b321178e20
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
frawdukc-4808
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Provisional Life
|
Provisional Life Expectancy Estimates for 2021
|
/home/sid/tuning/finetune/backend/output/frawdukc- /home/sid/tuning/finetune/backend/output/frawdukc-4808/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is an official statistical report providi This PDF is an official statistical report providing provisional U.S. life expectancy estimates for the year 2021, produced by the National Vital Statistics System (NVSS). It gives a clear, data-driven picture of how life expectancy changed from 2020 to 2021, who was most affected, and what demographic disparities emerged.
The report focuses particularly on:
Total U.S. population life expectancy
Sex differences (male vs. female)
Racial/ethnic disparities among Hispanic, non-Hispanic White, non-Hispanic Black, and non-Hispanic American Indian/Alaska Native (AIAN) populations
Rising Longevity Increasing th…
🔶 Key Findings of the PDF
1. U.S. life expectancy fell significantly in 2021
Life expectancy at birth for the entire U.S. population fell to 76.1 years, a drop of 0.9 years from 2020.
This follows a historic decline in 2020, marking two consecutive years of major life expectancy loss.
Rising Longevity Increasing th…
2. Males experienced a larger drop than females
Male life expectancy (2021): 73.2 years
Female life expectancy (2021): 79.1 years
The gender gap widened to 5.9 years, the largest difference seen in decades.
Rising Longevity Increasing th…
3. All racial/ethnic groups experienced declines—but not equally
Every group showed reduced life expectancy in 2021, but the size of the decline varied:
Hispanic population experienced a sharp drop, continuing a historic reversal that began in 2020.
Non-Hispanic Black and non-Hispanic AIAN groups saw some of the largest cumulative losses over the two-year period.
Non-Hispanic White populations also experienced declines, though generally smaller than minority populations.
Rising Longevity Increasing th…
The report illustrates widening disparities in mortality across race and ethnicity.
4. COVID-19 remained the leading cause of the decline
Although the document does not list detailed causes of death, it emphasizes that COVID-19 continued to play the central role in reducing life expectancy in 2021, following the large pandemic-driven decline in 2020.
Rising Longevity Increasing th…
5. The report uses provisional mortality data
Because 2021 mortality files were not yet finalized at the time of publication, the results are based on:
Provisional death counts
Population estimates
Standard NVSS statistical methods
The report notes that figures may change slightly in the final annual releases.
Rising Longevity Increasing th…
⭐ Overall Purpose of the PDF
The goal of the document is to present a timely, preliminary statistical overview of how U.S. life expectancy changed in 2021, emphasizing:
the continued negative impact of COVID-19,
widening demographic disparities,
and the ongoing decline in longevity following the major 2020 drop.
⭐ Perfect One-Sentence Summary
This PDF provides a rigorous, data-based snapshot showing that U.S. life expectancy fell to 76.1 years in 2021—its lowest level in decades—with significant gender and racial/ethnic disparities and COVID-19 as the primary driver of the decline....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/frawdukc-4808/data/document.pdf", "num_examples": 176, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/frawdukc- /home/sid/tuning/finetune/backend/output/frawdukc-4808/data/frawdukc-4808.json...
|
null
|
completed
|
1764873724
|
1764877555
|
NULL
|
/home/sid/tuning/finetune/backend/output/frawdukc- /home/sid/tuning/finetune/backend/output/frawdukc-4808/adapter...
|
False
|
Edit
Delete
|
|
1c39c4ad-acbf-4b69-8902-960d7918d5a7
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
gbsjziqy-6720
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
How has the variance
|
How has the variance of longevity changed ?
|
/home/sid/tuning/finetune/backend/output/gbsjziqy- /home/sid/tuning/finetune/backend/output/gbsjziqy-6720/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is a comprehensive research paper th This document is a comprehensive research paper that examines how the variance of longevity (variation in age at death) has changed across different population groups in the United States over the past several decades. Rather than focusing only on life expectancy, it highlights how unpredictable lifespan is, which is crucial for retirement planning and the value of lifetime income products like annuities.
🔎 Main Purpose of the Study
The core purpose is to analyze:
How lifespan variation has changed from the 1970s to 2019
How differences vary across race, gender, and socioeconomic status (education level)
How changes in lifespan variability influence the economic value of annuities
The authors focus heavily on the implications for retirement planning, longevity risk, and financial security.
🔍 Populations Analyzed
The study evaluates five major groups:
General U.S. population
Annuitants (people who purchase annuities)
White—high education
White—low education
Black—high education
Black—low education
All groups are analyzed separately for men and women, and conditional on survival to ages 50, 62, 67, and 70.
📈 Key Findings (Perfect Summary)
1. Population-level variance has remained stable since the 1970s
Even though life expectancy increased, the spread of ages at death (standard deviation) remained mostly unchanged for the general population.
2. SES and racial disparities in lifespan variation remain large
Black and lower-education individuals have consistently greater lifespan variation.
They face higher risks of both premature death and very late death.
This inequality captures an important dimension of social and economic disadvantage.
3. Different groups show different trends (2000–2019)
Variance increased for almost all groups
→ especially high-education Black and low-education White individuals.
Exception: Low-education Black males
→ They showed a substantial decrease in variability mostly due to reduced premature mortality.
4. Annuitants have less lifespan variation at age 50
Those who purchase annuities tend to be healthier, wealthier, and show less lifespan uncertainty.
However, by age 67, the difference in variation between annuitants and the general population nearly disappears.
💰 Economic Insights: Impact on Annuity Value
Using a lifecycle model, the study calculates wealth equivalence — how much additional wealth a person would need to compensate for losing access to a fair annuity.
Key insight:
Even though longevity variance increased, the value of annuities actually declined over time.
Why?
Because life expectancy increased, delaying mortality credits to older ages — lowering annuity value in economic terms.
Quantitative Findings
A one-year increase in standard deviation → raises annuity value by 6.8% of initial wealth.
A one-year increase in life expectancy → reduces annuity value by 3.1%.
From 2000–2019:
General population saw only a 1.3–2.0% increase in annuity value due to rising variance.
By group:
High-education Black males: +13.6%
Low-education Black males: –6.1%
🔬 Methodology
The study uses:
SSA cohort life tables for the general population
Mortality estimates using NVSS & ACS data for race-education groups
Annuity mortality tables (1971 IAM, 1983 IAM, 2000, 2012 IAM) for annuitants
Lifespan variation measured using standard deviation of age at death (Sx)
Wealth equivalence is computed using a CRRA utility model with full annuitization and actuarially fair payouts.
🧠 Why This Matters
Lifespan uncertainty directly affects:
✔ Retirement planning
✔ Optimal savings behavior
✔ Need for annuities or guaranteed lifetime income
✔ Social welfare policy
Groups with higher lifespan uncertainty benefit more from annuities.
The study’s results emphasize:
Persistent inequalities in mortality patterns
The importance of accessible lifetime income options
The role of policy in addressing retirement security
📌 Perfect One-Sentence Summary
The document shows that while life expectancy has risen, the variance of longevity has remained stable overall but diverged notably across racial and socioeconomic groups, significantly influencing the economic value and importance of annuities in retirement planning.
If you want:
✅ A diagram
✅ A simplified student-friendly summary
✅ A PPT, PDF, or infographic
✅ A comparison table
✅ A visual chart
Just tell me — I can generate it!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/gbsjziqy-6720/data/document.pdf", "num_examples": 12, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/gbsjziqy- /home/sid/tuning/finetune/backend/output/gbsjziqy-6720/data/gbsjziqy-6720.json...
|
null
|
completed
|
1764891697
|
1764899216
|
NULL
|
/home/sid/tuning/finetune/backend/output/gbsjziqy- /home/sid/tuning/finetune/backend/output/gbsjziqy-6720/adapter...
|
False
|
Edit
Delete
|
|
749c1e31-e2f5-4986-aac6-e962fb350523
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
gcfjgmpq-8110
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Influence of Adult Food
|
Influence of Adult Food on Female Longevity and Re
|
/home/sid/tuning/finetune/backend/output/gcfjgmpq- /home/sid/tuning/finetune/backend/output/gcfjgmpq-8110/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a scientific study examining how adult This PDF is a scientific study examining how adult diet affects female longevity (lifespan) and reproductive capacity (egg production) in an insect species. The research focuses on understanding how nutritional quality after adulthood influences:
how long females live,
how many eggs they produce, and
how diet shapes the trade-off between survival and reproduction.
The study is part of entomological (insect biology) research and has direct relevance to pest management, ecological modeling, and understanding insect life-history evolution.
📌 Main Objective of the Study
To determine how different adult food sources influence:
Female lifespan
Reproductive output (number of eggs laid)
The timing of reproduction
The balance between survival and reproductive investment
The researchers test whether richer diets increase reproduction at the cost of shorter life—or extend lifespan by improving physiological condition.
🧪 Method Overview
Females were provided different types of adult food, such as:
Carbohydrate-rich diets
Protein-rich diets
Natural food sources (like host plant materials or prey)
Control diets (minimal or no nutrition)
The study measured:
Lifespan (in days)
Pre-oviposition period (time before starting to lay eggs)
Lifetime fecundity (total eggs produced)
Daily egg-laying rate
Survival curves under different diets
🐞 Key Scientific Findings
1. Adult diet has a major impact on female lifespan
Nutrient-rich food significantly increases longevity.
Females deprived of proper adult food show rapid mortality.
2. Reproductive capacity strongly depends on adult nutrition
Well-fed females lay more eggs overall.
Poor diets reduce or completely suppress egg production.
3. There is a diet-driven trade-off between lifespan and reproduction
Some diets maximize egg production but shorten lifespan.
Other diets increase longevity but reduce reproductive output.
Balanced diets support both survival and reproduction.
4. The timing of reproduction shifts with diet
Nutrient-rich females begin egg-laying earlier.
Poorly nourished females delay reproduction—or cannot reproduce at all.
5. Physiological mechanisms
The study suggests that improved adult diet enhances:
Ovary development
Energy allocation to egg maturation
Overall metabolic health
🌱 Biological & Practical Importance
The results show that adult nutrition is a critical determinant of:
Female insect population growth
Pest resurgence potential
Biological control success
Evolution of life-history traits
In applied entomology, understanding these relationships helps predict:
Population dynamics
Reproduction cycles
Control strategy effectiveness
🧾 Overall Conclusion
The PDF concludes that adult food quality strongly influences both survival and reproductive performance in female insects.
Better nutrition leads to:
✔ longer lifespan
✔ higher reproductive capacity
✔ earlier reproduction
✔ stronger fitness overall
The study demonstrates that adult-stage diet is just as important as juvenile diet in shaping insect life-history strategies....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/gcfjgmpq-8110/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/gcfjgmpq- /home/sid/tuning/finetune/backend/output/gcfjgmpq-8110/data/gcfjgmpq-8110.json...
|
null
|
failed
|
1764888301
|
1764892214
|
NULL
|
/home/sid/tuning/finetune/backend/output/gcfjgmpq- /home/sid/tuning/finetune/backend/output/gcfjgmpq-8110/adapter...
|
False
|
Edit
Delete
|
|
1f8b25f7-e0ac-4dff-a063-ff70c461f82a
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ggqrxlia-8334
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Intelligence Predicts
|
Intelligence Predicts Health and Longevity
|
/home/sid/tuning/finetune/backend/output/ggqrxlia- /home/sid/tuning/finetune/backend/output/ggqrxlia-8334/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This article explores a major and surprising findi This article explores a major and surprising finding in epidemiology: intelligence measured in childhood strongly predicts health outcomes and longevity decades later, even after accounting for socioeconomic status (SES). Children with higher IQ scores tend to live longer, experience fewer major diseases, adopt healthier behaviors, and manage chronic conditions more effectively as adults.
The paper reviews evidence from landmark population studies—especially the Scottish Mental Survey of 1932 (SMS1932) and its long-term follow-ups—and investigates why intelligence is so strongly linked to health.
🔍 Key Evidence
1. Childhood IQ robustly predicts adult mortality and morbidity
Across large epidemiological datasets:
Every additional IQ point reduced risk of death in Australian veterans by 1%.
Lower childhood IQ was associated with significantly higher rates of:
cardiovascular disease
lung cancer
stomach cancer
accidents (especially motor vehicle deaths)
A 15-point lower IQ (1 SD) at age 11 reduced the chance of living to age 76 to 79%, with stronger effects in women.
2. These results persist after adjusting for SES
Even after controlling for:
adult social class
income
occupational status
area deprivation
…the IQ–health link remains strong, implying intelligence explains more than just social privilege.
3. IQ influences health behaviors
The paper shows that intelligence predicts:
better nutrition and fitness
lower obesity
lower rates of heavy drinking
not starting smoking in early 20th century Scotland (when risks were unknown),
but higher intelligence strongly predicted quitting once health risks became known.
🧠 Why Might Intelligence Predict Longevity?
The authors outline four possible explanatory mechanisms:
(A) IQ as an “archaeological record” of early health
Childhood intelligence may reflect prenatal and early-life biological integrity, which also influences adult disease risk.
(B) IQ as an indicator of overall bodily integrity
Better oxidative stress defenses, healthier physiology, or more robust biological systems might underlie both higher IQ and longer life.
(C) IQ as a tool for effective health self-care (the article’s main focus)
Health management is cognitively demanding. People must:
interpret information
navigate complex instructions
monitor symptoms
adhere to treatments
Higher intelligence improves reasoning, judgment, learning, and the ability to handle the complexity of modern medical regimens.
The paper cites striking evidence:
26% of hospital patients could not read an appointment slip
42% could not interpret instructions such as taking medicine on an empty stomach
People with low health literacy have:
more illnesses
worse disease control
higher hospitalization rates
higher overall mortality
(D) IQ shapes life choices and environments
Higher intelligence tends to lead to:
safer occupations
healthier environments
better access to information
lower exposure to hazards
📌 Core Insight
The strongest conclusion is that intelligence itself is a significant independent factor in health and survival, not just a by-product of socioeconomic status. Cognitive ability helps individuals perform the “job” of managing their health—avoiding risks, understanding medical guidance, solving daily health-related problems, and adhering to treatments.
🏁 Conclusion
The article argues that public health strategies must consider differences in cognitive ability. Many aspects of medical self-care cannot be simplified without losing effectiveness, so healthcare systems need to better support people who struggle with complex health tasks. Understanding the role of intelligence may help reduce medical non-adherence, chronic disease complications, and health inequalities....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/ggqrxlia-8334/data/document.pdf", "num_examples": 5, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ggqrxlia- /home/sid/tuning/finetune/backend/output/ggqrxlia-8334/data/ggqrxlia-8334.json...
|
null
|
completed
|
1764888187
|
1764890595
|
NULL
|
/home/sid/tuning/finetune/backend/output/ggqrxlia- /home/sid/tuning/finetune/backend/output/ggqrxlia-8334/adapter...
|
False
|
Edit
Delete
|
|
5b798910-451b-406f-8275-63137716e085
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
glmjcwsd-3961
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity Risk
|
Longevity Risk
|
/home/sid/tuning/finetune/backend/output/glmjcwsd- /home/sid/tuning/finetune/backend/output/glmjcwsd-3961/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The document is a formal technical comment letter The document is a formal technical comment letter submitted by the American Academy of Actuaries’ C-2 Longevity Risk Work Group to the NAIC Longevity Risk (A/E) Subgroup on December 21, 2021. It provides actuarial analysis and recommendations regarding the treatment of longevity reinsurance within NAIC’s developing capital and reserving framework—specifically as it relates to the proposed VM-22 principle-based reserving (PBR) requirements for fixed annuities.
Purpose of the Letter
The Academy responds to NAIC’s request for input on how longevity reinsurance contracts should be incorporated into:
C-2 Longevity capital requirements
VM-22 reserve calculations
The broader Life Risk-Based Capital (LRBC) framework
The objective is to ensure consistent, risk-appropriate treatment of longevity reinsurance as its market expands.
Key Points and Insights
1. Longevity reinsurance now explicitly falls within VM-22’s scope
The draft VM-22 includes longevity reinsurance in its product definition, meaning:
The reinsurer assumes longevity risk linked to periodic annuity payments.
Premiums from direct writers are spread over time.
Contracts may use net settlement (one-way periodic payments).
This inclusion enables a straightforward approach for capital calculations.
2. Reserve aggregation under VM-22 may simplify capital treatment
The Academy notes that aggregating longevity reinsurance with other annuity products:
Allows the existing C-2 capital factors to remain applicable.
May produce counterintuitive but appropriate results—e.g., longevity reinsurance can reduce total reserves if future premiums exceed benefit obligations.
A numerical illustration in the letter shows how aggregation can lower the combined reserve relative to stand-alone immediate annuity reserves.
3. Calibrating a new factor for reinsurance is currently not possible
The Academy explains that:
The 2018 field study, which calibrated current C-2 Longevity factors, lacked enough longevity reinsurance data.
Therefore, no reinsurance-specific factor can be developed yet.
It is reasonable to assume reinsurance longevity risk is similar to that of the underlying annuity liabilities.
4. Capital treatment for pre-2024 reinsurance contracts remains unresolved
Because VM-22 applies only to contracts issued after January 1, 2024, existing longevity reinsurance treaties could require:
Different reserving methods
A revised capital approach
This issue affects fewer companies but still requires regulatory attention.
5. Two possible future capital approaches are outlined
If VM-22 aggregation is not adopted (or if pre-2024 treaties use different reserving rules), NAIC may consider:
A) Keep the current C-2 factor applied to the present value of benefits.
Simple and consistent with existing RBC practice
But may conflict with Total Asset Requirement (TAR) principles
B) Develop an adjusted capital factor for longevity reinsurance.
More precise but complex
Hard to calibrate consistently across different treaty structures
6. Longevity reinsurance differs from life insurance in ways relevant to capital design
Key distinctions include:
Longevity reinsurance premiums are contractual obligations, often collateralized.
Under a longevity “shock,” premiums continue whereas in life insurance, a death event ends the need to pay premiums.
These differences may justify including gross premiums in reserves or capital calculations.
7. Ceded longevity risk must also be properly recognized
The letter recommends clarifying RBC rules so that:
Longevity risk transferred via reinsurance
Is reflected in the C-2 calculation
Similar to existing adjustments for modified coinsurance (Modco) reserves
Overall Purpose and Contribution
The letter provides actuarial expertise to help NAIC:
Integrate longevity reinsurance into the C-2 Longevity capital framework
Align reserves and capital with the economic reality of longevity risk transfer
Maintain consistency across new and legacy contracts
Avoid regulatory gaps as the longevity reinsurance market grows
The Academy expresses strong support for VM-22’s direction and offers to continue collaborating as NAIC finalizes its approach.
If you'd like, I can create:
📌 a simplified one-page summary
📌 a presentation-style briefing
📌 a comparison of all longevity-risk documents you provided
📌 an integrated cross-document meta-summary
Just tell me!
Sources...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/glmjcwsd-3961/data/document.pdf", "num_examples": 37, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/glmjcwsd- /home/sid/tuning/finetune/backend/output/glmjcwsd-3961/data/glmjcwsd-3961.json...
|
null
|
queued
|
1765050185
|
1765050520
|
NULL
|
/home/sid/tuning/finetune/backend/output/glmjcwsd- /home/sid/tuning/finetune/backend/output/glmjcwsd-3961/adapter...
|
False
|
Edit
Delete
|
|
7c1a0c53-31c7-4bed-90e9-6b5b8d0764dd
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
gothdbbv-2872
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The longevity society
|
The longevity society
|
/home/sid/tuning/finetune/backend/output/gothdbbv- /home/sid/tuning/finetune/backend/output/gothdbbv-2872/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a scholarly Health Policy paper that p This PDF is a scholarly Health Policy paper that presents a powerful argument for shifting global thinking from an “ageing society” to a “longevity society.” Written by Professor Andrew J. Scott, it explains that humanity is entering a new demographic stage where people are not just living longer but are gaining more years of life at every age, which fundamentally transforms work, education, healthcare, social norms, and intergenerational relationships.
The core message:
We must stop viewing population ageing as a burden and instead redesign society to fully benefit from longer, healthier lives — focusing on prevention, healthy ageing, life-course investment, and new social structures that support longer futures.
📘 1. Ageing Society vs. Longevity Society
Ageing Society
Focuses on population structure
More older people, fewer younger people
Leads to concerns about dependency ratios, pensions, and healthcare burden
Longevity Society
Focuses on how we age, not just how many old people exist
Views longer life as an opportunity
Requires new norms, new policies, new life designs
Emphasizes healthy ageing, not just ageing
The shift is necessary because life expectancy gains now occur mainly at older ages, making longevity a transformative force in modern life.
Longevity society
📈 2. The Demographic Transformation
Using France as an example:
In 1900, only 35% of newborns lived to 65
In 2018, 88% survived to 65
The modal age of death increased from infancy (early 1900s) to 89 years (today)
Globally:
Population aged 65+ will rise from 9.3% in 2020 to 22.6% in 2100
This reflects an unprecedented demographic and epidemiological transition.
Longevity society
🧠 3. Why a Longevity Society Matters
Longevity brings:
✔️ Positive outcomes
More healthy years of life
Later onset of disease
Higher employment of older adults
More time for education, relationships, purpose, contribution
Opportunity to redesign life for a longer future
❌ But also risks
More years lived with illness
Rising healthcare and pension costs
Inequalities in ageing
Increased chronic disease burden
Social tensions between generations
Ageism and outdated norms
Scott argues that understanding both sides is essential for effective policy.
Longevity society
👤 4. Individual Implications of Longer Lives
A longevity society profoundly changes the individual life course:
A. More Future Time
People must prepare for longer futures:
Invest more in education
Build long-term careers
Save more financially
Maintain health earlier and more intentionally
B. Age Malleability
Age is no longer fixed — how we age can be changed.
Healthy habits, environment, and prevention matter more than ever.
C. Multi-stage Life
The traditional 3-stage model (education → work → retirement) no longer fits.
Future lives will include:
Multiple careers
Lifelong learning
Periods of rest, reskilling, care, entrepreneurship
Flexible transitions
D. Greater Individual Responsibility
Because norms are changing, individuals must experiment with new life designs and prepare for long-term paths.
Longevity society
🏥 5. Health Sector Implications
To support a longevity society, healthcare must undergo major transformation.
A. From Intervention to Prevention
Only 2.8% of health spending goes to prevention — this must dramatically increase.
B. Reduce Comorbidities
Healthy life expectancy must be improved by:
Slowing accumulation of chronic diseases
Reducing inequality
Providing early-life and midlife interventions
C. Build Longevity Councils
Governments need cross-departmental coordination to address:
Housing
Transport
Education
Environment
Social policy
D. Invest in Geroscience
The paper calls for major research investment into:
Biology of ageing
Senolytics
Age-delaying therapies
Biomarkers of biological age
Longevity society
🌍 6. Social Implications
A. Replace Chronological Age with Biological Age
Chronological age is outdated and ignores:
Health differences
Age diversity
Malleability of ageing
Biological age metrics are needed for better policy.
B. Fight Ageism
Ageism blocks opportunities for older adults and harms intergenerational harmony.
C. Rethink Intergenerational Relations
Younger generations now have a high chance of becoming old themselves.
Policies must:
Support the young (who will be the future old)
Avoid favoring current older populations unfairly
Encourage intergenerational mixing
D. New Social Norms
As longevity rises, society must rethink:
Education timelines
Marriage and fertility patterns
Work-life balance
Retirement timing
The 21st century will create new social stages of life just as the 20th century created “teenage” and “retirement.”
Longevity society
🧩 7. The Paper’s Key Conclusion
A longevity society requires:
A new social contract
A prevention-focused health system
Lifelong learning
Anti-ageism policies
Support for multi-stage careers
Cross-government coordination
Redesigning institutions for long life
Embracing the opportunity of extra years
Humanity is entering a new era where the goal is not just to live longer — but to live better, healthier, more productive, and more meaningful long lives....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/gothdbbv-2872/data/document.pdf", "num_examples": 20, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/gothdbbv- /home/sid/tuning/finetune/backend/output/gothdbbv-2872/data/gothdbbv-2872.json...
|
null
|
completed
|
1764879873
|
1764884687
|
NULL
|
/home/sid/tuning/finetune/backend/output/gothdbbv- /home/sid/tuning/finetune/backend/output/gothdbbv-2872/adapter...
|
False
|
Edit
Delete
|
|
eaf682f7-d4eb-4235-a8eb-3c6718f0d703
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
grbyzvsu-9946
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
LIFE EXPECTANCY AND HUMAN
|
LIFE EXPECTANCY AND HUMAN CAPITAL INVESTMENTS
|
/home/sid/tuning/finetune/backend/output/grbyzvsu- /home/sid/tuning/finetune/backend/output/grbyzvsu-9946/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a theoretical and economic analysis th This PDF is a theoretical and economic analysis that examines how life expectancy influences human capital investment—particularly education, skill acquisition, and long-term personal development. The central purpose of the paper is to explain why people invest more in education and training when they expect to live longer, and how improvements in survival rates reshape economic behavior, societal development, and intergenerational outcomes.
The core message:
Longer life expectancy increases the returns to human capital, incentivizes individuals to acquire more education and skills, and plays a crucial role in shaping economic growth and income distribution.
🎓 1. Purpose and Motivation
The paper addresses key questions:
Why do individuals invest more in education when life expectancy rises?
How does increased longevity affect economic growth?
How do survival improvements change intergenerational human capital transmission?
What are the broader implications for inequality and development?
It links demography with economics, showing that human capital decisions depend heavily on expected lifespan.
LIFE EXPECTANCY AND HUMAN CAPIT…
🧠 2. Core Theoretical Insight
Human capital investment—like education or training—has upfront costs but produces returns over time.
If people expect to live longer:
They enjoy returns for more years
They have more incentive to invest
They delay retirement
They allocate more time to schooling in youth
They acquire training even in mid-life
Thus, longer life expectancy raises the value of human capital.
LIFE EXPECTANCY AND HUMAN CAPIT…
👶 3. The Overlapping Generations Framework
The paper uses an OLG (Overlapping Generations) model, where:
Parents invest in children
Children become productive adults
Longer life expectancy changes optimal investments
Key mechanisms:
⭐ Higher expected lifespan → higher returns on education
Parents allocate more resources toward schooling.
⭐ Children attend school longer
Their lifetime earnings potential increases.
⭐ Economy accumulates more knowledge
Driving long-run growth.
LIFE EXPECTANCY AND HUMAN CAPIT…
📈 4. Empirical and Theoretical Implications
✔ More schooling
Increased life expectancy correlates with more years of formal education.
✔ Higher productivity
A more educated workforce boosts national growth.
✔ Lower fertility
Parents invest more per child as education becomes more valuable.
✔ Intergenerational impact
Educated parents pass on higher human capital to children.
✔ Economic development pathway
Longevity is a key driver in the transition from low- to high-income economies.
LIFE EXPECTANCY AND HUMAN CAPIT…
⚠️ 5. Inequality and Distributional Effects
The document also examines how life expectancy interacts with economic inequality:
Higher-income families invest more in children, widening gaps.
Unequal improvements in survival can reinforce inequality.
Policy interventions may be required to equalize educational opportunity.
The overall conclusion:
Longevity-driven human capital growth can either reduce or increase inequality depending on policy design.
LIFE EXPECTANCY AND HUMAN CAPIT…
🧩 6. Policy Implications
⭐ Support for early-life education
Because returns amplify over longer lifespans.
⭐ Investments in public health
Better health → higher life expectancy → higher human capital.
⭐ Incentives for lifelong learning
Especially in aging societies.
⭐ Reduce barriers to education
To avoid inequality expansion.
LIFE EXPECTANCY AND HUMAN CAPIT…
⭐ Overall Summary
This PDF explains that life expectancy is a powerful determinant of human capital investment. Longer lives increase the payoff from education, encourage skill acquisition, and promote economic growth through a more productive workforce. However, if survival and educational opportunities are unevenly distributed, inequality may rise. The paper provides a strong theoretical foundation for understanding why healthier, longer-living societies tend to be more educated and more economically advanced....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/grbyzvsu-9946/data/document.pdf", "num_examples": 70, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/grbyzvsu- /home/sid/tuning/finetune/backend/output/grbyzvsu-9946/data/grbyzvsu-9946.json...
|
null
|
completed
|
1764886987
|
1764900188
|
NULL
|
/home/sid/tuning/finetune/backend/output/grbyzvsu- /home/sid/tuning/finetune/backend/output/grbyzvsu-9946/adapter...
|
False
|
Edit
Delete
|
|
b4bcb104-12c3-4aa2-9d7f-2f801b11d53a
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
grqwyhqh-4449
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity and Patience
|
Longevity and Patience
|
/home/sid/tuning/finetune/backend/output/grqwyhqh- /home/sid/tuning/finetune/backend/output/grqwyhqh-4449/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a research-focused philosophical and b This PDF is a research-focused philosophical and behavioral economics article that explores how human time preferences—especially patience, delayed gratification, and long-term thinking—change as people live longer. The paper argues that increasing human longevity fundamentally alters how individuals value the future, make decisions, and plan their lives. It combines ideas from economics, psychology, philosophy, and life-course theory to explain why longer lives create greater incentives for patience, investment, and future-oriented behavior.
The core message:
As lifespan increases, people become more future-focused: they save more, invest more, learn more, take better care of their health, and design longer, more complex life plans. Longer lives naturally produce more patience.
🧠 1. Purpose of the Paper
The document investigates:
How rising life expectancy affects patience
How individuals value future rewards vs. present rewards
What longer lives mean for behavior, choices, and well-being
How public policy should adapt to longer time horizons
It reframes longevity not as an end-of-life concern, but as a psychological and economic force shaping every stage of life.
Longevity and Patience
⏳ 2. The Link Between Longevity and Patience
The paper argues that individuals with longer expected lifespans:
Have more future years to benefit from long-term investments
Are more willing to delay gratification
Display greater self-control
Are more likely to invest in education, careers, relationships, and health
Are less impulsive because the future matters more
This connection is grounded in classic economic models of time discounting:
If you expect a longer future, you discount future rewards less.
Longevity and Patience
🧮 3. Economic Theory of Time Preference
The document draws on economic concepts such as:
Exponential and hyperbolic discounting
Intertemporal choice models
Life-cycle consumption theory
Rational planning vs. short-term bias
It explains that longer lives increase the value of delayed returns, making patience a rational response.
Longevity and Patience
📘 4. The Multi-Stage Life and Its Impacts
Longer lives lead to new life patterns:
✔️ More time for education
People invest earlier to benefit longer.
✔️ Longer careers with multiple transitions
Mid-life reskilling becomes valuable because individuals have decades left to use new skills.
✔️ Greater saving and investment
Longer retirements require more financial planning.
✔️ Health maintenance becomes more important
The payoff of healthy habits becomes much larger across a longer lifespan.
✔️ Long-term relationships and family planning shift
Longer life opens new possibilities for family structure, caregiving, and social bonds.
Longevity and Patience
🧬 5. Psychological Dimensions of Patience
The paper highlights that patience is shaped by:
Life expectancy perceptions
Self-control
Long-term optimism
Cultural expectations
Stability and security
People who foresee a long future behave differently than those who expect shorter lives. Longevity creates a future-oriented mindset, encouraging deferred rewards and sustained effort.
Longevity and Patience
🌍 6. Broader Social and Policy Implications
The document argues that longevity requires rethinking key systems:
⭐ Education
Funding for lifelong learning and adult education.
⭐ Work
Flexible, multi-stage careers and mid-life retraining.
⭐ Health
Shift from treatment to long-term prevention.
⭐ Finance
New retirement models, savings tools, and social insurance designs.
⭐ Social norms
New expectations around age, productivity, and personal development.
Longevity and Patience
Governments should support structures that reward long-term behaviors across all ages.
🧩 7. Key Concept: Life-Time Returns Increase with Longevity
A central insight of the paper is:
The value of investing in the future increases as the future expands.
Longer life → bigger payoff from patience → more incentive to behave patiently.
Examples:
Education pays back over more years
Healthy lifestyle protects more decades
Savings compound for longer
Relationships and skills gain more value
Longevity and Patience
⭐ Overall Summary
“Longevity and Patience” is a rigorous analytical paper demonstrating that longer lifespans fundamentally change human behavior. Increased longevity makes people more future-oriented, increases the value of patient decision-making, and reshapes how individuals plan their education, work, health, and finances. The paper argues that societies must update institutions to support this new “long-life mindset,” where patience becomes a core asset and a powerful driver of prosperity and well-being...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/grqwyhqh-4449/data/document.pdf", "num_examples": 50, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/grqwyhqh- /home/sid/tuning/finetune/backend/output/grqwyhqh-4449/data/grqwyhqh-4449.json...
|
null
|
completed
|
1764881187
|
1764888026
|
NULL
|
/home/sid/tuning/finetune/backend/output/grqwyhqh- /home/sid/tuning/finetune/backend/output/grqwyhqh-4449/adapter...
|
False
|
Edit
Delete
|
|
fb3643f4-fd91-4a81-a657-c87c0fc3c430
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
gsazhjdx-7806
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
signs of life guidance
|
signs of life guidance
|
/home/sid/tuning/finetune/backend/output/gsazhjdx- /home/sid/tuning/finetune/backend/output/gsazhjdx-7806/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Signs of Life Guidance – Visual Summary (v1.2)” i “Signs of Life Guidance – Visual Summary (v1.2)” is a clear, compassionate, UK-wide clinical guideline that explains how to determine and document signs of life following spontaneous birth before 24+0 weeks, in situations where—after careful discussion with the parents—active survival-focused neonatal care is not appropriate. The guidance ensures consistent, respectful, and trauma-minimizing care for both babies and parents during extremely preterm births.
Purpose of the Guidance
To help clinicians:
Recognize genuine signs of life
Communicate sensitively with parents
Provide appropriate comfort and palliative care
Ensure correct legal documentation of birth and death
Deliver consistent bereavement support across the UK
Determining Signs of Life
A baby is classified as liveborn if any of the following visible, persistent signs are present:
clearly visible heartbeat
visible cord pulsation
breathing, crying, or sustained gasps
definite limb movement
The guidance emphasizes:
Fleeting reflexes (brief gasps, twitches, or chest wall pulsations in the first minute) do not count as signs of life.
Parents’ own observations should be respectfully included.
A stethoscope is not required.
After Live Birth
A doctor (usually the obstetrician) should confirm and document signs of life to avoid legal complications with the death certificate.
A doctor may rely on a midwife’s documented observations.
The baby receives perinatal palliative comfort care, and the family’s emotional and physical needs are actively supported.
Communication With Parents
Sensitive communication is emphasized to reduce trauma:
Parents are prepared that babies born before 24 weeks often do not survive.
Parents are informed that reflex movements do not necessarily indicate life.
Language preferences must be respected—some parents prefer “loss of baby,” others prefer “end of pregnancy” or “miscarriage.”
Bereavement Care (All Births)
All families should receive:
A parent-led bereavement plan
Privacy, choices, and time with their baby
Memory-making opportunities
Information on burial/cremation/sensitive disposal
Referral to support services and community care
Guidelines reference the National Bereavement Care Pathway for consistent care across the UK.
Documentation Requirements
Depends on region and whether signs of life were witnessed:
Before 24+0 weeks: No legal requirement for birth registration; offer a sensitive “certificate of loss” or “certificate of birth.”
If liveborn and later dies: A neonatal death certificate must be issued by a doctor who witnessed signs of life.
If no doctor witnessed it, the case must be referred to the coroner in England/Wales/NI.
Scope of the Guidance
Included:
Spontaneous in-hospital births <22+0 weeks
Spontaneous births at 22+0 to 23+6 weeks when survival-focused care is not appropriate
Pre-hospital births <22+0 weeks (same principles)
Excluded:
>Medical terminations
>Uncertain gestational age
>Births at 22–23+6 weeks where active neonatal care is planned or considered...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/gsazhjdx-7806/data/document.pdf", "num_examples": 17, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/gsazhjdx- /home/sid/tuning/finetune/backend/output/gsazhjdx-7806/data/gsazhjdx-7806.json...
|
null
|
completed
|
1764869154
|
1764869239
|
NULL
|
/home/sid/tuning/finetune/backend/output/gsazhjdx- /home/sid/tuning/finetune/backend/output/gsazhjdx-7806/adapter...
|
False
|
Edit
Delete
|
|
6e9a4826-93e3-49de-8ae7-9a74b2b14b2b
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
gtjuuxmj-3271
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Should longevity swaps
|
Should longevity swaps
|
/home/sid/tuning/finetune/backend/output/gtjuuxmj- /home/sid/tuning/finetune/backend/output/gtjuuxmj-3271/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This IFRS Interpretations Committee staff paper ex This IFRS Interpretations Committee staff paper examines how longevity swaps—contracts that transfer the risk of pension members living longer than expected—should be accounted for within defined benefit pension plans under IAS 19 Employee Benefits. Longevity swaps require the pension plan to make fixed payments while receiving variable payments linked to actual benefit payments to retirees.
The central question is whether these swaps should be:
Measured at fair value as plan assets (View 1), or
Split into a variable “insurance-like” leg and a fixed “premium” leg (View 2), with each measured differently.
View 1: Measure as Plan Assets at Fair Value
Supporters of View 1 argue that the swap is a single derivative contract and should follow the standard IAS 19 treatment of plan assets. They point to IAS 19 paragraphs 8 and 113, and IFRS 13, which require fair value measurement. Paragraph 142 also lists longevity swaps as examples of derivatives that can form part of plan assets. Under this view, the swap is initially recorded at zero (as swaps are usually entered at market value) and remeasured at fair value each period, with changes recorded in other comprehensive income.
View 2: Split the Swap Into Two Legs
Supporters of View 2 argue the swap functions like buying a qualifying insurance policy—except the premium is paid over time. They propose splitting it into:
Variable leg (treated like a qualifying insurance policy under IAS 19.115), measured as the present value of the matching obligations.
Fixed leg (representing premiums), treated either as part of plan assets at fair value or as a financial liability measured at amortized cost.
They also debate how to treat the difference between the variable and fixed legs at inception—either as a profit/loss or as part of remeasurements in OCI.
Findings from Global Outreach
The IFRS staff surveyed standard-setters, regulators, accounting firms, and pension specialists across multiple jurisdictions. They found that:
Longevity swaps are not yet widespread, though more common in the UK.
In jurisdictions where they occur, View 1 is the overwhelmingly predominant practice.
There is minimal diversity in accounting treatment.
Several respondents questioned whether longevity swaps could qualify as insurance contracts (suggesting View 2 lacked a strong basis).
Committee Recommendation
Because longevity swaps are uncommon and existing practice already aligns closely with fair value measurement under IAS 19 and IFRS 13, the Committee concluded that no new interpretation is needed. The issue was not added to the IFRIC agenda, as current guidance is considered sufficient to prevent diversity in practice.
If you want, I can also provide:
✅ A short 3–4 line summary
✅ A student-friendly simplified version
✅ MCQs or quiz questions from this file
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/gtjuuxmj-3271/data/document.pdf", "num_examples": 107, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/gtjuuxmj- /home/sid/tuning/finetune/backend/output/gtjuuxmj-3271/data/gtjuuxmj-3271.json...
|
null
|
queued
|
1765223696
|
1765223916
|
NULL
|
/home/sid/tuning/finetune/backend/output/gtjuuxmj- /home/sid/tuning/finetune/backend/output/gtjuuxmj-3271/adapter...
|
False
|
Edit
Delete
|
|
428043fc-4f50-4624-ab06-892cf67f7510
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
gvecdvlb-2105
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Intermittent and periodic
|
Intermittent and periodic fasting, longevity and d
|
/home/sid/tuning/finetune/backend/output/gvecdvlb- /home/sid/tuning/finetune/backend/output/gvecdvlb-2105/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This article is a comprehensive scientific review This article is a comprehensive scientific review explaining how intermittent fasting (IF) and periodic fasting (PF) affect metabolism, cellular stress resistance, aging, and chronic disease risk. It synthesizes animal studies, human trials, and mechanistic biology to show that structured fasting is a powerful biological signal that recalibrates energy pathways, activates repair systems, and promotes long-term resilience.
🧠 1. What Fasting Does to the Body (Core Biological Mechanisms)
Switch from glucose to ketones
After several hours of fasting, the body shifts from glucose metabolism to fat-derived ketone bodies, allowing organs—especially the brain—to use energy more efficiently.
lifespan and longevity
Activation of cellular repair pathways
Fasting triggers:
Autophagy (cellular clean-up)
DNA repair
Stress-response proteins
These protect cells from oxidation, inflammation, and molecular damage.
lifespan and longevity
Reduced inflammation & oxidative stress
Inflammatory markers drop globally, enhancing resistance to many chronic diseases.
lifespan and longevity
💪 2. Intermittent Fasting (Shorter Fasts: Hours–1 Day)
IF includes time-restricted feeding and alternate-day fasting.
Metabolic Effects
Improved insulin sensitivity
Lower glucose and insulin levels
Enhanced fat metabolism
lifespan and longevity
Neuronal Protection
IF protects neurons by:
Boosting neurotrophic factors
Enhancing mitochondrial efficiency
Improving synaptic function
lifespan and longevity
Chronic Disease Prevention
Regular IF reduces risk factors for:
Diabetes
Cardiovascular disease
Obesity
lifespan and longevity
🧬 3. Periodic Fasting (Longer Fasts: 2+ Days)
PF includes 2–5 day fasting cycles or fasting-mimicking diets.
Deep Cellular Renewal
Extended fasting induces:
Regeneration of immune cells
Reduction of damaged cells
Reset of metabolic signals like IGF-1 and mTOR
lifespan and longevity
Longevity Effects
In animal studies, PF delays:
Aging
Cognitive decline
Inflammatory diseases
lifespan and longevity
PF produces benefits not achieved with IF alone.
❤️ 4. Effects on Major Organs & Systems
Brain
Fasting enhances:
Stress resistance
Neuroplasticity
Cognitive performance
lifespan and longevity
Cardiovascular System
Effects include:
Lower resting blood pressure
Reduced cholesterol & triglycerides
Reduced heart disease risk
lifespan and longevity
Immune System
PF cycles can:
Reduce autoimmune responses
Enhance immune regeneration
lifespan and longevity
Metabolism
Both IF and PF improve:
Fat oxidation
Glucose control
Mitochondrial performance
lifespan and longevity
🧪 5. Animal and Human Evidence
Animal Studies
Across multiple species, fasting:
Extends lifespan
Delays age-related diseases
Enhances resilience to toxins & stress
lifespan and longevity
Human Studies
Observed effects include:
Reduced inflammation
Weight loss
Better metabolic health
Improved cardiovascular markers
lifespan and longevity
Clinical trials also show benefits during:
Obesity treatment
Chemotherapy support
Autoimmune conditions
lifespan and longevity
🎯 6. Why Fasting Promotes Longevity
The paper emphasizes a unified principle:
⭐ Fasting temporarily stresses the body → the body adapts → long-term resilience and repair improve
These adaptive processes:
Protect cells
Delay aging
Reduce disease susceptibility
lifespan and longevity
This “metabolic switching + cellular repair" framework is central to its longevity effects.
⚠️ 7. Risks, Considerations, & Who Should Not Fast
Although the article focuses on benefits, it also notes that fasting must be medically supervised for:
Frail individuals
People with chronic diseases
Underweight individuals
Pregnant or breastfeeding women
lifespan and longevity
🏁 PERFECT ONE-SENTENCE SUMMARY
Intermittent and periodic fasting activate powerful metabolic and cellular repair processes that enhance stress resistance, improve multiple biomarkers of health, and can extend longevity while reducing the risk of many chronic diseases....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/gvecdvlb-2105/data/document.pdf", "num_examples": 83, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/gvecdvlb- /home/sid/tuning/finetune/backend/output/gvecdvlb-2105/data/gvecdvlb-2105.json...
|
null
|
completed
|
1764887726
|
1764897300
|
NULL
|
/home/sid/tuning/finetune/backend/output/gvecdvlb- /home/sid/tuning/finetune/backend/output/gvecdvlb-2105/adapter...
|
False
|
Edit
Delete
|
|
7b412bdc-3c67-4490-8b23-bea11cc4c231
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
gvktgkwu-6778
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Future-Proofing the life
|
Future-Proofing the Longevity
|
/home/sid/tuning/finetune/backend/output/gvktgkwu- /home/sid/tuning/finetune/backend/output/gvktgkwu-6778/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is published by the World Economic F This document is published by the World Economic Forum as a contribution to a project, insight area or interaction. The findings, interpretations and conclusions expressed herein are the result of a collaborative process facilitated and endorsed by the World Economic Forum but whose results do not necessarily represent the views of the World Economic Forum, nor the entirety of its Members, Partners or other stakeholders. In this paper, many areas of innovation have been highlighted with the potential to support the longevity economy transition. The fact that a particular company or product is highlighted in this paper does not represent an endorsement or recommendation on behalf of the World
Haleh Nazeri Lead, Longevity Economy, World Economic Forum
Graham Pearce Senior Partner, Global Defined Benefit Segment Leader, Mercer
The world appears increasingly fragmented, but one universal reality connects us all – ageing. Across the world, people are living longer than past generations, in some cases by up to 20 years. This longevity shift, coupled with declining birth rates, is reshaping economies, workforces and financial systems, with profound implications for individuals, businesses and governments alike.
As countries transform, the systems that underpin them must also evolve. Today’s reality includes a widening gap between healthspan and lifespan, the emergence of a multigenerational workforce with five generations working side by side, and the need for stronger intergenerational collaboration.
One of the most important topics to consider during this demographic transition is the economic implications of longer lives. This paper highlights five key trends that will influence and shape the financial resilience of institutions, governments
and individuals in the years ahead. It also showcases innovative solutions that are already being implemented by countries, businesses and organizations to prepare for the future.
While the challenges are significant, they also present an opportunity to develop systems that are more inclusive, equitable, resilient and sustainable for the long term. This is a chance to strengthen pension systems and social protections, not only for those who have traditionally benefited, but also for those who were left out of social contracts the first time.
We are grateful to our multistake holder consortium of leaders across business, the public sector, civil society and academia for their contributions, inputs and collaboration on this report. We look forward to seeing how others will continue to build on these innovative ideas to future-proof the longevity economy for a brighter and more ...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/gvktgkwu-6778/data/document.pdf", "num_examples": 144, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/gvktgkwu- /home/sid/tuning/finetune/backend/output/gvktgkwu-6778/data/gvktgkwu-6778.json...
|
null
|
completed
|
1764897065
|
1764909233
|
NULL
|
/home/sid/tuning/finetune/backend/output/gvktgkwu- /home/sid/tuning/finetune/backend/output/gvktgkwu-6778/adapter...
|
False
|
Edit
Delete
|
|
bddcb996-965f-4584-ab5a-5a02485cb84e
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
gxnwfrbq-9397
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Mortality and Longevity
|
Mortality and Longevity: a Risk Management
|
/home/sid/tuning/finetune/backend/output/gxnwfrbq- /home/sid/tuning/finetune/backend/output/gxnwfrbq-9397/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Mortality and Longevity: A Risk Management Perspe “Mortality and Longevity: A Risk Management Perspective”**
This PDF is a research chapter that examines mortality and longevity through the lens of risk management, particularly focusing on how insurance companies, pension funds, and governments measure, manage, and respond to the financial risks created by changing mortality patterns and increasing life expectancy. It combines demographic analysis, actuarial science, economics, and risk-transfer mechanisms to explain why longevity is one of the most significant financial risks of the 21st century.
The core message:
Falling mortality and rising longevity create large, long-term financial risks—and risk management tools are essential for sustainable pensions, insurance systems, and public finances.
📘 Purpose of the Chapter
The chapter aims to:
Explain mortality and longevity as quantitative risks
Explore causes of uncertainty in life expectancy predictions
Show how longevity affects pensions, annuities, and insurance
Discuss risk-transfer and hedging tools (e.g., longevity bonds, swaps)
Evaluate forecasting models and the limits of prediction
Provide a framework for managing longevity risk at institutional and national levels
It positions longevity risk as a major concern for aging societies.
🧠 Core Themes and Key Insights
1. Mortality and Longevity Are Risk Events
Death rates change over time due to:
Medical breakthroughs
Public health interventions
Lifestyle improvements
Pandemics (e.g., COVID-19)
Environmental exposures
These shifts create uncertainty for insurers and pension managers who must make long-term commitments.
2. Longevity Risk: People Live Longer Than Expected
Longevity risk occurs when:
Actual survival rates exceed forecasts
People claim pensions and annuities for more years
Retirement systems face funding shortfalls
Even small reductions in mortality can create large financial liabilities.
3. Mortality Risk: People Die Earlier Than Expected
Mortality risk matters for:
Life insurance payouts
Health systems
National demographic planning
Pandemics, disasters, or rising chronic disease can shift mortality patterns abruptly.
4. Why Mortality Forecasts Are Uncertain
The chapter explains key sources of uncertainty:
Epidemiological surprises
Social and behavioral change
Medical innovation
Environmental shocks
Cohort effects
Structural breaks (e.g., opioid crisis, pandemics)
Because of these factors, mortality forecasting is probabilistic, not deterministic.
5. How Mortality Is Modeled
The PDF outlines major models used in actuarial science:
Stochastic mortality models (e.g., Lee–Carter)
Cohort-based models
Multi-factor mortality models
Survival curves and hazard rates
Stress-testing approaches
The chapter also discusses the strengths and weaknesses of each method.
6. Longevity Risk in Pensions and Annuities
The text describes how rising life expectancy affects:
Defined benefit pension plans
Public pension systems
Private annuity providers
Key issues include:
Underfunding
Mispricing
Increased liabilities
Long-term sustainability challenges
Longevity risk is especially critical where populations are aging rapidly.
7. Tools for Managing and Transferring Longevity Risk
The chapter examines modern financial tools designed to hedge risk:
A. Longevity swaps
Transfer longevity risk from pension funds to reinsurers.
B. Longevity bonds
Securities whose payments depend on survival rates of a population.
C. Reinsurance
Sharing mortality and longevity exposures with global reinsurers.
D. Capital-market instruments
Mortality-linked derivatives, q-forwards, etc.
The chapter explains pricing principles, benefits, and limitations.
8. Policy and Regulatory Implications
Governments face:
Rising pension costs
Uncertainty about retirement age policy
Challenges to social security systems
Need for improved health and long-term care planning
Better mortality forecasting is vital for:
Public finance planning
Social insurance design
Intergenerational equity
9. Pandemics and Mortality Risk
The PDF highlights pandemics (including COVID-19) as major mortality shocks:
They temporarily reverse longevity gains
They increase volatility in mortality models
They highlight the need for robust scenario-based risk management
⭐ Overall Summary
“Mortality and Longevity: A Risk Management Perspective” provides a comprehensive framework for understanding mortality and longevity as financial risks. It explains why predicting life expectancy is uncertain, how longevity risk threatens pension and insurance systems, and what tools can be used to manage and transfer these risks. The chapter concludes that effective risk management is essential to ensure the long-term sustainability of retirement systems in aging societies....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/gxnwfrbq-9397/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/gxnwfrbq- /home/sid/tuning/finetune/backend/output/gxnwfrbq-9397/data/gxnwfrbq-9397.json...
|
null
|
failed
|
1764877222
|
1764884052
|
NULL
|
/home/sid/tuning/finetune/backend/output/gxnwfrbq- /home/sid/tuning/finetune/backend/output/gxnwfrbq-9397/adapter...
|
False
|
Edit
Delete
|
|
0c4b28db-fd77-49fd-a5c1-29e6e8a2bb1b
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hceahcgt-3355
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
MENTAL STRESS DECREASES W
|
MENTAL STRESS DECREASES WITH OLDER AGE
|
/home/sid/tuning/finetune/backend/output/hceahcgt- /home/sid/tuning/finetune/backend/output/hceahcgt-3355/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a peer-reviewed scientific article pub This PDF is a peer-reviewed scientific article published in the International Journal of Endorsing Health Science Research (2014). The study investigates how mental stress varies across age and gender in Karachi, Pakistan, using a locally developed tool called the Sadaf Stress Scale (SSS). It is a cross-sectional analysis of 370 individuals aged 13–50 from different educational and social backgrounds.
The central finding is clear and striking: mental stress significantly decreases with advancing age, with no stress detected in individuals aged 40 and above.
🔶 1. Purpose of the Study
The research aims to:
Measure mental stress levels in Karachi’s population
Identify how age and gender influence stress
Use the Sadaf Stress Scale (SSS) as an assessment instrument
Understand which groups are most vulnerable to stress
The study reflects growing recognition that mental health is essential to overall health, aligning with the WHO’s statement: “There can be no health without mental health.”
🔶 2. Methodology Overview
Study design: Cross-sectional
Sample size: 370 participants
Age range: 13–50 years
Data collection: Random sampling from colleges, universities, and different areas of Karachi
Tool used: Sadaf Stress Scale (SSS)
Data analysis software: Excel 2007 and SPSS 20
MENTAL STRESS DECREASES WITH OL…
Stress levels were categorized as:
Normal
Mild
Moderate
Severe
🔶 3. Key Findings
✔ A) Stress decreases sharply with age
The data shows:
Age Group Mild Stress Moderate Severe Interpretation
20 and younger 16% 7% 3% High stress
20–30 24% 1% 0% Highest stress of all groups
30–40 5% 3% 5% Moderate stress
40+ 0% stress of any category — — No stress
MENTAL STRESS DECREASES WITH OL…
Conclusion:
Younger individuals—especially those aged 20–30—experience the highest stress levels, likely due to:
academic pressure
new employment
lack of time for personal interests
limited engagement in physical or extracurricular activities
People over 40 reported zero stress, showing a strong age-related decline.
✔ B) Gender differences in mental stress
Gender Mild Moderate Severe
Men 13.9% 1.7% 0%
Women 11.4% 4.3% 2.4%
Men showed slightly more mild stress, while women showed slightly more moderate and severe stress.
MENTAL STRESS DECREASES WITH OL…
✔ C) Overall Stress Distribution
Across all 370 participants:
82.7% had normal stress
12.2% mild
3.0% moderate
2.2% severe
MENTAL STRESS DECREASES WITH OL…
Most of the population reported normal stress levels, but vulnerable groups were clearly identifiable.
🔶 4. Discussion Insights
The paper situates mental stress within:
biological responses (hormonal and nervous system mediation)
environmental triggers (academic workload, climate, emotional factors)
socioeconomic status
lifestyle habits
MENTAL STRESS DECREASES WITH OL…
The authors reference classic stress theories (Selye’s General Adaptation Syndrome) and modern evidence showing that stress impacts:
memory
decision-making
cognitive function
MENTAL STRESS DECREASES WITH OL…
The study suggests:
younger adults face more acute stressors
older adults may have better coping mechanisms, more stability, or fewer external pressures
🔶 5. Conclusion of the Study
The authors conclude:
Older age is associated with significantly lower mental stress.
The age group 20–30 is at highest risk for stress-related problems.
Mental health awareness must be integrated into public health strategies.
Stress symptoms may overlap with other medical conditions, so professional assessment is essential.
MENTAL STRESS DECREASES WITH OL…
The paper calls for greater attention to mental health education, early detection, and support systems in Karachi.
⭐ Perfect One-Sentence Summary
This study shows that mental stress in Karachi decreases sharply with age—peaking among young adults and dropping to zero by age 40—highlighting the strong influence of age and gender on stress patterns in the population....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/hceahcgt-3355/data/document.pdf", "num_examples": 14, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hceahcgt- /home/sid/tuning/finetune/backend/output/hceahcgt-3355/data/hceahcgt-3355.json...
|
null
|
completed
|
1764877982
|
1764879480
|
NULL
|
/home/sid/tuning/finetune/backend/output/hceahcgt- /home/sid/tuning/finetune/backend/output/hceahcgt-3355/adapter...
|
False
|
Edit
Delete
|
|
7fe766bf-199b-4fcc-a58a-f16a5769a46f
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hcgrrcfx-4882
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Quantum Healthy Longevity
|
Quantum Healthy Longevity
|
/home/sid/tuning/finetune/backend/output/hcgrrcfx- /home/sid/tuning/finetune/backend/output/hcgrrcfx-4882/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Lancet Healthy Longevity article (Dec 2022) presen Lancet Healthy Longevity article (Dec 2022) presenting a bold global vision called the Quantum Healthy Longevity Innovation Mission. It outlines how humanity can achieve longer, healthier lives using advanced science, prevention-centered healthcare, environmental awareness, and transformative technologies.
The article begins by highlighting a paradox:
Although lifespans are increasing in many places, life expectancy is stagnating or falling in over 50 countries, including the UK and USA. This decline is driven by socioeconomic inequality, unhealthy lifestyles, chronic diseases, and the long-term effects of the COVID-19 pandemic. The UK population spends about 20% of life in poor health and shows massive gaps between rich and poor in healthy life expectancy. This is harming economic productivity and societal resilience.
Quantum Healthy Longevity for h…
🧠 Core Idea: A New Health Model
The article argues that the traditional health-care model—reactive, disease-focused, and expensive—is no longer sustainable. Instead, the world urgently needs a proactive, prevention-focused system that strengthens population health, reduces preventable diseases, and builds economic resilience.
To achieve this, global leaders are developing the Quantum Healthy Longevity Innovation Mission, a platform designed to link science, technology, policy, and society to rapidly advance healthy longevity.
Quantum Healthy Longevity for h…
🔬 Scientific Foundations
The document explains that aging and age-related diseases are not inevitable. Advances in geroscience, biomolecular aging pathways, senescence, and inflammation show that multiple chronic conditions share common mechanisms—and these can be modified through emerging drugs and interventions.
Quantum Healthy Longevity for h…
It emphasizes:
Early intervention
Understanding life-course exposures
The role of environments (air, green spaces, stress)
Lifestyle and socioeconomic determinants
Quantum Healthy Longevity for h…
🚀 What “Quantum Healthy Longevity” Means
The Quantum Healthy Longevity blueprint is a system-level mission that integrates:
1. The Exposome Approach
Understanding how lifetime exposures to air, food, stress, and environment shape chronic disease.
Quantum Healthy Longevity for h…
2. Cutting-Edge Technologies
Using AI, robotics, quantum computing, synthetic biology, and blockchain for breakthrough longevity innovations.
Quantum Healthy Longevity for h…
3. Brain Capital
Investing in brain health, emotional resilience, and cognitive abilities across the lifespan.
Quantum Healthy Longevity for h…
4. Intergenerational Engagement
Ensuring people of all ages participate in co-designing healthier communities.
Quantum Healthy Longevity for h…
5. Digital Empowerment
Universal access to tools, skills, and technologies that support healthier living.
Quantum Healthy Longevity for h…
6. Democratized Access & Inclusion
Making healthy longevity benefits equitable for all populations.
Quantum Healthy Longevity for h…
7. Compassion at the Core
Promoting a culture of care, connection, and community support.
Quantum Healthy Longevity for h…
🏙️ Longevity Cities & Connected Environments
The article introduces the concept of Longevity Cities—urban spaces designed to support lifelong health using technology and smart infrastructure. A key idea is the Internet of Caring Things, where devices and systems actively “care” for people by supporting physical, mental, and social wellbeing.
Quantum Healthy Longevity for h…
This includes:
Smart homes
Health monitoring devices
Community-centered design
Policy integration at city level
🔧 AI-Driven Health Data & Trusted Environments
A central part of the mission is building Trusted Research Environments (TREs)—secure platforms for sharing life-course health data ethically.
Quantum Healthy Longevity for h…
This ecosystem aims to:
Create the world’s largest biomarker database
Build an atlas of anti-aging interventions
Leverage multimodal AI for disease prediction and prevention
Link to global programs like “Our Future Health” (5 million volunteers)
Quantum Healthy Longevity for h…
📈 Economic & Environmental Impact
The article argues that healthy longevity is essential for:
National economic productivity
Workforce resilience
Social stability
Environmental sustainability
Quantum Healthy Longevity for h…
It encourages adding Health into ESG investment frameworks (becoming ESHG), ensuring businesses play a role in improving population health.
Quantum Healthy Longevity for h…
🌱 The Final Message
The PDF ends with a call to action:
Now is the moment to be bold, accelerate change, and build a future in which people, the planet, and economies thrive together through healthy longevity....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/hcgrrcfx-4882/data/document.pdf", "num_examples": 42, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hcgrrcfx- /home/sid/tuning/finetune/backend/output/hcgrrcfx-4882/data/hcgrrcfx-4882.json...
|
null
|
completed
|
1764873124
|
1764873739
|
NULL
|
/home/sid/tuning/finetune/backend/output/hcgrrcfx- /home/sid/tuning/finetune/backend/output/hcgrrcfx-4882/adapter...
|
False
|
Edit
Delete
|
|
f9601fa5-f780-4137-bc3e-bb016c529d27
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hiynnkoy-3916
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
mtorc1 is also involve in
|
mtorc1 is also involve in longevity between specie
|
/home/sid/tuning/finetune/backend/output/hiynnkoy- /home/sid/tuning/finetune/backend/output/hiynnkoy-3916/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a scientific editorial from the journa This PDF is a scientific editorial from the journal Aging (2021) that explains how mTORC1, a central nutrient- and energy-sensing cellular pathway, plays a critical role not only in lifespan extension within a single species but also in determining natural longevity differences between mammalian species.
The authors, Gustavo Barja and Reinald Pamplona, summarize recent comparative research showing that long-lived species naturally maintain lower mTORC1 activity, suggesting that downregulated mTORC1 signaling is an evolutionary adaptation that contributes to slower aging and extended longevity.
🔶 1. Background: The Aging Program & Effector Systems
The paper begins by reviewing the nuclear aging program (AP) and the network of aging effectors controlled by it.
These include:
mitochondrial ROS production
mitochondrial DNA repair
lipid composition of membranes
telomere shortening rates
metabolomic/lipidomic profiles
mTORC1 is also involved in long…
Long-lived species show:
low mitochondrial ROS at complex I
high mitochondrial DNA repair
lower unsaturated fatty acids in membranes
slower telomere shortening
mTORC1 is also involved in long…
These differences shape species-specific aging rates.
🔶 2. What is mTORC1 and Why It Matters for Aging?
mTORC1 is a highly conserved cellular signaling hub that integrates information about:
nutrients
energy (ATP, glucose)
amino acids (especially arginine, leucine, methionine)
hormones
oxygen levels
mTORC1 is also involved in long…
mTORC1 regulates:
protein + lipid synthesis
mitochondrial function
autophagy
cell growth and proliferation
stress responses
Within species, lowering mTORC1 activity increases lifespan in yeast, worms, flies, and mammals, while increased mTORC1 accelerates aging.
🔶 3. The New Study: First Cross-Species Analysis of mTORC1 and Longevity
The editorial highlights a new comparative study across eight mammalian species with lifespans ranging from 3.5 years (mouse) to 46 years (horse).
Using droplet digital PCR (ddPCR), Western blotting, and targeted metabolomics, the study measured:
mTORC1 gene expression
mTORC1 protein levels
concentrations of activators and inhibitors
mTORC1 is also involved in long…
🔶 4. Key Findings: Long-Lived Species Naturally Suppress mTORC1
The study found that longer-living mammals consistently exhibit a molecular signature of low mTORC1 activity, including:
A) Activators ↓ (negatively correlated with longevity)
Long-lived species have low levels of:
mTOR
Raptor
Arginine
Methionine
SAM (S-adenosylmethionine)
Homocysteine
mTORC1 is also involved in long…
B) Inhibitors ↑ (positively correlated with longevity)
Long-lived species have higher levels of:
phosphorylated mTOR (mTORSer2448)
PRAS40
mTORC1 is also involved in long…
These patterns were independent of phylogeny, meaning they reflect functional longevity mechanisms, not ancestry.
🔶 5. Interpretation: mTORC1 Is Part of an Evolutionary Longevity Strategy
The authors argue that:
Long-lived species have evolved permanent, natural repression of mTORC1 signaling.
This protects cells from accelerated aging, degenerative diseases, and metabolic stress.
mTORC1 works in coordination with other aging effectors as part of the Cell Aging Regulating System (CARS).
mTORC1 is also involved in long…
This places mTORC1 as a cross-species determinant of longevity, not just a within-species modulator.
🔶 6. Overall Conclusion
The PDF concludes that maintaining low mTORC1 downstream activity during adult life is a conserved biological strategy that increases longevity both within and between mammalian species. This is the first study to show that natural variation in mTORC1 levels across species correlates directly with evolutionary differences in lifespan.
⭐ Perfect One-Sentence Summary
This editorial explains that long-lived mammalian species naturally suppress mTORC1 activity—through lower levels of its activators and higher levels of its inhibitors—revealing mTORC1 as a fundamental, evolutionarily conserved determinant of species longevity....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/hiynnkoy-3916/data/document.pdf", "num_examples": 8, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hiynnkoy- /home/sid/tuning/finetune/backend/output/hiynnkoy-3916/data/hiynnkoy-3916.json...
|
null
|
completed
|
1764876716
|
1764877577
|
NULL
|
/home/sid/tuning/finetune/backend/output/hiynnkoy- /home/sid/tuning/finetune/backend/output/hiynnkoy-3916/adapter...
|
False
|
Edit
Delete
|
|
4dbfae9f-c39b-4ff8-b197-0587c285ae4a
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hmtwvmxg-4462
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity Pay
|
Longevity Pay and Hazardous Duty Pay
|
/home/sid/tuning/finetune/backend/output/hmtwvmxg- /home/sid/tuning/finetune/backend/output/hmtwvmxg-4462/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Longevity Pay and Hazardous Duty Pay (Policy 03-40 Longevity Pay and Hazardous Duty Pay (Policy 03-406) is an official four-page compensation policy issued by Stephen F. Austin State University (SFA), originally effective September 1, 2023. It establishes the rules, eligibility conditions, payment schedules, and administrative procedures for two forms of supplemental pay: Longevity Pay for full-time non-academic employees, and Hazardous Duty Pay for commissioned law enforcement officers.
Purpose and Coverage
The policy applies to:
Full-time non-academic staff working 40 hours per week
Commissioned law enforcement officers employed by SFA
Faculty, part-time workers below 40 hours, charter school teachers, and other exempt groups are excluded.
1. Longevity Pay
Eligibility
Applies to full-time, non-academic employees (excluding those eligible for hazardous duty pay).
Employees must work 40 hours/week, or have combined appointments equaling 40 hours.
Prior Texas state service—including part-time, student work, faculty service, and legislative service—is credited once verified.
Longevity pay begins on the first day of the month after completing 2 years of state service (and each additional 2-year increment).
Cannot be prorated.
Payment Amount
Longevity pay is $20 per month for each 2 years of state service, with a maximum of $420 per month.
The policy provides a full incremental table, ranging from:
0–2 years → $0
2–4 years → $20
Continuing in 2-year increments up to
42+ years → $420 maximum
Administrative Rules
Pay is included in regular payroll (no lump-sum checks).
A change affecting eligibility takes effect the next month, not mid-month.
Impacts federal withholding, retirement contributions, and insurance calculations.
Not included in lump-sum vacation payouts at termination—but is included in vacation/sick payout calculations for deceased employees’ estates.
2. Hazardous Duty Pay (HDP)
Who Qualifies
Full-time commissioned law enforcement officers performing hazardous duties.
Eligibility and definitions follow Texas Government Code §§ 659.041–047, 659.305.
Payment Amount
HDP is $10 per month for each year of hazardous-duty-eligible state service.
Begins after 12 months of service, starting the next month.
Continues at the same rate until the next full year is completed.
No statutory cap, except for certain Texas Department of Criminal Justice roles (not applicable here).
The provided example lists increments from:
1–2 years → $10
2–3 years → $20
Up to
5–6 years → $50
Special Transition Rules
An employee switching from non-hazardous to hazardous duty:
Retains prior longevity pay for past non-hazardous service
Earns no additional Longevity Pay while receiving HDP
Hazardous-duty time counts toward future state service calculations
An employee switching from hazardous duty to non-hazardous duty:
Stops receiving HDP immediately
Becomes eligible for Longevity Pay, including credit for previous hazardous duty years
Procedural and Payroll Notes
Both Longevity Pay and HDP are part of total compensation, not base salary.
Both affect:
Federal tax withholding
OASDI
Group insurance calculations
Retirement contribution levels
Neither type of pay is included in termination vacation payouts, but both are included in estate payouts after an employee’s death.
Overall Summary
This policy clearly defines how SFA compensates long-serving employees and those performing hazardous duties. It provides:
Transparent eligibility criteria
Exact monthly pay schedules
Rules for service verification, timing, transitions, and payroll treatment
It ensures consistent, compliant administration of supplemental compensation across the university’s workforce.
If you’d like, I can also prepare:
📌 a shorter executive summary
📌 a side-by-side comparison with your other longevity pay documents
📌 a fully integrated meta-summary across all compensation/ longevity files
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/hmtwvmxg-4462/data/document.pdf", "num_examples": 27, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hmtwvmxg- /home/sid/tuning/finetune/backend/output/hmtwvmxg-4462/data/hmtwvmxg-4462.json...
|
null
|
queued
|
1765051008
|
1765051380
|
NULL
|
/home/sid/tuning/finetune/backend/output/hmtwvmxg- /home/sid/tuning/finetune/backend/output/hmtwvmxg-4462/adapter...
|
False
|
Edit
Delete
|
|
fa2412f1-1dd3-4cc4-a725-71764cd89464
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hnaapmmu-5222
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Extreme Human Lifespan
|
Extreme Human Lifespan
|
/home/sid/tuning/finetune/backend/output/hnaapmmu- /home/sid/tuning/finetune/backend/output/hnaapmmu-5222/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The indexed individual, from now on termed M116, w The indexed individual, from now on termed M116, was the world's oldest verified living person from January 17th 2023 until her passing on August 19th 2024, reaching the age of 117 years and 168 days (https://www.supercentenarian.com/records.html). She was a Caucasian woman born on March 4th 1907 in San Francisco, USA, from Spanish parents and settled in Spain since she was 8. A timeline of her life events and her genealogical tree are shown in Supplementary Fig. 1a-b. Although centenarians are becoming more common in the demographics of human populations, the so-called supercentenarians (over 110 years old) are still a rarity. In Catalonia, the historic nation where M116 lived, the lifeexpectancy for women is 86 years, so she exceeded the average by more than 30 years (https://www.idescat.cat). In a similar manner to premature aging syndromes, such as Hutchinson-Gilford Progeria and Werner syndrome, which can provide relevant clues about the mechanisms of aging, the study of supercentenarians might also shed light on the pathways involved in lifespan. To unfold the biological properties exhibited by such a remarkable human being, we developed a comprehensive multiomics analysis of her genomic, transcriptomic, metabolomic, proteomic, microbiomic and epigenomic landscapes in different tissues, as depicted in Fig. 1a, comparing the results with those observed in non-supercentenarian populations. The picture that emerges from our study shows that extremely advanced age and poor health are not intrinsically linked and that both processes can be distinguished and dissected at the molecular level.
RESULTS AND DISCUSSION Samples from the subject were obtained from four different sources: total peripheral blood, saliva, urine and stool at different times. Most of the analyses were performed in the blood material at the time point of 116 years and 74 days, unless otherwise specifically indicated (Data set 1). The simple karyotype of the supercentenarian did not show any gross chromosomal alteration (Supplementary Fig. 1c). Since many reports indicate the involvement of telomeres in aging and lifespan1, we interrogated the telomere length of the M116 individual using High-Throughput Quantitative Fluorescence In Situ Hybridization (HT-Q-FISH) analysis2. Illustrative confocal images with DAPI staining and the telomeric probe (TTAGGG) for M116 and two control samples are shown in Fig. 1b. Strikingly, we observed that the supercentenarian exhibited the shortest mean telomere length among all healthy volunteers3 with a value of barely 8 kb (Fig. 1c). Even more noticeably, the M116 individual displayed a 40% of short telomeres below the 20th percentile of all the studied samples (Fig. 1c). Thus, the observed far reach longevity of our case occurred in the chromosomal context of extremely short telomeres. Interestingly, because the M116 individual presented an overall good health status, it is tempting to speculate that, in this ...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/hnaapmmu-5222/data/document.pdf", "num_examples": 146, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hnaapmmu- /home/sid/tuning/finetune/backend/output/hnaapmmu-5222/data/hnaapmmu-5222.json...
|
null
|
completed
|
1764899005
|
1764907799
|
NULL
|
/home/sid/tuning/finetune/backend/output/hnaapmmu- /home/sid/tuning/finetune/backend/output/hnaapmmu-5222/adapter...
|
False
|
Edit
Delete
|
|
3e216ca3-7478-49f0-bd49-aadd46412cf3
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hocmrche-4984
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The Multiomics Blueprint
|
The Multiomics Blueprint of Extreme Human Lifespan
|
/home/sid/tuning/finetune/backend/output/hocmrche- /home/sid/tuning/finetune/backend/output/hocmrche-4984/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This study presents a comprehensive multiomics ana This study presents a comprehensive multiomics analysis of an extraordinary human subject, M116, the world’s oldest verified living person from January 2023 until her death in August 2024 at the age of 117 years and 168 days. Born in 1907 in San Francisco to Spanish parents, M116 spent most of her life in Spain. Despite surpassing the average female life expectancy in Catalonia by over 30 years, she maintained an overall good health profile until her final months. The research aimed to dissect the molecular and cellular factors contributing to her extreme longevity by integrating genomic, epigenomic, transcriptomic, proteomic, metabolomic, and microbiomic data derived primarily from blood, saliva, urine, and stool samples.
Key Insights and Findings
Longevity is multifactorial, with no single genetic or molecular determinant but rather a complex interplay of rare genetic variants, preserved molecular functions, and adaptive physiological traits.
Extreme age and poor health are decoupled; M116 exhibited biological markers of advanced age alongside molecular features indicative of healthy aging.
Molecular assessments reveal preserved and robust biological functions that likely contributed to her extended lifespan.
Genomic Landscape
Telomere Length:
M116 exhibited extremely short telomeres (~8 kb), shorter than all healthy volunteers studied, with 40% of her telomeres below the 20th percentile.
This suggests telomere attrition acts more as a biological aging clock rather than a predictor of age-associated diseases in this context.
The short telomeres may have contributed to cancer resistance by limiting malignant cell replication.
Structural Variants (SVs):
Ten rare SVs identified via Optical Genome Mapping, including a large 3.3 Mb deletion on chromosome 4 and a 93.5 kb deletion on chromosome 17.
These SVs may play unknown roles but were not associated with detrimental gross chromosomal alterations.
Rare Genetic Variants:
Whole Genome Sequencing identified ~3.8 million SNVs; after filtering, 91,666 variants of interest (VOI) affecting 25,146 genes were analyzed.
Seven homozygous rare variants unique to M116 were found in genes linked to immune function, cognitive retention, longevity, pulmonary function, neuroprotection, and DNA repair (e.g., DSCAML1, MAP4K3, TSPYL4, NT5DC1, PCDHA cluster, TIMELESS).
Functional enrichment highlighted pathways involving:
Immune system regulation (e.g., T cell differentiation, response to pathogens, antigen receptor signaling)
Neuroprotection and brain health
Cardioprotection and heart development
Cholesterol metabolism and insulin signaling
Mitochondrial function and oxidative phosphorylation
Mitochondrial function assays showed robust mitochondrial membrane potential and superoxide ion levels in M116’s PBMCs, surpassing those in younger controls, indicating preserved mitochondrial health.
Burden Tests:
Identified genes with significantly higher rare variant load related to neuroprotection and longevity (e.g., EPHA2, MAL, CLU, HAPLN4).
No single gene or pathway explained longevity; rather, multiple pathways acted synergistically.
Blood Cellular and Molecular Characteristics
Clonal Hematopoiesis of Indeterminate Potential (CHIP):
M116 harbored CHIP-associated mutations: one in SF3B1 (RNA splicing factor) and two in TET2 (DNA demethylase) with variant allele frequency >2%.
Despite this, she did not develop malignancies or cardiovascular disease, suggesting CHIP presence does not necessarily translate to disease.
Single-cell RNA Sequencing (scRNA-seq) of PBMCs:
Identified a diverse immune cell repertoire including naive and memory B cells, NK cells, monocytes, and T cell subpopulations.
Notably, M116 exhibited an expanded population of age-associated B cells (ABCs), expressing markers SOX5 and FCRL2, a feature unique compared to other supercentenarians.
The T cell compartment was dominated by effector and memory cytotoxic T cells, consistent with prior observations in supercentenarians.
Metabolomic and Proteomic Profiles
Metabolomics (1H-NMR Analysis):
Compared with 6,022 Spanish individuals, M116’s plasma showed:
Extremely efficient lipid metabolism:
Very low VLDL-cholesterol and triglycerides
Very high HDL-cholesterol (“good cholesterol”)
High numbers of medium and large HDL and LDL particles, indicating effective lipoprotein maturation.
Low levels of lipid biomarkers associated with poor health (saturated fatty acids, esterified cholesterol, linoleic acid, acetone).
High free cholesterol levels linked to good health and survival.
Low glycoproteins A and B, suggesting a low systemic inflammatory state (“anti-inflammaging”).
Cardiovascular risk-associated metabolites supported excellent cardiovascular health.
Some amino acid levels (glycine, histidine, valine, leucine) were low, and lactate and creatinine were high, consistent with very advanced chronological age and imminent mortality.
Proteomics of Extracellular Vesicles (ECVs):
Compared to younger post-menopausal women, 231 proteins were differentially expressed.
GO enrichment revealed eight functional clusters: coagulation, immune system, lipid metabolism, apoptosis, protein processing, detoxification, cellular adhesion, and mRNA regulation.
Proteomic signatures indicated:
Increased complement activation and B cell immunity
Enhanced lipid/cholesterol transport and lipoprotein remodeling
Elevated oxidative stress response and detoxification mechanisms
The most elevated protein was serum amyloid A-1 (SAA1), linked to Alzheimer’s disease, yet M116 showed no neurodegeneration.
Gut Microbiome Composition
16S rDNA sequencing compared M116’s stool microbiome to 445 healthy controls (61-91 years old).
M116’s microbiome showed:
Higher alpha diversity (Shannon index 6.78 vs. 3.05 controls), indicating richer microbial diversity.
Distinct beta diversity, clearly separating her microbiome from controls.
Markedly elevated Actinobacteriota phylum, primarily due to Bifidobacteriaceae family and Bifidobacterium genus, which typically decline with age but are elevated in centenarians.
Bifidobacterium is associated with anti-inflammatory effects, production of short-chain fatty acids, and conjugated linoleic acid, linking to her efficient lipid metabolism.
Lower relative abundance of pro-inflammatory genera such as Clostridium and phyla Proteobacteria and Verrucomicrobiota, associated with frailty and inflammation in older adults.
Diet likely influenced microbiome composition; M116 consumed a Mediterranean diet and daily yogurts containing Streptococcus thermophilus and Lactobacillus delbrueckii, which promote Bifidobacterium growth.
Epigenetic and Biological Age Analysis
DNA Methylation Profiling (Infinium MethylationEPIC BeadChip):
Identified 69 CpG sites with differential methylation (β-value difference >50%) compared to controls aged 21-78 years.
Majority (68%) showed hypomethylation, consistent with known aging-associated DNA methylation changes.
Differential CpGs were more often outside CpG islands and enriched in gene bodies or regulatory regions.
Hypomethylation correlated with altered expression of genes involved in:
Vascular stemness (EGFL7)
Body mass index regulation (ADCY3)
Macular degeneration (PLEKHA1)
Bone turnover (VASN)
Repetitive DNA Elements:
Unlike typical age-associated global hypomethylation, M116 retained hypermethylation in repetitive elements (LINE-1, ALU, ERV), suggesting preserved genomic stability.
Epigenetic Clocks:
Six different DNA methylation-based epigenetic clocks and an independent rDNA methylation clock (using Whole Genome Bisulfite Sequencing) consistently estimated M116’s biological age to be significantly younger than her chronological age (~117 years).
This indicates a decelerated epigenetic aging process in M116’s cells, which may contribute to her longevity.
Integration and Conclusions
Coexistence of Advanced Age Biomarkers and Healthy Aging Traits:
M116 simultaneously exhibited biological signatures indicative of very old age (short telomeres, CHIP mutations, aged B cell populations) and preserved healthy molecular and functional profiles (genetic variants protective against diseases, efficient lipid metabolism, anti-inflammatory gut microbiome, epigenome stability, robust mitochondrial function).
Decoupling of Aging and Disease:
These findings challenge the assumption that aging and disease are inseparably linked, showing that extreme longevity can occur with a healthy functional tissue environment despite advanced biological age markers.
Multidimensional and Multifactorial Basis of Longevity:
The supercentenarian’s extended lifespan likely resulted from the synergistic effects of rare genetic variants, favorable epigenetic patterns, preserved mitochondrial and immune function, healthy metabolism, and a beneficial microbiome, rather than any single factor.
Potential Implications:
Understanding the interplay of these factors could open avenues for promoting healthy aging and preventing age-related diseases in the general population.
Timeline and Demographics of M116
Event Date / Age Notes
Birth March 4, 1907 San Francisco, USA
Moved to Spain 1915 (age 8) Following father’s death
Lived in elderly residence 2001 - 2024 Olot, Catalonia, Spain
COVID-19 Infection Not specified Survived
Death August 19, 2024 (age 117y, 168d) While sleeping, no major neurodegeneration or cancer recorded
Summary Table of Key Molecular Features in M116
Feature Status in M116 Interpretation/Significance
Telomere length Extremely short (~8 kb) Aging clock marker; may limit cancer risk
Structural variants 10 rare SVs, including large deletions Unknown effect; no gross chromosomal abnormalities
Rare homozygous variants 7 unique variants in longevity/immune-related genes Suggest combined genetic contribution to longevity
CHIP mutations Present (SF3B1, TET2 mutations) No malignancy or cardiovascular disease
Mitochondrial function Robust membrane potential & superoxide levels Preserved energy metabolism
Immune cell composition Expanded ABCs, enriched cytotoxic T cells Unique immune profile linked to longevity
Lipid metabolism Very efficient (high HDL, low VLDL) Cardiovascular protection
Inflammation Low glycoproteins A & B levels Reduced inflammaging
Gut microbiome High Bifidobacterium abundance Anti-inflammatory, supports metabolism
DNA methylation Predominantly hypomethylated CpGs with preserved methylation in repeats Epigenetic stability and decelerated aging
Biological age (epigenetic clocks) Significantly younger than chronological age Indicative of healthy aging
Proteomic profile Upregulated immune and lipid metabolism proteins; elevated SAA1 Protective mechanisms with unexplained elevated SAA1
Keywords
Supercentenarian, Extreme Longevity, Multiomics, Telomere Attrition, Rare Genetic Variants, Clonal Hematopoiesis (CHIP), Immune Cell Profiling, Mitochondrial Function, Metabolomics, Proteomics, Gut Microbiome, DNA Methylation, Epigenetic Clock, Biological Age, Inflammaging, Lipid Metabolism
Conclusion
This landmark study of M116 provides the first extensive multiomics blueprint of extreme human lifespan, revealing that exceptional longevity arises from a balance of advanced biological aging markers coupled with preserved and enhanced molecular functions across multiple systems. The results underscore the importance of immune competence, metabolic health, epigenetic stability, and microbiome composition in sustaining health during extreme aging, offering valuable insights into the biological underpinnings of healthy human longevity.
Smart Summary
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/hocmrche-4984/data/document.pdf", "num_examples": 319, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hocmrche- /home/sid/tuning/finetune/backend/output/hocmrche-4984/data/hocmrche-4984.json...
|
null
|
completed
|
1764952862
|
1764954304
|
NULL
|
/home/sid/tuning/finetune/backend/output/hocmrche- /home/sid/tuning/finetune/backend/output/hocmrche-4984/adapter...
|
False
|
Edit
Delete
|
|
c5b70c7a-ebc1-4954-a591-c0238ee7f574
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hohzvwua-5184
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Striving for Active
|
Striving for Active and Healthy Longevity
|
/home/sid/tuning/finetune/backend/output/hohzvwua- /home/sid/tuning/finetune/backend/output/hohzvwua-5184/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Striving for Active and Healthy Longevity: ASEAN’ “Striving for Active and Healthy Longevity: ASEAN’s Commitment to Successful Ageing” is a comprehensive meeting-summary report detailing ASEAN’s regional strategy to build societies where older adults can live healthier, more active, and more dignified lives. The report captures the key outcomes of a two-day consultative meeting held in February 2025, co-organised by the ASEAN Centre for Active Ageing and Innovation (ACAI) and the Economic Research Institute for ASEAN and East Asia (ERIA).
At the heart of the document is the ACAI 5-Year Strategic Plan (2025–2029)—a blueprint for guiding ASEAN countries through the rapid transition to ageing societies. The plan focuses on four strategic outcome areas:
Advancing health and well-being through integrated care, mental health support, social connectedness, and long-term care systems.
Building an inclusive economy and digital opportunities by promoting lifelong learning, dignified work, financial inclusion, and the “silver economy.”
Creating age-friendly, climate-resilient environments including accessible infrastructure, disaster-prepared communities, and urban planning tailored to older adults.
Ensuring organisational sustainability through multisectoral partnerships, resource mobilisation, knowledge-sharing, and evidence-based policymaking.
The report synthesises insights from ASEAN government officials, UN agencies, WHO, ADB, academic institutions, and civil society. Presentations covered essential themes such as:
The UN Decade of Healthy Ageing
Region-specific ageing indicators and long-term care models
The design and future use of the ASEAN Active Ageing Index (AAAI)
Life-course cohort studies for monitoring ageing trajectories
Innovative retirement, health promotion, and dementia-friendly approaches
The intersection of ageing with climate change and demographic shifts
A central message throughout the meeting is that ASEAN must adapt, collaborate, and innovate to manage its unprecedented demographic change. ACAI positions itself not as an implementer, but as a regional facilitator, connector, and knowledge hub—helping Member States translate research into action, harmonise policies, and share best practices.
The report concludes with governance decisions, next steps, and commitments from ACAI’s Governing Board, reaffirming ASEAN’s regional solidarity in building an active, inclusive, and resilient ageing society by 2029....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/hohzvwua-5184/data/document.pdf", "num_examples": 120, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hohzvwua- /home/sid/tuning/finetune/backend/output/hohzvwua-5184/data/hohzvwua-5184.json...
|
null
|
completed
|
1764867649
|
1764867860
|
NULL
|
/home/sid/tuning/finetune/backend/output/hohzvwua- /home/sid/tuning/finetune/backend/output/hohzvwua-5184/adapter...
|
False
|
Edit
Delete
|
|
5fb8253a-5683-4d21-bd0f-187139314fe8
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hsqorwgd-3567
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
LONGEVITY PAY
|
LONGEVITY PAY
|
/home/sid/tuning/finetune/backend/output/hsqorwgd- /home/sid/tuning/finetune/backend/output/hsqorwgd-3567/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is a concise, practical proposal out This document is a concise, practical proposal outlining how SCRTD (South Central Regional Transit District) can implement a Longevity Pay Program—a compensation strategy designed to reward long-term employees, reduce turnover, improve recruitment, and enhance organizational stability. It explains why longevity pay is especially important for a young, growing public agency competing for talent with neighboring employers such as the City of Las Cruces and Doña Ana County.
The core message:
Longevity pay motivates employees to stay, rewards loyalty, stabilizes the workforce, and reduces long-term training and hiring costs.
🧩 Key Points & Insights
1. What Longevity Pay Is
Longevity pay is an incentive that rewards employees for staying with the organization for extended periods.
It benefits:
employees (through financial or non-financial rewards)
employers (through stronger retention and lower costs)
Longevity-Pay
2. Why SCRTD Needs It
Since SCRTD is a relatively new transit agency, it struggles to compete with larger, established local employers. Longevity pay would:
increase employee satisfaction
retain skilled workers
stabilize operations
reduce turnover and training costs
Longevity-Pay
3. Start With Modest Early Rewards
Because the agency is young, the proposal recommends offering smaller, earlier rewards (starting at 5 years) to acknowledge employees who joined in SCRTD’s early growth phase.
Longevity-Pay
4. Tiered Longevity Pay Structure
A sample tiered system is provided:
After 5 years: +2% salary or $1,000 bonus
After 7 years: +3% salary or $1,500 bonus
After 10 years: +5% salary or $2,500 bonus
Every 5 years after: additional 2–3% increase or equivalent bonus
This creates clear milestones and long-term motivation.
Longevity-Pay
5. Tailor Pay to Job Roles
Not all roles have the same responsibilities. The proposal suggests:
Frontline staff: flat bonuses
Mid-level staff: percentage-based increases
Executive staff: higher percentage increases + bonuses
This adds fairness and role-appropriate incentives.
Longevity-Pay
6. Add Non-Monetary Recognition
Longevity rewards can include:
extra vacation days
plaques, certificates, or awards
special privileges
These strengthen morale without increasing payroll costs.
Longevity-Pay
7. Offer Flexible Reward Options
Employees could choose between:
cash bonuses
added leave
retirement contributions
This personalization increases satisfaction.
Longevity-Pay
8. Cap Longevity Pay for Sustainability
To prevent budget strain, the plan recommends capping longevity increases after 20–25 years of service.
Longevity-Pay
9. Example Plans
Two sample models show how SCRTD could implement longevity rewards:
Plan 1 — Tiered Milestones
Years 5–7: 2% or $1,000
Years 7–10: 3% or $1,500
Years 10–15: 5% or $2,500
Years 15+: 3% increments or $2,500 every 5 years
Plan 2 — Annual Bonus Formula
A simple formula:
Years of tenure × $100, paid annually (e.g., every November).
Longevity-Pay
🧭 Overall Conclusion
This document provides SCRTD with a clear, flexible framework for establishing a Longevity Pay Program that:
strengthens employee loyalty
supports retention
enhances recruitment competitiveness
rewards dedication fairly and sustainably
It balances financial incentives with non-monetary recognition and offers multiple example structures to fit different budget levels....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/hsqorwgd-3567/data/document.pdf", "num_examples": 4, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hsqorwgd- /home/sid/tuning/finetune/backend/output/hsqorwgd-3567/data/hsqorwgd-3567.json...
|
null
|
completed
|
1764878518
|
1764879107
|
NULL
|
/home/sid/tuning/finetune/backend/output/hsqorwgd- /home/sid/tuning/finetune/backend/output/hsqorwgd-3567/adapter...
|
False
|
Edit
Delete
|
|
b1ab3daa-4004-4428-ad09-17978a0db6a3
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
huecjzgt-7446
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The Value of Health
|
The Value of Health and Longevity
|
/home/sid/tuning/finetune/backend/output/huecjzgt- /home/sid/tuning/finetune/backend/output/huecjzgt-7446/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The Value of Health and Longevity is an in-depth, The Value of Health and Longevity is an in-depth, economics-driven exploration of why improvements in health, life expectancy, and disease prevention create extraordinary social and economic value—far greater than what is reflected in traditional GDP metrics. The paper argues that health is the most important form of human capital, and that longer, healthier lives are among the most powerful drivers of sustained economic prosperity.
Drawing on the work of the Lown Institute and building on the landmark insights of health economists such as David Cutler and Nobel laureate Angus Deaton, the document quantifies the enormous benefits that medical progress has delivered over the past century. It highlights that gains in longevity have contributed more to national well-being than virtually any other economic achievement, and that each additional year of life expectancy yields trillions of dollars in societal value when considering productivity, reduced disease burden, and enhanced quality of life.
The report emphasizes that historical improvements in cardiovascular care, vaccines, infection control, maternal health, and chronic-disease management have delivered some of the greatest returns on public investment in modern history. It demonstrates that even modest future improvements—such as reducing cancer mortality or slowing age-related disease—would generate economic benefits that dwarf typical innovation investments.
A central theme is the need for a more preventive, equitable, and value-conscious healthcare system. The authors warn that U.S. healthcare is simultaneously expensive and inefficient, delivering below-potential health outcomes despite the world’s highest spending. They argue that policies must shift toward reducing waste, expanding access to effective care, and addressing social determinants of health.
In its closing sections, the paper calls for a new national commitment to long-term health innovation, including longevity science, early-stage disease detection, and public-health infrastructure. It asserts that viewing health as an economic engine—not merely an expenditure—can guide better policymaking, shape smarter resource allocation, and unlock vast economic potential for future generations.
If you'd like, I can also prepare:
✅ a one-page executive summary
✅ a bullet-point key insights list
✅ a quiz or study guide
Just let me know!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/huecjzgt-7446/data/document.pdf", "num_examples": 210, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/huecjzgt- /home/sid/tuning/finetune/backend/output/huecjzgt-7446/data/huecjzgt-7446.json...
|
null
|
queued
|
1765054089
|
1765055303
|
NULL
|
/home/sid/tuning/finetune/backend/output/huecjzgt- /home/sid/tuning/finetune/backend/output/huecjzgt-7446/adapter...
|
False
|
Edit
Delete
|
|
808a5390-19b0-40fd-ad65-b2cf8faf5060
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hwxterdf-6513
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Predicting Human Lifespan
|
Predicting Human Lifespan Limits
|
/home/sid/tuning/finetune/backend/output/hwxterdf- /home/sid/tuning/finetune/backend/output/hwxterdf-6513/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
1. Humans have been living longer—but is there a l 1. Humans have been living longer—but is there a limit?
Survival and life expectancy have improved dramatically due to income, nutrition, education, sanitation, and medicine.
But scientists still debate whether human lifespan is capped at 85, 100, 125, or even 150 years.
The paper addresses this debate using a new mathematical method.
2. A New Model of Human Survival Dynamics
The authors use a survival function:
𝑆
(
𝑥
)
=
exp
[
−
(
𝑥
/
𝛼
)
𝛽
(
𝑥
)
]
S(x)=exp[−(x/α)
β(x)
]
where:
α = characteristic life
β(x) = an age-dependent exponent describing how sharply survival declines with age
They show that β(x) becomes more “negatively curved” at extreme ages, which creates the maximum survival tendency—a universal biological effect that pushes death rates down but eventually forces an upper limit.
They model β(x) with a quadratic equation, allowing them to calculate a point called q, the “upper x-intercept,” from which lifespan limits can be predicted.
3. Data Used
They analyze Swedish female survival data (1977–2007)—the most reliable long-term demographic dataset—and verify the method across 31 industrialized countries worldwide.
4. The Key Result: The Lifespan Limit ≈ 125 Years
The model reveals a strong linear relationship between the q parameter and the predicted lifespan limit ω across countries:
𝜔
=
0.458
𝑞
+
54.241
ω=0.458q+54.241
Using this, they find:
In multiple modern countries, maximum lifespan values cluster around 122–130 years.
The predicted global human lifespan limit is ~125 years, matching known records (e.g., Jeanne Calment’s 122.45 years).
For Swedish women, the predicted limit approaches 125 years in the most recent decade.
5. Implications
The study concludes:
Human lifespan is likely approaching a true biological limit.
Survival curves show increasing compression near the limit—more people live close to the maximum age, but very few can surpass it.
Anti-aging technologies might allow more people to reach the limit, but probably cannot exceed it significantly.
The findings support existing biological theories that propose genetic and physiological ceilings to human longevity.
The authors also warn of rising social, medical, and economic challenges as populations age toward this limit.
6. Verification and Strength of the Model
The authors validate the model through:
Mathematical consistency checks
Mortality pattern simulations
High correlation (r² ≥ 0.95–0.99) between model predictions and real demographic data
This shows the model reliably captures the dynamics of human aging....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/hwxterdf-6513/data/document.pdf", "num_examples": 72, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hwxterdf- /home/sid/tuning/finetune/backend/output/hwxterdf-6513/data/hwxterdf-6513.json...
|
null
|
completed
|
1764874844
|
1764876484
|
NULL
|
/home/sid/tuning/finetune/backend/output/hwxterdf- /home/sid/tuning/finetune/backend/output/hwxterdf-6513/adapter...
|
False
|
Edit
Delete
|
|
693f4695-96c4-436d-8896-f78f9bc30cca
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hzfzpqvz-1137
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity and Hazardous
|
Longevity and Hazardous Duty
|
/home/sid/tuning/finetune/backend/output/hzfzpqvz- /home/sid/tuning/finetune/backend/output/hzfzpqvz-1137/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is an official Operating Policy and This document is an official Operating Policy and Procedure (OP 70.25) from Texas Tech University outlining rules, eligibility, and administrative guidance for Longevity Pay and Hazardous Duty Pay for university employees.
Purpose
To establish and explain the university’s policy for awarding longevity pay and hazardous duty pay in accordance with Texas Government Code.
Key Components of the Policy
1. Longevity Pay
Payment Structure
Eligible employees receive $20 per month for every 2 years of lifetime state service, up to 42 years.
Increases occur every additional 24 months of service.
Eligibility
Employees must:
Be regular full-time, benefits-eligible staff on the first workday of the month.
Not be on leave without pay the first workday of the month.
Have accrued at least 2 years of lifetime state service by the previous month’s end.
Certain administrative academic titles (e.g., deans, vice provosts) are included.
Split appointments within TTU/TTUHSC are combined; split appointments with other Texas agencies are not combined.
Employees paid from faculty salary lines to teach are not eligible.
Student-status positions are not eligible.
Longevity Pay Rules
Not prorated.
Employees who terminate or go on LWOP after the first day of the month still receive the full month's longevity pay.
Paid by the agency employing the individual on the first day of the month.
Longevity pay is not included when calculating:
lump-sum vacation payouts,
vacation/sick leave death benefits.
Eligibility Restrictions Related to Retirement
Retired before June 1, 2005, returned before Sept 1, 2005 → eligible for frozen longevity amount.
Returned after Sept 1, 2005 → not eligible.
Retired on or after June 1, 2005 and receiving an annuity → not eligible.
2. Lifetime Service Credit (Longevity Service Credit)
Employees accrue service credit for:
Any previous Texas state employment (full-time, part-time, temporary, faculty, student, legislative).
Time not accrued for:
Service in public junior colleges or Texas public school systems.
Hazardous duty periods if the employee is receiving hazardous duty pay.
Other rules:
Leave without pay for an entire month → no credit.
LWOP for part of a month → credit allowed if otherwise eligible.
Employees must provide verification of prior state service using inter-agency forms.
3. Longevity Payment Schedule
A structured monthly rate based on total months of state service, starting at:
0–24 months: $0
25–48 months: $20
...increasing in $20 increments every 24 months...
505+ months: $420
(Full table is included in the policy.)
4. Hazardous Duty Pay
Eligibility
Paid to commissioned peace officers performing hazardous duty.
Must have completed 12 months of hazardous-duty service by the previous month’s end.
Payment
$10 per 12-month period of lifetime hazardous duty service.
Part-time employees receive a proportional amount.
If an officer transfers to a non-hazardous-duty role, HDPay stops, and service rolls into longevity credit.
5. Hazardous Duty Service Credit
Based on months served in a hazardous-duty position.
Combined with other state service to determine total service.
Determined as of the last day of the preceding month.
6. Administration
Human Resources is responsible for:
Maintaining service records
Determining eligibility
Processing pay
Correcting administrative errors (retroactive to last legislative change)
Longevity and hazardous duty pay appear separately on earnings statements.
7. Policy Authority & Change Rights
Governed by Texas Government Code:
659.041–659.047 (Longevity Pay)
659.301–659.308 (Hazardous Duty Pay)
Texas Tech reserves the right to amend or rescind the policy at any time.
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/hzfzpqvz-1137/data/document.pdf", "num_examples": 45, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hzfzpqvz- /home/sid/tuning/finetune/backend/output/hzfzpqvz-1137/data/hzfzpqvz-1137.json...
|
null
|
queued
|
1765048491
|
1765048568
|
NULL
|
/home/sid/tuning/finetune/backend/output/hzfzpqvz- /home/sid/tuning/finetune/backend/output/hzfzpqvz-1137/adapter...
|
False
|
Edit
Delete
|
|
3e73ef7e-46ff-49fa-aa12-b9a92621455a
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
icofglqw-1630
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
How long do patients
|
How long do patients with chronic disease ?
|
/home/sid/tuning/finetune/backend/output/icofglqw- /home/sid/tuning/finetune/backend/output/icofglqw-1630/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The PDF is a clinical research article that invest The PDF is a clinical research article that investigates how long patients with chronic medical conditions live, and how their survival compares with that of the general population. The study focuses on using cohort survival analysis to estimate life expectancy after diagnosis for individuals with chronic diseases.
The document is designed to help clinicians, patients, and caregivers better understand:
the prognosis of chronic illnesses,
the expected years of life after diagnosis, and
variations in survival based on disease type, risk factors, and demographics.
The study includes both model-based projections and observed survival curves from multiple patient populations.
📌 Main Purpose of the PDF
To provide accurate survival estimates for chronic disease patients by analyzing:
life expectancy after diagnosis,
mortality rates over time,
relative survival compared with age-matched individuals,
the effect of disease severity and comorbidities.
The paper aims to offer practical, medically meaningful data for planning long-term patient care.
🏥 Diseases Analyzed
The document examines survival patterns for multiple chronic illnesses (as shown in the extracted table), including:
Diabetes
Hypertension
Chronic Obstructive Pulmonary Disease (COPD)
Coronary artery disease
Cancer (various types)
Heart failure
Chronic kidney disease
Each condition has its own survival profile, reflecting its unique biological and clinical course.
📊 Key Findings
1. Survival varies greatly by disease type.
Some diseases show relatively long survival (e.g., controlled hypertension), while others show rapid decline (e.g., advanced heart failure or late-stage cancer).
2. Life expectancy decreases significantly with disease severity.
Mild and moderate stages allow longer survival.
Severe stages reduce life expectancy sharply.
3. Age at diagnosis has a major effect.
Younger patients typically lose more potential life years, even if they survive longer after diagnosis.
4. Comorbidities worsen survival outcomes.
Patients with multiple chronic conditions have significantly lower life expectancy than those with a single disease.
📈 Data & Tables Provided
The PDF includes a major table that lists:
Years lived after diagnosis
Average age at death
Expected survival window
Comparison with general population life expectancy
Example entries include life expectancy figures such as:
Patients living 5–8 years after diagnosis of certain diseases
Some conditions showing surviving 10–14 years
Severe diseases showing survival 3–6 years
All data illustrate how chronic illness reduces lifespan and initiates a predictable survival pattern.
🧪 Methodology
The study uses:
Cohort survival analysis
Longitudinal patient records over many years
Kaplan–Meier survival curves
Hazard ratio modeling
These methods provide precise, statistically robust estimates of life expectancy.
❤️ Why This Information Matters
The document helps:
Patients
Understand realistic expectations for future health and lifespan.
Clinicians
Plan treatment goals, monitoring frequency, and long-term care.
Caregivers & Families
Make informed decisions about support, lifestyle adjustments, and long-term planning.
🧾 Overall Conclusion
The PDF shows that chronic diseases significantly reduce life expectancy, but the extent varies widely depending on:
disease type,
severity,
patient age,
and comorbid conditions.
It provides clear survival data to guide medical decision-making and patient counseling.
If you want, I can also provide:
✅ a short summary
✅ a very simple explanation
✅ a list of life expectancies by disease
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/icofglqw-1630/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/icofglqw- /home/sid/tuning/finetune/backend/output/icofglqw-1630/data/icofglqw-1630.json...
|
null
|
failed
|
1764891680
|
1764897097
|
NULL
|
/home/sid/tuning/finetune/backend/output/icofglqw- /home/sid/tuning/finetune/backend/output/icofglqw-1630/adapter...
|
False
|
Edit
Delete
|
|
a772017a-4134-4bac-a5c9-ddfcc66f3362
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
igzihgua-6112
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity Economy
|
Longevity Economy Principles
|
/home/sid/tuning/finetune/backend/output/igzihgua- /home/sid/tuning/finetune/backend/output/igzihgua-6112/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a strategic framework document develop This PDF is a strategic framework document developed to guide governments, businesses, and institutions in preparing for a world where people live longer, healthier, and more productive lives. It outlines the core principles, opportunities, and structural shifts needed to build a “Longevity Economy” — an economic system designed not around ageing as a burden, but around longevity as a powerful source of growth, innovation, and social progress.
The core message:
Longevity is not just a demographic challenge — it is a major economic opportunity. To fully benefit from longer lives, societies must redesign policies, markets, workplaces, and institutions around human longevity.
📘 1. Purpose and Vision of the Longevity Economy
The document defines the Longevity Economy as an ecosystem that:
Supports longer lifespans and longer healthspans
Leverages older adults as consumers, workers, creators, and contributors
Encourages investment in healthy ageing innovations
Supports life-long learning and multi-stage careers
Reduces age-related inequalities
The vision is to shift from a cost-based view of ageing to a value-based view of longevity.
Longevity Economy Principles
🌍 2. Core Longevity Economy Principles
The report outlines a set of cross-cutting principles that guide how systems must evolve.
⭐ Principle 1: Longevity is a Societal Asset
Longer lives should be seen as added productive capacity—more talent, skills, experience, and economic contribution.
⭐ Principle 2: Invest Across the Entire Life Course
Health and economic policy must shift from late-life intervention to early, continuous investment in:
Education
Skills
Health
Social infrastructure
⭐ Principle 3: Prevention Over Treatment
The Longevity Economy relies on:
Early prevention of disease
Healthy ageing strategies
Technologies that delay ageing-related decline
⭐ Principle 4: Foster Age-Inclusive Systems
Institutions must eliminate structural ageism in:
Employment
Finance
Healthcare
Innovation ecosystems
⭐ Principle 5: Support Multigenerational Integration
Longevity works best when generations support each other—economically, socially, and technologically.
Longevity Economy Principles
🏛️ 3. Policy and Governance Recommendations
The PDF proposes a governance model for longevity-oriented societies:
A. Cross-government Longevity Councils
Bringing together departments of:
Health
Education
Finance
Labor
Social protection
Innovation
B. Long-term planning models
Governments must integrate longevity into:
Fiscal planning
Workforce strategies
Healthcare investment
Research agendas
C. Regulation that supports innovation
This includes:
Incentivizing longevity tech startups
Reforming medical approval pathways
Encouraging preventive health markets
Longevity Economy Principles
💼 4. Economic and Business Opportunities
The document identifies several rapidly growing longevity-driven industries:
✔️ Healthspan and wellness technologies
Digital biomarkers
AI health diagnostics
Wearables
Precision medicine
Anti-aging biotech
✔️ Lifelong learning and reskilling
Workers will need multiple skill transitions across longer careers.
✔️ Age-inclusive workplaces
Companies benefit from retaining and integrating older workers.
✔️ Financial products for long life
New markets include:
Longevity insurance
Long-term savings tools
Flexible retirement products
✔️ Built environments for longevity
Age-friendly cities
Smart homes
Mobility innovations
The report emphasizes that the Longevity Economy is one of the biggest economic opportunities of the 21st century.
Longevity Economy Principles
🧬 5. Health and Technology Transformations
The PDF highlights the rapidly advancing fields shaping the longevity future:
Geroscience
Senolytics
Regenerative medicine
AI-guided diagnostics
Telehealth and remote care
Personalized health interventions
These technologies will allow people not only to live longer but also to remain healthier and more productive.
Longevity Economy Principles
🧑🤝🧑 6. Social Foundations of a Longevity Economy
Several social structures must be redesigned:
✔️ Social norms
The traditional 3-stage life (education → work → retirement) becomes obsolete.
✔️ Education
Lifelong, modular learning replaces one-time schooling.
✔️ Work
Flexible, multi-stage careers with mid-life transitions become normal.
✔️ Intergenerational cohesion
Policies must avoid generational tension and instead strengthen solidarity.
✔️ Reducing inequality
Longevity benefits must be shared across socioeconomic groups.
Longevity Economy Principles
🔮 7. Vision for the Future
The report concludes with a future in which:
Longer lives lead to sustained economic growth
Workforces are multigenerational
Health systems emphasize prevention
Technology supports independent and healthy ageing
New industries arise around longevity innovation
People enjoy longer, healthier, more meaningful lives
This is the blueprint for a prosperous longevity society and economy.
Longevity Economy Principles
⭐ Overall Summary
This PDF presents a comprehensive framework for designing a Longevity Economy, emphasizing that increased lifespan is an economic and social opportunity—if societies invest wisely. It outlines principles, policies, technological innovations, and social transformations necessary to build a future where longer lives are healthier, more productive, and more fulfilling. The document positions longevity as a central economic driver for the 21st century....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/igzihgua-6112/data/document.pdf", "num_examples": 81, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/igzihgua- /home/sid/tuning/finetune/backend/output/igzihgua-6112/data/igzihgua-6112.json...
|
null
|
completed
|
1764880893
|
1764892231
|
NULL
|
/home/sid/tuning/finetune/backend/output/igzihgua- /home/sid/tuning/finetune/backend/output/igzihgua-6112/adapter...
|
False
|
Edit
Delete
|
|
469acf6e-c83b-4fd3-9ec8-f3071056700f
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ipibkpko-4945
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
JAPANESE LONGEVITY DIET
|
JAPANESE LONGEVITY DIET
|
/home/sid/tuning/finetune/backend/output/ipibkpko- /home/sid/tuning/finetune/backend/output/ipibkpko-4945/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a visual infographic-style guide expla This PDF is a visual infographic-style guide explaining the key principles of the Japanese longevity diet, highlighting the foods, nutrients, eating habits, and cultural practices associated with Japan’s famously long life expectancy (84.78 years). It presents a clear overview of the traditional Japanese diet, its health benefits, and how various food groups contribute to longevity through nutrient richness, digestive support, cardiovascular protection, and immune enhancement.
The infographic also includes culturally significant facts, dietary pillars, common dishes, and the role of soy, rice, vegetables, algae, and fermented foods in Japan’s long-lived population.
🍱 1. Pillars of the Japanese Longevity Diet
The document organizes the longevity diet into foundational food groups, each with scientific and nutritional value:
⭐ Rice
Rich in carbohydrates, protein, minerals (especially phosphorus & potassium), vitamin E, B vitamins, and fiber—promotes digestive health and fullness.
infographics-japanese-longgevit…
⭐ Fish & Seafood
High in omega-3 fatty acids, crucial for nervous, immune, and cardiovascular systems; rich in iodine and selenium.
infographics-japanese-longgevit…
⭐ Algae (Wakame, Nori)
Loaded with macro- & micronutrients, vitamin C, beta-carotene, fiber, protein, and omega-3s; noted for anti-cancer, antibacterial, and antiviral effects.
infographics-japanese-longgevit…
⭐ Soy & Beans
Provide protein, lecithin, fiber, vitamins E, K2, and B-group vitamins; recommended for gut health and malabsorption.
infographics-japanese-longgevit…
⭐ Nattō
A fermented soy food containing nattokinase, which helps regulate blood pressure, cholesterol, blood sugar, and coagulation; also has anti-cancer benefits.
infographics-japanese-longgevit…
⭐ Raw or Undercooked Eggs
Source of proteins, lecithin, and fats that support nervous and immune system function.
infographics-japanese-longgevit…
⭐ Tsukemono (Fermented Pickles)
Contain lactic acid bacteria that enhance digestion, immunity, and microbiome health.
infographics-japanese-longgevit…
⭐ Matcha (Powdered Green Tea)
Rich in polyphenols and flavonoids; supports cardiovascular health and reduces cholesterol.
infographics-japanese-longgevit…
⭐ Vegetables & Fresh Spices
Turnip, onions, cabbage, chives—high in fiber, vitamins, and minerals.
infographics-japanese-longgevit…
⭐ Fungi (e.g., Shiitake)
Provide enzymes and beta-D-glucan, a compound that boosts immune defenses, especially against cancer.
infographics-japanese-longgevit…
🍜 2. Japanese Soups and Noodle Dishes
The infographic gives examples of traditional soups:
Miso Ramen – wheat noodles in a meat broth with pork toppings.
Soba – buckwheat noodles in a soy-fish broth with algae.
Mandu-guk – egg noodles and dumplings in soup.
infographics-japanese-longgevit…
These dishes reflect the balance of proteins, fermented foods, and mineral-rich broths in Japanese cuisine.
🫘 3. Soy-Based Foods
The PDF categorizes soy foods by fermentation level:
✔ Natto – fermented, rich in nattokinase
✔ Soy sauce & miso paste – fermented flavoring agents
✔ Tofu – unfermented soy milk product
✔ Edamame – unfermented green soybeans
Each category illustrates soy’s central role in Japanese health and nutrition.
infographics-japanese-longgevit…
🍚 4. Rice-Based Foods
The infographic shows familiar rice dishes:
✔ Sushi – vinegared rice with raw/marinated fish
✔ Onigiri – triangular rice balls wrapped in nori
✔ Boiled rice – a staple side dish
✔ Mochi – rice cakes often filled with beans or tea flavors
infographics-japanese-longgevit…
These highlight rice as the foundation of the Japanese dietary pattern.
💡 5. “Did You Know?” Cultural Longevity Insights
The PDF includes cultural notes explaining why Japanese dietary habits support long life:
Japanese eat little bread or potatoes—they rely on rice.
Genuine wasabi is extremely expensive and potent.
Meals are celebrated (e.g., tea ceremony), and eating while walking is discouraged.
Historically, meat consumption was restricted until the 19th century.
Japanese cooking uses little sugar or salt; flavors come from soy sauce, ginger, and wasabi.
Matcha often replaces coffee and chocolate.
Meals consist of small, colorful seasonal dishes, eaten slowly and mindfully with chopsticks.
infographics-japanese-longgevit…
These cultural behaviors reinforce healthy digestion, slower eating, portion control, and enjoyment of food—all linked to longevity.
⭐ Overall Summary
This infographic presents a complete visual guide to the Japanese longevity diet, highlighting nutrient-dense whole foods such as rice, fish, algae, soy, vegetables, fungi, fermented foods, and matcha. It emphasizes balanced meals, mindful eating, low sugar and low salt intake, and fermented dishes that support gut health. It also connects Japanese cultural customs with remarkable longevity....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/ipibkpko-4945/data/document.pdf", "num_examples": 4, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ipibkpko- /home/sid/tuning/finetune/backend/output/ipibkpko-4945/data/ipibkpko-4945.json...
|
null
|
completed
|
1764888328
|
1764888925
|
NULL
|
/home/sid/tuning/finetune/backend/output/ipibkpko- /home/sid/tuning/finetune/backend/output/ipibkpko-4945/adapter...
|
False
|
Edit
Delete
|
|
49b24cbd-34ce-4f86-a06d-3f2c2f8f6384
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
iuwkyasg-0219
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Global Roadmap for Health
|
Global Roadmap for Healthy Longevity
|
/home/sid/tuning/finetune/backend/output/iuwkyasg- /home/sid/tuning/finetune/backend/output/iuwkyasg-0219/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Global Roadmap for Healthy Longevity
(Consensus Global Roadmap for Healthy Longevity
(Consensus Study Report, National Academy of Medicine, 2022)
This report presents a global, evidence-based strategy for transforming aging into an opportunity by promoting healthy longevity—a state where people live long lives in good health, with full physical, cognitive, and social functioning, and where societies harness the potential of older adults.
🧠 1. Why This Roadmap Matters
Across the world, populations are aging faster than ever due to:
Longer life expectancy, and
Declining birth rates
The number of people aged 65+ has been growing more rapidly than any other age group, and this trend will continue.
Global Roadmap for Healthy Long…
However, a critical problem exists:
📉 People are living longer, but not healthier.
Between 2000 and 2019, global lifespan increased, especially in low- and middle-income countries,
but years of good health stagnated, meaning more years are spent in poor health.
Global Roadmap for Healthy Long…
🌍 2. Purpose of the Roadmap
To address this challenge, the National Academy of Medicine convened a global, multidisciplinary commission to create a roadmap for achieving healthy longevity worldwide.
Global Roadmap for Healthy Long…
The aim is to help countries develop data-driven, all-of-society strategies that promote health, equity, productivity, and human flourishing across the lifespan.
❤️ 3. What Healthy Longevity Means
According to the commission, healthy longevity is:
Living long with health, function, meaning, purpose, dignity, and social well-being, where years in good health approach the biological lifespan.
Global Roadmap for Healthy Long…
This reflects the WHO definition of health as a state of complete:
physical
mental
social well-being
—not merely the absence of disease.
🎯 4. Vision for the Future
The report emphasizes that aging societies can thrive, not decline, if healthy longevity is embraced as a societal goal.
With the right policies, older adults can:
Contribute meaningfully to families and communities
Participate in the workforce or volunteer roles
Live with dignity, purpose, and independence
Support strong economies and intergenerational cohesion
Global Roadmap for Healthy Long…
⭐ The future can be optimistic—if we act now.
⚠️ 5. The Cost of Inaction
If societies fail to respond, consequences include:
More years lived in poor health
Higher suffering and dependency
Increased financial burden on families
Lost productivity and fewer opportunities for younger and older people
Lower GDP
Larger fiscal pressures on governments
Global Roadmap for Healthy Long…
In short:
Ignoring healthy longevity is expensive—socially and economically.
🧩 6. Principles for Achieving Healthy Longevity
The commission identifies five core principles:
Global Roadmap for Healthy Long…
1. People of all ages should reach their full health potential
With dignity, meaning, purpose, and functioning.
2. Societies must enable optimal health at every age
Creating conditions where individuals can flourish physically, mentally, and socially.
3. Reduce disparities and advance equity
So that people of all countries and social groups benefit.
4. Recognize older adults as valuable human, social, and financial capital
Their contributions strengthen families, communities, and economies.
5. Use data and meaningful metrics
To measure progress, guide policy, and ensure accountability.
🏛️ 7. How Countries Should Act
Every nation must create its own pathway based on its unique demographics, infrastructure, and culture.
However, the roadmap emphasizes:
✔ Government-led calls to action
✔ Evidence-based planning
✔ Multisector collaboration (healthcare, urban design, technology, finance, education)
✔ Building supportive social and community infrastructure
Global Roadmap for Healthy Long…
These are essential for transforming aging from a crisis into an opportunity.
🌟 Perfect One-Sentence Summary
The Global Roadmap for Healthy Longevity outlines how aging societies can ensure that people live longer, healthier, more meaningful lives—and emphasizes that now is the time for coordinated global action to achieve this future.
If you'd like, I can also create:
📌 A diagram / infographic
📌 A short summary
📌 A comparison with your other longevity PDFs
📌 A PowerPoint-style slide set
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/iuwkyasg-0219/data/document.pdf", "num_examples": 4, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/iuwkyasg- /home/sid/tuning/finetune/backend/output/iuwkyasg-0219/data/iuwkyasg-0219.json...
|
null
|
completed
|
1764894928
|
1764895530
|
NULL
|
/home/sid/tuning/finetune/backend/output/iuwkyasg- /home/sid/tuning/finetune/backend/output/iuwkyasg-0219/adapter...
|
False
|
Edit
Delete
|
|
f670a141-a6c7-4eea-bb7e-c1e9c370a932
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jbzddgkz-1697
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Socioeconomic Implication
|
Socioeconomic Implications of Increased life
|
/home/sid/tuning/finetune/backend/output/jbzddgkz- /home/sid/tuning/finetune/backend/output/jbzddgkz-1697/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is a comprehensive analysis authored This document is a comprehensive analysis authored by Rick Gorvett and presented at the Living to 100 Symposium (2014). It examines the far-reaching socioeconomic, cultural, financial, and ethical consequences of significant increases in human longevity—an emerging reality driven by rapid scientific and medical progress.
Purpose of the Paper
While actuarial science traditionally focuses on the financial effects of longevity (health care costs, retirement systems, Social Security), this paper expands the discussion to explore the broader societal shifts that could occur as people routinely live far longer lives.
Scientific and Medical Context
The paper reviews:
The 30-year rise in life expectancy over the last century.
Advances in medicine, biotechnology, and aging science (e.g., insulin/IGF-1 pathway inhibition, caloric restriction research).
Cultural and historical reflections on the human desire for extended life.
Radical projections from futurists (Kurzweil, de Grey) versus more conservative demographic forecasts.
Main Implications of Increased Longevity
1. Economic & Financial Impacts
Pensions & retirement systems: Longer lifespans strain traditional retirement models; retirement ages and structures may need major redesign.
Workforce dynamics: Older workers may remain employed longer; effects on younger workers are uncertain but may not be negative.
Human capital: Longer lives encourage greater education, retraining, and skill acquisition throughout life.
Saving & investment behavior: With multiple careers and life stages, traditional financial planning may be replaced by more flexible, cyclical patterns.
2. Family & Personal Changes
Marriage & relationships: Longer life may normalize serial marriages, term contracts, or extended cohabitation; family structures may become more complex.
Family composition: Wider age gaps between siblings, blended families, and overlapping generations (parent and grandparent roles).
Education: Learning becomes lifelong, with repeated periods of study and retraining.
Health & fertility: Increased longevity requires parallel gains in healthy lifespan; fertility windows may expand.
3. Ethical and Social Considerations
Medical ethics: Some may reject life-extension technologies on moral or religious grounds, creating divergent longevity groups.
Value systems: A longer, healthier life may alter cultural norms, risk perception, and even legal penalties.
Potential downsides: Longevity may increase psychological strain; more years of life do not guarantee more years of satisfaction.
Overall Conclusion
The paper emphasizes the complexity and unpredictability inherent in a future of greatly extended lifespans. The interconnectedness of economic, social, family, health, and ethical factors makes actuarial modeling extremely challenging.
To adapt, society may need to reinvent the traditional three-phase life cycle—education, work, retirement—into a more fluid structure with:
>multiple careers,
>repeated education periods,
>flexible work patterns,
and a diminished emphasis on traditional retirement.
The author ultimately argues that actuaries and policymakers must prepare for a profound and multidimensional transformation of societal systems as longevity rises....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jbzddgkz-1697/data/document.pdf", "num_examples": 157, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jbzddgkz- /home/sid/tuning/finetune/backend/output/jbzddgkz-1697/data/jbzddgkz-1697.json...
|
null
|
completed
|
1764868151
|
1764868537
|
NULL
|
/home/sid/tuning/finetune/backend/output/jbzddgkz- /home/sid/tuning/finetune/backend/output/jbzddgkz-1697/adapter...
|
False
|
Edit
Delete
|
|
f0d792ca-c8f4-4cea-9e5a-f838a0d96e47
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jcskuiyn-2380
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Drivers of your health
|
Drivers of your health and longevity
|
/home/sid/tuning/finetune/backend/output/jcskuiyn- /home/sid/tuning/finetune/backend/output/jcskuiyn-2380/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Drivers of Your Health and Longevity” is a compre “Drivers of Your Health and Longevity” is a comprehensive report outlining the 23 key modifiable factors that significantly influence a person’s health, lifespan, and overall well-being. It emphasizes that 19 out of these 23 drivers lie outside the traditional healthcare system, meaning most of what determines longevity comes from everyday habits and environmental conditions.
These drivers are grouped into major categories:
1. Physical Inputs
Covers diet, supplements, substance use, hydration, and their direct effects on disease risk, cognitive health, and mortality. Examples include fasting improving metabolic health, omega-3 protecting the brain and heart, and sleep duration affecting mortality.
2. Movement
Includes mobility and exercise. The report highlights that regular physical activity can extend life by 3–5 years, reduce mortality risk, and improve overall physical and mental function.
3. Daily Living
Encompasses social interaction, productive activities, content consumption, and hygiene. Strong social relationships, volunteering, and balanced media usage are linked to better physical and mental health.
4. Exposure
Focuses on nature, atmospheric conditions, light, noise, and environmental materials. Evidence shows that nature exposure, reduced pollution, sunlight, and safe environments contribute to better mental health, reduced stress, and lower mortality.
5. Stress
Explains how both positive (eustress) and chronic stress affects disease risk, cognitive function, and life expectancy.
6. State of Being
Includes mindsets, beliefs, body composition, physical security, and economic security. Optimism, gratitude, financial stability, and safety are shown to have strong physiological and psychological benefits.
7. Healthcare
Covers vaccination, early detection, treatment, and medication adherence. Effective healthcare interventions (e.g., vaccines, screening, treatments) significantly reduce mortality and improve survival rates.
📌 Overall Purpose of the Report
The document emphasizes that longevity is not determined primarily by genetics or medical care, but by daily choices, behaviors, and environmental exposures. By optimizing these 23 modifiable drivers, individuals can dramatically improve their health span and lifespan.
If you want, I can also provide:
✅ A short summary
✅ A quiz based on this file
✅ Key insights
✅ A table of the 23 drivers
Just tell me!
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jcskuiyn-2380/data/document.pdf", "num_examples": 141, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jcskuiyn- /home/sid/tuning/finetune/backend/output/jcskuiyn-2380/data/jcskuiyn-2380.json...
|
null
|
queued
|
1765224167
|
1765224806
|
NULL
|
/home/sid/tuning/finetune/backend/output/jcskuiyn- /home/sid/tuning/finetune/backend/output/jcskuiyn-2380/adapter...
|
False
|
Edit
Delete
|
|
d295b561-a54e-42b9-b518-757cf4cba0c8
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jhaurcfl-8765
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Innovative approaches
|
Innovative approaches to managing longevity risk
|
/home/sid/tuning/finetune/backend/output/jhaurcfl- /home/sid/tuning/finetune/backend/output/jhaurcfl-8765/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a professional actuarial and financial This PDF is a professional actuarial and financial analysis report focused on how Asian countries can manage, mitigate, and transfer longevity risk—the financial risk that people live longer than expected. As populations across Asia age rapidly, pension systems, insurers, governments, and employers face rising strain due to longer lifespans, shrinking workforces, and escalating retirement costs. The report highlights global best practices, limitations of existing pension frameworks, and emerging models designed to stabilize retirement systems under demographic pressure.
The document is both analytical and policy-oriented, offering insights for regulators, insurers, asset managers, and policymakers.
🔶 1. Purpose of the Report
The report aims to:
Explain why longevity risk is increasing in Asia
Assess current pension and retirement structures
Present innovative financial and insurance solutions to manage the growing risk
Provide case studies and global examples
Guide Asian markets in adapting to demographic challenges
Innovative approaches to managi…
🔶 2. The Longevity Risk Challenge in Asia
Asia is aging at an unprecedented speed—faster than Europe and North America did. This creates several structural problems:
✔ Rapid increases in life expectancy
People are living longer than financial systems were designed for.
✔ Declining fertility rates
Shrinking worker-to-retiree ratios threaten the sustainability of pay-as-you-go pension systems.
✔ High savings culture but insufficient retirement readiness
Many households lack formal retirement coverage or under-save.
✔ Growing fiscal pressure on governments
Public pension liabilities expand as longevity rises.
✔ Rising health and long-term care costs
Aging populations require more medical and care services.
Innovative approaches to managi…
🔶 3. Gaps in Current Pension Systems
The report identifies weaknesses across Asian retirement systems:
Heavy reliance on state pension programs that face insolvency risks
Underdeveloped private pension markets
Limited annuity markets
Dependence on lump-sum withdrawals rather than lifetime income
Poor financial literacy regarding longevity risk
Innovative approaches to managi…
These gaps expose both individuals and institutions to substantial long-term financial risk.
🔶 4. Innovative Approaches to Managing Longevity Risk
The report outlines several advanced solutions that Asian markets can adopt:
⭐ A. Longevity Insurance Products
Life annuities
Provide guaranteed income for life
Transfer longevity risk from individuals to insurers
Deferred annuities / longevity insurance
Begin payouts later in life (e.g., at age 80 or 85)
Cost-efficient way to manage tail longevity risk
Enhanced annuities
Adjust payments for poorer-health individuals
Variable annuities and hybrid products
Combine investment and insurance elements
Innovative approaches to managi…
⭐ B. Longevity Risk Transfer Markets
Longevity swaps
Pension funds swap uncertain liabilities for fixed payments
Used widely in the UK; emerging interest in Asia
Longevity bonds
Government- or insurer-issued bonds tied to survival rates
Help investors hedge longevity exposure
Reinsurance solutions
Global reinsurers absorb longevity risk from domestic insurers and pension plans
Innovative approaches to managi…
⭐ C. Institutional Strategies
Better asset–liability matching
Increased allocation to long-duration bonds
Use of inflation-protected assets
Leveraging mortality data analytics and predictive modeling
Innovative approaches to managi…
⭐ D. Public Policy Innovations
Raising retirement ages
Automatic enrollment in pension plans
Financial education to improve individual decision-making
Incentivizing annuitization
Innovative approaches to managi…
🔶 5. Country Examples
The report includes cases from markets such as:
Japan, facing the world’s highest old-age dependency ratio
Singapore, strong mandatory savings but low annuitization
Hong Kong, improving Mandatory Provident Fund design
China, transitioning from family-based to system-based retirement security
Innovative approaches to managi…
Each market faces distinct challenges but shares a common need for innovative longevity solutions.
🔶 6. The Way Forward
The report concludes that Asia must:
Strengthen public and private pension systems
Develop deeper longevity risk transfer markets
Encourage lifelong income solutions
Build regulatory frameworks supporting innovation
Promote digital tools and data-driven longevity analytics
Innovative approaches to managi…
Without intervention, rising life expectancy will create major financial stresses across the region.
⭐ Perfect One-Sentence Summary
This PDF presents a comprehensive analysis of how Asian governments, insurers, and pension systems can manage growing longevity risk by adopting innovative insurance products, risk-transfer instruments, and policy reforms to secure sustainable retirement outcomes....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jhaurcfl-8765/data/document.pdf", "num_examples": 15, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jhaurcfl- /home/sid/tuning/finetune/backend/output/jhaurcfl-8765/data/jhaurcfl-8765.json...
|
null
|
completed
|
1764888208
|
1764895122
|
NULL
|
/home/sid/tuning/finetune/backend/output/jhaurcfl- /home/sid/tuning/finetune/backend/output/jhaurcfl-8765/adapter...
|
False
|
Edit
Delete
|
|
dcb17d41-e193-4c98-b275-b10297b614c0
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jihupolu-2798
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity Risk
|
Longevity Risk and Private Pensions
|
/home/sid/tuning/finetune/backend/output/jihupolu- /home/sid/tuning/finetune/backend/output/jihupolu-2798/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is an analytical report examining ho This document is an analytical report examining how longevity risk affects both the public pension system and the private insurance/annuity market in Italy, with a focus on modeling, forecasting, and evaluating policy and market-based solutions.
Purpose of the Report
To analyze:
The impact of increasing life expectancy on future pension liabilities
How longevity risk is shared between the state and private financial institutions
Whether private-sector instruments (annuities, life insurance, capital markets) could help reduce the overall burden of longevity risk in Italy
Core Topics and Content
1. What Longevity Risk Is
The report explains longevity risk as the financial risk that individuals live longer than expected, increasing the cost of lifelong pensions and annuities. This risk threatens the sustainability of:
Public PAYG pension systems
Life insurers offering annuity products
Private retirement plans
2. Italy’s Demographic Trends
Italy faces:
One of the highest life expectancies in the world
Rapid population aging
Very low birth rates
This creates a widening gap between pension contributions and payouts.
The report uses mortality projections to quantify how these demographic changes will influence pension expenditures.
3. Modeling Longevity Risk
The study applies:
Cohort life tables
Projected mortality improvements
Scenario-based models comparing expected vs. stressed longevity outcomes
These models are used to estimate how pension liabilities change under different longevity trajectories.
4. Public Pension System Impact
Key insights:
The Italian social security system carries most of the national longevity risk.
Even small increases in life expectancy significantly increase long-term pension liabilities.
Parameter adjustments (e.g., retirement age, benefit formulas) help, but do not fully offset longevity pressures.
5. Role of Private Insurance Markets
The document evaluates whether private-sector solutions can meaningfully absorb longevity risk:
Life insurers and annuity providers could take on some risk, but they face:
Capital constraints
Regulatory solvency requirements
Adverse selection
Low annuitization rates in Italy
Reinsurance and capital-market instruments (e.g., longevity bonds, longevity swaps) have potential but remain underdeveloped.
Conclusion: The private market can help, but cannot replace the public system as the primary risk bearer.
6. Possible Policy Solutions
The report outlines strategies such as:
Increasing retirement ages
Promoting private annuities
Improving mortality forecasting
Developing longevity-linked financial instruments
Implementing risk-sharing mechanisms across generations
7. Overall Conclusion
Longevity risk represents a substantial financial challenge to Italy’s pension system.
While private markets can provide complementary tools, they are not sufficient on their own. Effective policy response requires:
Continual pension reform
Better risk forecasting
Broader development of private annuity and longevity-hedging markets
If you'd like, I can also create:
📌 an executive summary
📌 a one-page cheat sheet
📌 a comparison with your other longevity documents
📌 or a multi-document integrated summary
Just let me know!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jihupolu-2798/data/document.pdf", "num_examples": 259, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jihupolu- /home/sid/tuning/finetune/backend/output/jihupolu-2798/data/jihupolu-2798.json...
|
null
|
queued
|
1765049043
|
1765050139
|
NULL
|
/home/sid/tuning/finetune/backend/output/jihupolu- /home/sid/tuning/finetune/backend/output/jihupolu-2798/adapter...
|
False
|
Edit
Delete
|
|
60f2a519-52d6-47e0-9d57-3feca04111c5
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jjmijdhc-6994
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Subjective Longevity
|
Subjective Longevity Expectations
|
/home/sid/tuning/finetune/backend/output/jjmijdhc- /home/sid/tuning/finetune/backend/output/jjmijdhc-6994/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is a research paper prepared for the This document is a research paper prepared for the 16th Annual Joint Meeting of the Retirement Research Consortium (2014). Written by Mashfiqur R. Khan and Matthew S. Rutledge (Boston College) and April Yanyuan Wu (Mathematica Policy Research), it investigates how subjective longevity expectations (SLE)—people’s personal beliefs about how long they will live—influence their retirement plans.
Using data from the Health and Retirement Study (HRS) and an instrumental variables approach, the authors analyze how individuals aged 50–61 adjust their planned retirement ages and expectations of working at older ages based on how long they think they will live. SLE is measured by asking respondents their perceived probability of living to ages 75 and 85, then comparing these expectations to actuarial life expectancy tables to create a standardized measure (SLE − OLE).
The study finds strong evidence that people who expect to live longer plan to work longer. Specifically:
A one-standard-deviation increase in subjective life expectancy makes workers 4–7 percentage points more likely to plan to work full-time into their 60s.
>Individuals with higher SLE expect to work five months longer on average.
>Women show somewhat stronger responses than men.
>Changes in a person’s SLE over time also lead to changes in their planned retirement ages.
>Actual retirement behaviour also correlates with SLE, though the relationship is weaker due to life shocks such as sudden health issues or job loss.
The paper concludes that subjective perceptions of longevity play a major role in retirement planning. As objective life expectancy continues to rise, improving public awareness of increased longevity may help encourage longer work lives and improve retirement security....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jjmijdhc-6994/data/document.pdf", "num_examples": 43, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jjmijdhc- /home/sid/tuning/finetune/backend/output/jjmijdhc-6994/data/jjmijdhc-6994.json...
|
null
|
completed
|
1764867391
|
1764867445
|
NULL
|
/home/sid/tuning/finetune/backend/output/jjmijdhc- /home/sid/tuning/finetune/backend/output/jjmijdhc-6994/adapter...
|
False
|
Edit
Delete
|
|
913956dc-7783-4fe5-a2bd-ccef2b370362
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
joflebma-8186
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Promoting Active Ageing
|
Promoting Active Ageing
|
/home/sid/tuning/finetune/backend/output/joflebma- /home/sid/tuning/finetune/backend/output/joflebma-8186/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Promoting Active Ageing in Southeast Asia” is a c “Promoting Active Ageing in Southeast Asia” is a comprehensive OECD/ERIA report that examines how ASEAN countries can support healthy, productive, and secure ageing as their populations grow older at unprecedented speed. The report highlights that Southeast Asia is ageing twice as fast as OECD nations, while still facing high levels of informal employment, limited social protection, and gender inequality—making ageing a major economic and social challenge.
Core Purpose
The report identifies what policies ASEAN member states must adopt to ensure:
Older people can remain healthy,
Continue to participate socially and economically, and
Avoid income insecurity in old age.
🧩 What the Report Covers
1. Demographic & Economic Realities
Fertility has dropped across all countries; life expectancy continues to rise.
The old-age to working-age ratio will surge in the next 30 years.
Working-age populations will decrease sharply in Singapore, Thailand, and Vietnam, while still growing in Cambodia, Laos, and the Philippines.
Public expenditure is low, leaving governments with limited capacity to fund pensions or healthcare.
2. Key Barriers to Active Ageing
High informality (up to 90% in some countries): keeps workers outside formal pensions, healthcare, and protections.
Gender inequalities in work, caregiving, and legal rights compound poverty risks for older women.
Low healthcare spending, shortages of medical staff, and rural access gaps.
Limited pension adequacy, low coverage, and low retirement ages.
🧭 Major Policy Recommendations
A. Reduce Labour Market Informality
Lower the cost of formalisation for low-income workers.
Strengthen labour law enforcement and improve business registration processes.
Relax overly strict product/labour market regulations.
B. Reduce Gender Inequality in Old Age
Integrate gender perspectives into all policy design.
Reform discriminatory family and inheritance laws.
Promote financial education and career equality for women.
C. Ensure Inclusive Healthcare Access
Increase public health funding.
Improve efficiency through generics, preventive care, and technology.
Expand health insurance coverage to all.
Use telemedicine and incentives to serve rural areas.
D. Strengthen Old-Age Social Protection
Increase first-tier (basic) pensions.
Raise retirement ages where needed and link them to life expectancy.
Reform PAYG pensions to ensure sustainability.
Make pension systems easier to understand and join.
E. Support Social Participation of Older Adults
Build age-friendly infrastructure (benches, safe crossings, accessible paths).
Create community programs that encourage interaction and prevent isolation.
🧠 Why This Matters
By 2050, ASEAN countries will face dramatic demographic shifts. Without rapid and coordinated policy reforms, millions of older people risk:
Poor health
Lack of income
Social isolation
Inadequate care
This report serves as a strategic blueprint for building healthy, productive, and resilient ageing societies in Southeast Asia....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/joflebma-8186/data/document.pdf", "num_examples": 1051, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/joflebma- /home/sid/tuning/finetune/backend/output/joflebma-8186/data/joflebma-8186.json...
|
null
|
completed
|
1764874548
|
1764917394
|
NULL
|
/home/sid/tuning/finetune/backend/output/joflebma- /home/sid/tuning/finetune/backend/output/joflebma-8186/adapter...
|
False
|
Edit
Delete
|
|
599ab3a3-c70a-4ba3-aec0-5660dee3f783
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jofodeku-7336
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Exploring Human Longevity
|
Exploring Human Longevity
|
/home/sid/tuning/finetune/backend/output/jofodeku- /home/sid/tuning/finetune/backend/output/jofodeku-7336/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Riya Kewalani, Insiya Sajjad Hussain Saifudeen Du Riya Kewalani, Insiya Sajjad Hussain Saifudeen Dubai Gem Private School, Oud Metha Road, Dubai, PO Box 989, United Arab Emirates; riya.insiya@gmail.com
ABSTRACT: This research aims to investigate whether climate has an impact on life expectancy. In analyzing economic data from 172 countries that are publicly available from the United Nations World Economic Situation and Prospects 2019, as well as classifying all countries from different regions into hot or cold climate categories, the authors were able to single out income, education, sanitation, healthcare, ethnicity, and diet as constant factors to objectively quantify life expectancy. By measuring life expectancies as indicated by the climate, a comprehensible correlation can be built of whether the climate plays a vital role in prolonging human life expectancy and which type of climate would best support human life. Information gathered and analyzed from examination focused on the contention that human life expectancy can be increased living in colder regions. According to the research, an individual is likely to live an extra 2.2163 years in colder regions solely based on the country’s income status and climate, while completely ruling out genetics. KEYWORDS: Earth and Environmental Sciences; Life expectancy; Climate Science; Longevity; Income groups.
To better understand the study, it is crucial to understand the difference between life span, life expectancy, and longevity. According to the United Nations Population Division, life expectancy at birth is defined as “the average number of years that a newborn could expect to live if he or she were to pass through life subject to the age-specific mortality rates of a given period.” ¹ When addressing the life expectancy of a country, it refers to the mean life span of the populace in that country. This factual normal is determined dependent on a populace in general, including the individuals who die during labor, soon after labor, during puberty or adulthood, the individuals who die in war, and the individuals who live well into mature age. On the other hand, according to News Medical Life Sciences, life span refers to “the maximum number of years that a person can expect to live based on the greatest number of years anyone from the same data set has lived.” ² Taking humans as the model, the oldest recorded age attained by any living individual is 122 years, thereby implicating that human beings have a lifespan of at least 122 years. Life span is also known as longevity. As life expectancy has been extended, factors that affect it have been substantially debated. Consensus on factors that influence life expectancy include gender, ethnicity, pollution, climate change, literacy rate, healthcare access, and income level. Other changeable lifestyle factors also have an impact on life expectancy, including but not limited to, exercise, alcohol, smoking and diet. Nevertheless, life expectancy has for the most part continuously increased over time. The authors’ study aims to quantify and study the factors that affect human life expectancy. According to the American Journal of Physical Anthropology, Neolithic and Bronze Age data collected suggests life expectancy was an average of 36 years for both men and women. ³ Hunter-gatherers had a higher life expectancy than farmers as agriculture was not common yet and
people would resort to hunting and foraging food for survival. From then, life expectancy has been shown to be an upward trend, with most studies suggesting that by the late medieval English era, life expectancy of an aristocrat could be as much as 64 years; a figure that closely resembles the life expectancy of many populations around the world today. The increase in life expectancy is attributed to the advancements made in sanitation, education, and lodging during the nineteenth and mid-twentieth centuries, causing a consistent decrease in early and midlife mortality. Additionally, great progress made in numerous regions of well-being and health, such as the discovery of antibiotics, the green revolution that increased agricultural production, the enhancement of maternal and child survival, and mortality from infectious diseases, particularly human immunodeficiency virus (HIV)/ AIDS, tuberculosis (TB), malaria, and neglected tropical diseases (NTDs), has declined. According to the World Health Organization (WHO), global average life expectancy has increased by 5.5 years between 2000 and 2016, which has been notably the fastest increase since the 1950s.⁴ As per the United Nations World Population Prospects, life expectancy will continue to display an upward trend in all regions of the world. However, the average life expectancy isn’t predicted to grow exponentially as it has these past few decades. Projected increases in life expectancy in Northern America, Europe and Latin American and the Caribbean are expected to become more gradual and stagnant, while projections for Africa continue at a much higher rate compared to the rest of the world. Asia is expected to match the global average by the year 2050. Differences in life expectancy across regions of the world are estimated to persist even into the future due to the differences in group incomes, however, income disparity between regions is forecasted to diminish significantly by 2050 ...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jofodeku-7336/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/jofodeku- /home/sid/tuning/finetune/backend/output/jofodeku-7336/data/jofodeku-7336.json...
|
null
|
failed
|
1764898903
|
1764902514
|
NULL
|
/home/sid/tuning/finetune/backend/output/jofodeku- /home/sid/tuning/finetune/backend/output/jofodeku-7336/adapter...
|
False
|
Edit
Delete
|
|
f1ca94e6-2baa-48a2-86f3-9cc494b02e90
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jrmnhvmx-0672
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
International Database
|
International Database on Longevity
|
/home/sid/tuning/finetune/backend/output/jrmnhvmx- /home/sid/tuning/finetune/backend/output/jrmnhvmx-0672/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a comprehensive documentation and over This PDF is a comprehensive documentation and overview of the International Database on Longevity (IDL)—the world’s largest, most rigorously validated scientific database dedicated to tracking individuals who have lived to extreme ages (110 years and older). The document explains how the database is built, how ages are scientifically verified, which countries contribute data, and how researchers use these records to study human longevity and mortality at the highest ages.
The core purpose of the IDL is to provide accurate, validated, international data on supercentenarians, allowing demographic researchers, biologists, and statisticians to understand mortality patterns beyond age 110—a topic often full of uncertainty, myth, and unreliable reporting.
🌍 1. What the IDL Is
The International Database on Longevity (IDL) is:
A public research database
Created by leading longevity researchers
Focused exclusively on validated individuals aged 110+
Based on international civil registration systems
Continuously updated as new cases are confirmed
It aims to eliminate false age claims and ensure scientific reliability.
International Database on Longe…
🔍 2. What the Database Contains
The IDL includes:
Individual-level data on supercentenarians
Validated age-at-death
Birth and death dates
Geographic information
Sex and demographic characteristics
Censored individuals (still alive or lost to follow-up)
Documentation on verification processes
Some countries provide exhaustive lists of all persons aged 110+; others provide sampled or partial data.
International Database on Longe…
📝 3. Why Age Validation Is Necessary
Extreme ages are often misreported due to errors such as:
Missing documents
Duplicate identities
Cultural age inflation
Family-based misreporting
Administrative mistakes
The IDL implements strict validation methods:
Cross-checking civil records
Analyzing genealogical information
Ensuring consistency between documents
Verifying unique identity
Only individuals with high-confidence proof of age are included.
International Database on Longe…
🌐 4. Countries Covered
The database includes data from:
France
Germany
United States
United Kingdom
Canada
Switzerland
Sweden
Japan
Denmark
Belgium
Czech Republic (sample)
Others with varying depth of validation
Each country’s rules, data sources, and levels of coverage are described.
International Database on Longe…
📈 5. Scientific Goals of the IDL
The database supports research on:
⭐ A. Mortality at Extreme Ages
Does mortality plateau after age 110?
Is there a maximum human lifespan?
⭐ B. Survival Models
Testing demographic models beyond typical life-table limits.
⭐ C. Longevity Trends Across Countries
Comparing patterns internationally.
⭐ D. Biological and Social Determinants
Sex differences, geographic variation, and historical trends.
⭐ E. Extreme-Age Validation Science
Improving methods for verifying unusually long life spans.
International Database on Longe…
🧪 6. Key Features of the IDL Data
Right-censored data for persons still alive
Left-truncated data for those who entered the risk pool at a known age
Survival records starting at age 110
Consistent formatting across countries
Metadata on each individual
The structure allows researchers to estimate death rates at very high ages without relying on unreliable claims.
International Database on Longe…
🔬 7. Major Scientific Insights Enabled by the IDL
Research using the IDL has contributed to:
Discovery of mortality plateaus beyond age 105–110
Evidence supporting the idea that death rates stop rising exponentially at extreme ages
Better understanding of why women are far more likely to reach 110+
Insights into potential limits vs. non-limits of human longevity
Historical comparisons (e.g., supercentenarians born in 1880–1900 vs. today)
International Database on Longe…
📚 8. Purpose of the Document Itself
This PDF specifically provides:
An overview of the IDL
Explanation of its structure
Details on data sources
Verification standards
Country-specific documentation
Methodological notes on survival and mortality calculations
It serves as the official guide for researchers using the IDL.
International Database on Longe…
⭐ Overall Summary
The PDF provides a clear and detailed explanation of the International Database on Longevity, the world’s most authoritative resource for validated data on individuals aged 110+. It shows how the database is constructed, how age validation works, which countries contribute, and how researchers use the data to study mortality patterns at the extremes of human lifespan. The IDL is essential for answering key scientific questions about longevity, the limits of human life, and demographic change....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jrmnhvmx-0672/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/jrmnhvmx- /home/sid/tuning/finetune/backend/output/jrmnhvmx-0672/data/jrmnhvmx-0672.json...
|
null
|
failed
|
1764887671
|
1764891584
|
NULL
|
/home/sid/tuning/finetune/backend/output/jrmnhvmx- /home/sid/tuning/finetune/backend/output/jrmnhvmx-0672/adapter...
|
False
|
Edit
Delete
|
|
24e7bcba-cd8c-4928-94b7-4b34d6871b9a
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jsavffkc-7836
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Physical activities, long
|
Physical activities, longevity gene
|
/home/sid/tuning/finetune/backend/output/jsavffkc- /home/sid/tuning/finetune/backend/output/jsavffkc-7836/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Physical Activities, Longevity Gene, and Successf “Physical Activities, Longevity Gene, and Successful Aging: Insights from Centenarian Studies” is a conceptual review exploring how genetics, physical activity, and lifestyle behaviors interact to promote healthy aging, exceptional longevity, and functional independence. Drawing heavily on centenarian research, the paper argues that living long and living well is the result of a gene–environment synergy, where protective genetic variants (particularly the longevity genes) interact with lifelong habits such as exercise, healthy eating, and stress management.
The paper frames successful aging not simply as reaching old age, but as maintaining physical mobility, psychological well-being, and disease resilience into late life.
🧬 Key Themes & Insights
1. Longevity Genes Provide Protection—but Not Guarantees
Centenarian studies show that:
Certain genetic variants (e.g., FOXO3, APOE2, SIRT1, KL/Klotho) influence lifespan.
These genes protect against chronic diseases like heart disease, cancer, and neurodegeneration.
Longevity genes help maintain cellular repair, inflammation control, and metabolic balance.
However, genetics explain only a portion of longevity. Most long-lived individuals combine favorable genes with healthy lifestyle behaviors.
2. Physical Activity Is a Universal Longevity Tool
The review emphasizes that exercise is the single most powerful modifiable factor for healthy aging. Physical activity:
Improves cardiovascular fitness
Maintains muscle mass and bone density
Supports metabolic health
Reduces inflammation and oxidative stress
Enhances cognitive resilience
Prevents frailty and functional disability
Elders who routinely engage in walking, gardening, stretching, and strength exercises show better mobility and emotional stability, and lower risks of chronic illness.
3. Lifestyle Can Compensate for Weaker Genetics
Even individuals without strong longevity genes can achieve successful aging by:
Engaging in regular physical activity
Maintaining a healthy diet
Avoiding smoking and excessive alcohol
Managing stress and mental well-being
Strengthening social connections
Prioritizing rest and sleep
This supports the idea that aging trajectories are influenced by lifelong behavioral patterns, not just biology.
4. Successful Aging Is Multidimensional
The paper adopts a holistic framework where successful aging includes:
Physiological health
Cognitive function
Emotional well-being
Social engagement
Independence in daily activities
Centenarians, even with advanced age, often maintain strong social networks, life purpose, adaptive coping styles, and spiritual resilience.
5. Physical Activity Affects Genetic Expression (Epigenetics)
A central insight is that exercise can activate beneficial pathways controlled by longevity genes, meaning lifestyle choices actually modify how genes behave. Physical activity:
Activates FOXO3 and SIRT1 pathways
Enhances mitochondrial function
Improves autophagy and cellular cleanup
Reduces epigenetic aging markers
Thus, movement becomes a biological “switch” that turns longevity pathways on.
6. Implications for Aging Populations
The paper concludes that public health policies must:
Promote accessible exercise programs for all ages
Design communities and environments that encourage movement
Integrate physical activity into chronic disease prevention
Expand research on gene–lifestyle interactions
Such strategies can help reduce disease burden, extend functional independence, and improve quality of life as societies age.
🧭 Overall Conclusion
Healthy longevity emerges from a powerful interaction between genes and lifestyle, particularly physical activity, which has the ability to activate longevity pathways and protect the body from age-related decline. Centenarian studies provide real-world evidence that while genetics set the foundation, movement, mindset, and environment shape the outcome. Long life is not just inherited—it is cultivated....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jsavffkc-7836/data/document.pdf", "num_examples": 69, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jsavffkc- /home/sid/tuning/finetune/backend/output/jsavffkc-7836/data/jsavffkc-7836.json...
|
null
|
completed
|
1764875607
|
1764880767
|
NULL
|
/home/sid/tuning/finetune/backend/output/jsavffkc- /home/sid/tuning/finetune/backend/output/jsavffkc-7836/adapter...
|
False
|
Edit
Delete
|
|
911b8f0b-926f-4043-a914-0b03419ed671
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jskkmtdz-7846
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Resilience, Death
|
Resilience, Death Anxiety
|
/home/sid/tuning/finetune/backend/output/jskkmtdz- /home/sid/tuning/finetune/backend/output/jskkmtdz-7846/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Resilience, Death Anxiety, and Depression Among I “Resilience, Death Anxiety, and Depression Among Institutionalized and Noninstitutionalized Elderly” is an in-depth psychological study examining how living arrangements—either at home with family or in an institution—affect the mental health of older adults in Pakistan. Using standardized measures of resilience, death anxiety, and depression, the study compares 80 elderly participants aged 60+ to reveal how social environment, support systems, gender, and marital status shape emotional well-being in later life.
The paper highlights that aging in Pakistan brings increasing psychological challenges, especially as traditional joint-family systems decline. Institutionalization, though sometimes necessary, disrupts social bonds and can intensify loneliness, fear, and sadness.
Key Findings
1. Living Environment Strongly Shapes Mental Health
Noninstitutionalized elderly (those living with families) show higher resilience—both state and trait.
Institutionalized elderly exhibit:
Higher death anxiety
More depressive symptoms
Lower ability to “bounce back” from stress
This underscores the psychological cost of separation from family, loss of familiar routines, and reduced autonomy.
2. Gender Differences
Men show higher trait resilience than women.
Women show significantly higher depression, likely due to:
Social expectations
Economic dependency
Loss of spouse
Cultural norms limiting autonomy
Death anxiety levels are similar for men and women.
3. Marital Status Matters
Unmarried elderly experience significantly higher death anxiety than both married and widowed individuals—a striking finding.
Reasons include:
Social isolation
Cultural stigma of remaining single
Lack of emotional and instrumental support
4. Institutionalization Heightens Psychological Vulnerability
Elderly in old-age homes face:
Lack of privacy
Reduced meaningful activities
Less personalized attention
Emotional detachment from family
These stressors increase depression and deepen fears of death.
5. Pakistan’s Changing Family Structure is a Key Factor
The study situates its findings within broader cultural changes:
Erosion of joint family systems
Urbanization
Economic strain
As traditional support weakens, elderly mental health risks rise sharply.
Significance
This work is one of the few empirical studies on Pakistan’s institutionalized elderly population. It demonstrates that resilience is not fixed—it is shaped by environment, family support, and cultural context. The findings suggest urgent need for:
Resilience-building programs
Mental health support in old-age homes
Community activities and social engagement
Awareness about the psychological impact of elder abandonment
Overall Conclusion
The study concludes that family-connected living dramatically improves elders’ psychological well-being. Institutionalized older adults face higher death anxiety and depression and lower resilience, while marital status and gender further influence outcomes. Strengthening social support systems and promoting resilience can significantly improve quality of life for Pakistan’s aging population....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jskkmtdz-7846/data/document.pdf", "num_examples": 203, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jskkmtdz- /home/sid/tuning/finetune/backend/output/jskkmtdz-7846/data/jskkmtdz-7846.json...
|
null
|
completed
|
1764872459
|
1764873397
|
NULL
|
/home/sid/tuning/finetune/backend/output/jskkmtdz- /home/sid/tuning/finetune/backend/output/jskkmtdz-7846/adapter...
|
False
|
Edit
Delete
|
|
90a4644f-9c41-4206-a2c8-89e0cf3f8711
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jybmwxny-6789
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity and the public
|
Longevity and the public purse
|
/home/sid/tuning/finetune/backend/output/jybmwxny- /home/sid/tuning/finetune/backend/output/jybmwxny-6789/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Longevity and the Public Purse is a major policy s Longevity and the Public Purse is a major policy speech delivered on 26 September 2024 by Dominick Stephens, Chief Economic Advisor at the New Zealand Treasury. The address examines how rising life expectancy and population ageing will reshape New Zealand’s public finances, economy, labour market, and intergenerational sustainability over coming decades. It synthesizes long-term fiscal projections, demographic trends, and macroeconomic risks to illustrate why existing policy settings are becoming unsustainable—and what shifts will be required.
Central Argument
New Zealanders are living longer, healthier lives—a triumph of social and economic progress. But longevity also places increasing pressure on the public purse, because:
The population is ageing rapidly
Government spending on older people greatly exceeds their tax contributions
National Superannuation is both universal and generous relative to OECD peers
Health expenditure rises steeply with age
As the share of over-65s grows, without policy change, public debt will escalate to unsustainable levels.
1. Demographic Reality: Ageing is Slower in NZ, But Still Costly
New Zealand ages more slowly than many OECD countries due to:
Higher fertility
Higher migration
Yet ageing remains expensive. The old-age dependency ratio has shifted from 7 workers per retiree in the 1960s to 4 today, and is projected to reach 2 by the 2070s. Government transfers to seniors far exceed seniors’ tax contributions, intensifying fiscal strain.
2. Fiscal Sustainability: "The Story Is Evolving"
Since 2006, the Treasury’s Long-term Fiscal Statements (LTFSs) have warned of long-run unsustainability. The 2025 LTFS will incorporate a new Overlapping Generations Model, reflecting realistic life-cycle patterns (work, saving, consumption, retirement, dissaving).
Four key developments shape today’s fiscal outlook:
A. Higher debt than previously anticipated
Actual net core Crown debt in 2020 was double what Treasury projected in 2006 and continues to rise. Structural deficits—not just cyclical weakness—are driving the increase.
B. Older people working much more than expected
Older New Zealanders’ labour force participation rates have risen dramatically:
65–69 age group: projected 38% by 2023 → actual 49%
70–74 age group: projected 19% → actual 27%
NZ is now one of the highest in the OECD for 65+ participation, helped by universal, non-abatement superannuation that does not penalize continued work.
C. Larger population due to high migration
Net migration consistently exceeded Treasury assumptions. Between 2014–2023, net migration averaged 47,500 annually, producing a population 10.5% larger than earlier projections. This eased fiscal pressure—but only temporarily, as migrants also age.
D. Lower global interest rates
Falling interest rates reduced debt-servicing costs from the 1980s–2021. But with global ageing and changing capital flows, future rates are uncertain and may trend upward.
3. What Governments Must Do: No Silver Bullet
Because ageing touches every major spending area, no single policy can restore fiscal sustainability. A serious adjustment will require a suite of changes, including:
A. Managing healthcare spending
Health costs are rising due to:
Greater demand from older citizens
Labour-intensive services
Technology-driven expectations
Smaller efficiencies are possible via prevention and system improvements, but significant long-term relief may require adjusting entitlements.
B. Reforming superannuation
Treasury’s modelling shows significant fiscal savings from:
Raising the eligibility age
Indexing payments to inflation rather than wages
But even these major adjustments alone cannot close the fiscal gap.
C. Increasing revenue
Tax increases can help but carry economic costs. Repeated small increases would be required unless spending is also restrained or redesigned.
D. Improving public-sector productivity
Delivering existing services more efficiently is equivalent to raising national productivity—and is essential to making long-term spending sustainable.
E. Boosting economy-wide productivity
Low productivity growth (0.2% over the past decade) constrains living standards. Higher productivity would expand fiscal room to maneuver, even though it does not eliminate demographic cost pressures.
4. A Critical Insight: Younger New Zealanders Will Decide the Future
Long-term fiscal sustainability depends heavily on younger generations, whose future willingness and capacity to support older New Zealanders is at risk.
Warning signs include:
Sharp declines in reading, maths, and science performance
High and rising mental distress among 15–24-year-olds
Growing NEET rates
Widening wealth gaps driven by housing market pressures
Rising material hardship for children (but low for seniors)
Investing in young people’s skills, wellbeing, and productivity is essential—not just for equity, but for the national ability to support an older population.
Conclusion
The speech ends on a hopeful note: longevity is a gift, not a crisis, but adapting to it requires honesty, discipline, and early policy action. New Zealand has strong institutions and a history of successful reforms. With timely adjustments and renewed focus on younger generations, the country can sustain its living standards and social cohesion in an era of longer lives.
If you'd like, I can also create:
✅ a one-page executive summary
✅ a slide-style briefing
✅ a comparison to your other longevity public-finance documents
Just tell me!
Sources...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jybmwxny-6789/data/document.pdf", "num_examples": 113, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jybmwxny- /home/sid/tuning/finetune/backend/output/jybmwxny-6789/data/jybmwxny-6789.json...
|
null
|
queued
|
1765052050
|
1765053277
|
NULL
|
/home/sid/tuning/finetune/backend/output/jybmwxny- /home/sid/tuning/finetune/backend/output/jybmwxny-6789/adapter...
|
False
|
Edit
Delete
|
|
4d575c3d-0ca4-4c96-b9d4-0c1b82218dcc
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jybvxsag-3546
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Health Status and Empiric
|
Health Status and Empirical Model of Longevity
|
/home/sid/tuning/finetune/backend/output/jybvxsag- /home/sid/tuning/finetune/backend/output/jybvxsag-3546/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This research paper by Hugo Benítez-Silva and Huan This research paper by Hugo Benítez-Silva and Huan Ni develops one of the most detailed and rigorous empirical models explaining how health status and health changes shape people’s expectations of how long they will live. It uses panel data from the U.S. Health and Retirement Study (HRS), a large longitudinal survey of older adults.
🌟 Core Purpose of the Study
The paper investigates:
How do different measures of health—especially changes in health—affect people’s expected longevity (their subjective probability of living to age 75)?
It challenges the common assumption that simply using “current health status” or lagged health is enough to measure health dynamics. Instead, the authors argue that:
➡ Self-reported health changes (e.g., “much worse,” “better”)
are more accurate and meaningful than
➡ Computed health changes (differences between two reported health statuses).
📌 Key Concepts
1. Health Dynamics Matter
Health is not static—people experience:
gradual aging
chronic disease progression
sudden health shocks
effects of lifestyle and medical interventions
These dynamic elements shape how people assess their future survival.
Health Status and Empirical Mod…
2. Why Self-Reported Health Status Is Imperfect
The paper identifies three major problems with simply using self-rated health categories:
Health Status and Empirical Mod…
a. Cut-point shifts
People’s interpretation of “good” or “very good” health can change over time.
b. Gray areas
Some individuals cannot clearly categorize their health, leading to arbitrary reports.
c. Peer/reference effects
People compare themselves with different reference groups as they age.
These issues mean self-rated health alone doesn’t capture true health changes.
📌 3. Two Measures of Health Change
The authors compare:
A. Self-Reported Health Change (Preferred)
Direct question:
“Compared to last time, is your health better, same, worse?”
Advantages:
captures subtle changes
less affected by shifting cut-points
aligns more closely with subjective survival expectations
B. Computed Health Change (Problematic)
This is calculated mathematically as:
Health score (t+1) − Health score (t)
Problems:
inconsistent with self-reports in 38% of cases
loses information when health changes but does not cross a discrete category
introduces potential measurement error
Health Status and Empirical Mod…
🧠 Why This Matters
Expected longevity influences:
savings behavior
retirement timing
annuity purchases
life insurance decisions
health care usage
Health Status and Empirical Mod…
If researchers use bad measures of health, they may misinterpret how people plan for the future.
📊 Data and Methodology
Uses six waves of the HRS (1992–2003)
Sample: 9,000+ individuals, 24,000+ observations
Controls for:
chronic conditions (heart disease, cancer, diabetes)
ADLs/IADLs
socioeconomic variables
parental longevity
demographic factors
unobserved heterogeneity
Health Status and Empirical Mod…
The model is treated like a production function of longevity, following economic theories of health investment under uncertainty.
📈 Major Findings
✔ 1. Self-reported health changes strongly predict expected longevity
People who report worsening health show large drops in survival expectations.
Health Status and Empirical Mod…
✔ 2. Computed health changes frequently misrepresent true health dynamics
38% are inconsistent
15% lose meaningful health-change information
Health Status and Empirical Mod…
✔ 3. Self-reported changes have effects similar in magnitude to current health levels
This means:
Health trajectory matters as much as current health.
Health Status and Empirical Mod…
✔ 4. Health change measures are crucial for accurate modeling
Failing to include dynamic health measures causes:
biased estimates
misinterpretation of longevity expectations
🏁 Conclusion
This paper makes a major contribution by demonstrating that:
To understand how people form expectations about their own longevity, you must measure health as a dynamic process—not just a static snapshot.
The authors recommend that future empirical models, especially those using large panel surveys like the HRS, should:
✔ prioritize self-reported health changes
✔ treat computed changes with caution
✔ incorporate dynamics of health in survival models
These insights improve research in aging, retirement economics, health policy, and behavioral modeling.
Health Status and Empirical Mod…
If you want, I can also create:
📌 A diagram/flowchart of the model
📌 A one-paragraph brief summary
📌 A bullet-point version
📌 A presentation slide style explanation
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jybvxsag-3546/data/document.pdf", "num_examples": 23, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jybvxsag- /home/sid/tuning/finetune/backend/output/jybvxsag-3546/data/jybvxsag-3546.json...
|
null
|
completed
|
1764894108
|
1764904905
|
NULL
|
/home/sid/tuning/finetune/backend/output/jybvxsag- /home/sid/tuning/finetune/backend/output/jybvxsag-3546/adapter...
|
False
|
Edit
Delete
|
|
e79ebb98-ee16-4b4e-bad1-f67528a16b3c
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jzoubfzk-5182
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Superior proteome
|
Superior proteome stability in the longest lived
|
/home/sid/tuning/finetune/backend/output/jzoubfzk- /home/sid/tuning/finetune/backend/output/jzoubfzk-5182/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Superior proteome stability in the longest-lived a Superior proteome stability in the longest-lived animal” investigates why the ocean quahog (Arctica islandica)—a clam that can live over 500 years, the longest-lived animal known—ages extraordinarily slowly. The study reveals that its exceptional lifespan is strongly linked to remarkable stability of its proteome (the full set of proteins in its cells).
The paper explains that aging in most organisms is driven by the gradual accumulation of damaged, misfolded, or aggregated proteins, which disrupt cellular function. Arctica islandica, however, shows:
Key Findings
Extremely low levels of protein oxidation even in very old individuals
Highly efficient protein repair and recycling mechanisms
Exceptional resistance to stress, including oxidative and metabolic stress
Slower protein turnover, meaning proteins remain functional longer without degradation
Stable cellular environment that prevents the buildup of toxic protein aggregates
Together, these mechanisms preserve protein quality for centuries, protecting cells from age-related decline.
Implications
The study suggests that proteome stability is a core determinant of maximum lifespan in animals. It also offers insight into how improving protein maintenance systems in humans could potentially reduce age-related diseases such as neurodegeneration, cardiovascular decline, and metabolic dysfunction.
In essence, Arctica Islandica’s longevity is not a mystery of size or environment—it is a triumph of biochemical housekeeping, where proteins stay “young” far longer than in any other species studied....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jzoubfzk-5182/data/document.pdf", "num_examples": 105, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jzoubfzk- /home/sid/tuning/finetune/backend/output/jzoubfzk-5182/data/jzoubfzk-5182.json...
|
null
|
completed
|
1764867070
|
1764867287
|
NULL
|
/home/sid/tuning/finetune/backend/output/jzoubfzk- /home/sid/tuning/finetune/backend/output/jzoubfzk-5182/adapter...
|
False
|
Edit
Delete
|
|
3770b1f5-7678-4e82-8759-dce971159e9d
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jztokeky-4259
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Evidence for a limit
|
Evidence for a limit to human lifespan
|
/home/sid/tuning/finetune/backend/output/jztokeky- /home/sid/tuning/finetune/backend/output/jztokeky-4259/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Driven by technological progress, human life expec Driven by technological progress, human life expectancy has increased greatly since the nineteenth century. Demographic evidence has revealed an ongoing reduction in old-age mortality and a rise of the maximum age at death, which may gradually extend human longevity1,2. Together with observations that lifespan in various animal species is flexible and can be increased by genetic or pharmaceutical intervention, these results have led to suggestions that longevity may not be subject to strict, species-specific genetic constraints. Here, by analysing global demographic data, we show that improvements in survival with age tend to decline after age 100, and that the age at death of the world’s oldest person has not increased since the 1990s. Our results strongly suggest that the maximum lifespan of humans is fixed and subject to natural constraints. Maximum lifespan is, in contrast to average lifespan, generally assumed to be a stable characteristic of a species3. For humans, the
maximum reported age at death is generally set at 122 years, the age at death of Jeanne Calment, still the oldest documented human
individual who ever lived4. However, some evidence suggests that
maximum lifespan is not fixed. Studies in model organisms have shown that maximum lifespan is flexible and can be affected by genetic and pharmacological interventions5. In Sweden, based on a long series of reliable information on the upper limits of human lifespan, the
maximum reported age at death was found to have risen from about
101 years during the 1860s to about 108 years during the 1990s6. According to the authors, this finding refutes the common assertion that human lifespan is fixed and unchanging over time6. Indeed, the most convincing argument that the maximum lifespan of humans is not fixed is the ongoing increase in life expectancy in most countries over the course of the last century1,2. Figure 1a shows this increase for France, a country with high-quality mortality data, but very similar patterns were found for most other developed nations (Extended Data Fig. 1). Hence, the possibility has been considered that mortality may decline further, breaking any pre-conceived boundaries of human lifespan1,7. As shown by data from the Human Mortality Database8, many of the historical gains in life expectancy have been attributed to a
reduction in early-life mortality. More recent data, however, show
evidence for a decline in late-life mortality, with the fraction of each birth cohort reaching old age increasing with calendar year. In France, the number of individuals per 100,000 surviving to old age (70 and up) has increased since 1900 (Fig. 1b), which points towards a continuing increase in human life expectancy. This pattern is very similar across the other 40 countries and territories included in the database (Extended Data Figs 2, 3). However, the rate of improvement in survival peaks and then declines for very old age levels (Fig. 1c), which points
1Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA. 2Department of Ophthalmology & Visual Sciences, Albert Einstein College of Medicine, Bronx, New York 10461, USA. *These authors contributed equally to this work.
1900 1950 2000 1
100
10,000
Female
Survivors per 100,000
1900 1950 2000
Male
Age (years) 70 80 90 100 105 110
1920 1940 1960 1980 2000
80
85
90
95
100
Year
Age with greatest gain (years)
1900 1920 1940 1960 1980 2000
30 40 50 60 70 80
Year
Life expectancy at birth (years)
Female Male
0204060801 00
0.02
0
0.04
0.06
Age (years)
Rate of change since 1900
Female Male
ab
cd
Figure 1 | Trends in life expectancy and late-life survival. a, Life expectancy at birth for the population in each given year. Life expectancy in France has increased over the course of the 20th and early 21st centuries. b, Regressions of the fraction of people surviving to old age demonstrate that survival has increased since 1900, but the rate of increase appears to be slower for ages over 100. c, Plotting the rate of
change (coefficients resulting from regression of log-transformed data) reveals that gains in survival peak around 100 years of age and then rapidly decline. d, Relationship between calendar year and the age that experiences the most rapid gains in survival over the past 100 years. The age with most rapid gains has increased over the century, but its rise has been slowing and it appears to have reached a plateau...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jztokeky-4259/data/document.pdf", "num_examples": 16, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jztokeky- /home/sid/tuning/finetune/backend/output/jztokeky-4259/data/jztokeky-4259.json...
|
null
|
completed
|
1764899149
|
1764901242
|
NULL
|
/home/sid/tuning/finetune/backend/output/jztokeky- /home/sid/tuning/finetune/backend/output/jztokeky-4259/adapter...
|
False
|
Edit
Delete
|