|
d62bfc4c-254d-4012-a4e0-5bb1653873b1
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ofksvfmq-2726
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Life Expectancy
|
Life Expectancy and Economic Growth
|
/home/sid/tuning/finetune/backend/output/ofksvfmq- /home/sid/tuning/finetune/backend/output/ofksvfmq-2726/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Life expectancy does not affect all countries the Life expectancy does not affect all countries the same way.
Its impact depends on whether a country is before or after the demographic transition.
The demographic transition is the historical shift from:
High mortality & high fertility → Low mortality & low fertility
This shift completely changes how population, education, and income respond to improved life expectancy.
🧠 CORE IDEA (The Big Discovery)
Life expectancy can both increase and decrease economic growth — depending on the stage of development.
⭐ Before the demographic transition (pre-transitional countries):
Lower mortality → population grows faster
Fertility remains high
Little investment in education
Result: Population growth reduces per-capita income
📉 Life expectancy hurts economic growth in early-stage countries
Life Expectancy and Economic Gr…
⭐ After the demographic transition (post-transitional countries):
Lower mortality → population growth slows down
Families invest more in education (human capital rises)
Economic productivity increases
Result: Per-capita income grows faster
📈 Life expectancy boosts economic growth in advanced-stage countries
Life Expectancy and Economic Gr…
🔥 Ultimate Insight
Improving life expectancy is actually a trigger for the demographic transition itself.
This means:
When life expectancy becomes high enough, a country begins shifting from high fertility to low fertility.
This shift is what unlocks sustained long-run economic growth.
📌 The paper finds strong evidence:
Higher life expectancy significantly increases the probability of undergoing the demographic transition.
Life Expectancy and Economic Gr…
📊 How It Works – Mechanism Explained
1. Pre-Transition Phase (Low Development)
Mortality falls, people live longer
But fertility stays high → population explodes
More people sharing limited land/capital → income per capita drops
Education gains are small
Life Expectancy and Economic Gr…
2. Transition Phase (Around 1970 for many countries)
Fertility begins to fall
Population growth slows
Human capital investment begins to rise
Life Expectancy and Economic Gr…
3. Post-Transition Phase (High Development)
Longer lives → people invest more in education
Human capital grows
Smaller families → more resources per child
Income per capita increases strongly
Life Expectancy and Economic Gr…
🔍 Evidence From the Paper
Based on data from 47 countries (1940–2000):
✔ In pre-transitional countries:
Life expectancy increase → higher population, lower income per capita
Life Expectancy and Economic Gr…
✔ In post-transitional countries:
Life expectancy increase → lower population growth, higher income per capita, higher education levels
Life Expectancy and Economic Gr…
✔ By 2000:
Life expectancy had strong positive effects on schooling in all countries
Life Expectancy and Economic Gr…
🧩 Why Earlier Research Was Conflicting
Previous studies found:
Sometimes life expectancy increases GDP
Sometimes it decreases it
This paper explains why:
👉 The effect depends on whether the country has undergone the demographic transition.
If you mix pre- and post-transition countries, the results get confused.
Life Expectancy and Economic Gr…
🏁 Perfect One-Sentence Summary
Improvements in life expectancy can slow economic growth in early-stage countries by accelerating population growth but strongly boost growth in advanced countries by reducing fertility, raising education, and triggering the demographic transition....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/ofksvfmq-2726/data/document.pdf", "num_examples": 71, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ofksvfmq- /home/sid/tuning/finetune/backend/output/ofksvfmq-2726/data/ofksvfmq-2726.json...
|
null
|
completed
|
1764887100
|
1764903246
|
NULL
|
/home/sid/tuning/finetune/backend/output/ofksvfmq- /home/sid/tuning/finetune/backend/output/ofksvfmq-2726/adapter...
|
False
|
Edit
Delete
|
|
d79fb24f-9319-45b1-90b2-936df2d7537d
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
nkdcxyub-4110
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity, by Design
|
Longevity, by Design
|
/home/sid/tuning/finetune/backend/output/nkdcxyub- /home/sid/tuning/finetune/backend/output/nkdcxyub-4110/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Longevity, by Design” is an official Apple report “Longevity, by Design” is an official Apple report (June 2024) detailing how Apple designs products to last longer through durability, repairability, software support, and environmental responsibility. It explains Apple’s philosophy, engineering practices, and policies that contribute to long product lifespans across iPhone, iPad, Mac, and Apple Watch.
Key Themes of the Report
Product Longevity:
Apple highlights the long lifespan of its devices, citing industry-leading secondhand value, declining repair rates, and ongoing OS/security updates for many years.
Durability & Reliability Testing:
Apple describes extensive durability tests (liquid exposure, UV light, chemical exposure, drop tests, vibration tests) used on thousands of prototypes to reduce failure rates before products reach customers.
Software Support:
The document details long OS support windows—often 6+ years—and security updates even for older devices that cannot run the latest OS.
Repairability Principles:
Apple outlines four guiding principles:
Environmental impact – balancing repairability with carbon efficiency.
Access to repair services – expanding authorized and independent repair networks and Self Service Repair.
Safety, security, and privacy – especially around biometric components.
Transparency in repair – via Parts and Service History on devices.
Repairability Improvements:
Apple notes enhanced repairability in iPhone 15 (including easier back-glass repair), easier battery replacement in Macs and iPads, and upcoming support for used genuine Apple parts.
Third-Party Parts:
Apple supports third-party part usage but warns about safety issues—especially with third-party batteries, citing a UL Solutions study in which 88% failed safety tests.
Parts Pairing Explained:
Apple describes pairing as necessary for:
biometrics security
device calibration
transparency
Not a mechanism to block third-party repair except for Face ID/Touch ID security reasons.
Expansion of Repair Access:
Apple documents the growth of:
Authorized Service Providers
Independent Repair Providers
Self Service Repair in many countries
FAQs Section:
Apple answers questions about planned obsolescence, right-to-repair legislation, repair options, and environmental impacts.
If you'd like, I can also provide:
📌 a short summary,
📌 a bullet-point cheat sheet,
📌 a presentation-style outline,
📌 or extract any specific section in detail.
Just tell me what you need!SourcesDo you like this personality?...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/nkdcxyub-4110/data/document.pdf", "num_examples": 161, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/nkdcxyub- /home/sid/tuning/finetune/backend/output/nkdcxyub-4110/data/nkdcxyub-4110.json...
|
null
|
queued
|
1765047746
|
1765048028
|
NULL
|
/home/sid/tuning/finetune/backend/output/nkdcxyub- /home/sid/tuning/finetune/backend/output/nkdcxyub-4110/adapter...
|
False
|
Edit
Delete
|
|
d7b81cf3-1f9b-4c2e-95e7-08034d1a423b
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
zvwaexym-1902
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Perspectives in Sports
|
Perspectives in Sports Genomics
|
/home/sid/tuning/finetune/backend/output/zvwaexym- /home/sid/tuning/finetune/backend/output/zvwaexym-1902/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Perspectives in Sports Genomics is a scientific re Perspectives in Sports Genomics is a scientific review that examines how genetics influences athletic performance, training response, injury risk, recovery, and long-term athlete development. It discusses the role of genomic technologies, including DNA sequencing, genome-wide association studies (GWAS), epigenetics, and gene–environment interactions in understanding human athletic potential.
The document explains that athletic performance is shaped by multiple genes, each contributing small effects, alongside environmental factors like training, nutrition, sleep, and coaching. It highlights well-studied genes associated with power, endurance, muscle composition, tendon integrity, and aerobic capacity (e.g., ACTN3, ACE). The paper also covers ethical issues, including genetic privacy, misuse of genetic information, gene-based discrimination, and the possibility of future gene doping in sports.
The report further discusses how genomics may improve training personalization, talent identification, early detection of injury susceptibility, and optimization of recovery strategies—while warning that current scientific evidence is not strong enough for genetic tests to accurately predict athletic success. It concludes by identifying research gaps and stressing the need for regulation, athlete protection, and responsible use of genomic tools.
✔ What this description is optimized for
This description is written so that any software can easily generate:
✅ Topics
• Genetics of athletic performance
• Gene–environment interactions
• Sports genomics technologies
• Ethical issues in sports genetics
• Injury risk prediction
• Gene doping concerns
• Personalized training using genomics
✅ Key points
• Athletic traits are polygenic
• Genomic tools are improving but limited
• Ethical regulation is essential
• Genes interact with environment, training, and lifestyle
• Precision sports medicine is emerging
✅ Quiz questions
• Multiple choice
• True/false
• Open-ended
• Critical thinking
✅ Summaries
Short, medium, or long summaries can be generated automatically from this description.
And ask that
If you want, I can now generate:
📌 A full quiz for this file
📌 A list of 50 topics
📌 A full summary
📌 Flashcards
📌 A study guide
📌 An essay question set...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/zvwaexym-1902/data/document.pdf", "num_examples": 231, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/zvwaexym- /home/sid/tuning/finetune/backend/output/zvwaexym-1902/data/zvwaexym-1902.json...
|
null
|
queued
|
1765471783
|
1765472387
|
NULL
|
/home/sid/tuning/finetune/backend/output/zvwaexym- /home/sid/tuning/finetune/backend/output/zvwaexym-1902/adapter...
|
False
|
Edit
Delete
|
|
d885094d-5337-4d29-960d-c92e19c015c6
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ekrnvsig-1628
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
LONGEVITY AND LIFE CYCLE
|
LONGEVITY AND LIFE CYCLE SAVING
|
/home/sid/tuning/finetune/backend/output/ekrnvsig- /home/sid/tuning/finetune/backend/output/ekrnvsig-1628/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is an economic research study examining h This PDF is an economic research study examining how increases in human life expectancy affect individual saving behavior, national savings patterns, and long-term macroeconomic outcomes. Using the life-cycle hypothesis of consumption and savings, the paper explains how longer lives reshape the way people plan financially across their lifespan—especially their decisions about working years, retirement timing, and wealth accumulation.
The core message:
As people live longer, they must save more and work longer to finance extended retirement years. Longer life expectancy increases both personal and national savings rates, reshaping economic behavior and policy.
📘 1. Purpose of the Study
The paper seeks to answer key questions:
How does increasing longevity affect savings behavior?
How do individuals adjust their consumption and work patterns across a longer life?
What happens to aggregate (national) savings when life expectancy rises?
Should retirement ages increase as people live longer?
What are the policy implications for pensions, taxation, and social insurance?
LONGEVITY AND LIFE CYCLE SAVINGS
🧠 2. Core Idea: Life-Cycle Hypothesis
The study is built on the classic life-cycle model:
Young adults borrow or save little.
Middle-aged individuals work and accumulate savings.
Older people retire and spend their savings (“dissave”).
Longer life expectancy changes each phase.
LONGEVITY AND LIFE CYCLE SAVINGS
🔍 3. Main Economic Insights
⭐ A. Longer lives increase retirement duration
People spend more years in retirement relative to working years.
⭐ B. Individuals must save more
To maintain living standards, individuals must build larger retirement wealth.
⭐ C. National savings rise
If many individuals increase their savings simultaneously, aggregate savings in the economy also rise.
⭐ D. Consumption patterns change
People smooth consumption over additional years, reducing spending at younger ages.
⭐ E. Retirement age adjustments become necessary
Working longer becomes a rational adaptation to higher longevity.
LONGEVITY AND LIFE CYCLE SAVINGS
📈 4. Longevity, Work, and Retirement
As life expectancy rises:
The ratio of working years to retirement years becomes unbalanced.
Individuals face a choice:
Save much more, or
Work longer, or
Accept lower consumption in old age.
The paper argues that raising retirement ages is an economically efficient adjustment.
LONGEVITY AND LIFE CYCLE SAVINGS
💰 5. Impact on National Savings
The PDF explains how life expectancy affects the macroeconomy:
Increased individual savings → higher national savings
Higher savings → larger capital accumulation
Potential boost to economic growth
Changing dependency ratios influence fiscal policy
A key conclusion:
Longevity is a powerful determinant of national savings levels.
LONGEVITY AND LIFE CYCLE SAVINGS
📉 6. Risks and Challenges
Despite higher savings, longevity also creates challenges:
✔️ Pension system pressures
Public pensions become more expensive.
✔️ Risk of under-saving
Individuals often underestimate future needs.
✔️ Wealth inequality
Those with higher income save more and live longer, widening gaps.
✔️ Fiscal strain
Governments must fund longer retirements.
LONGEVITY AND LIFE CYCLE SAVINGS
🏛️ 7. Policy Implications
The study emphasizes that governments must adapt:
1️⃣ Encourage or mandate later retirement
Align retirement age with rising life expectancy.
2️⃣ Strengthen private savings
Tax incentives, retirement accounts, automatic enrollment.
3️⃣ Reform public pension systems
Ensure sustainability under longer lives.
4️⃣ Promote financial literacy
Help individuals plan effectively for longer lifespans.
LONGEVITY AND LIFE CYCLE SAVINGS
⭐ Overall Summary
This PDF provides a clear, rigorous analysis showing that rising life expectancy fundamentally alters savings behavior, requiring individuals to save more, work longer, and rethink lifetime financial planning. At the macro level, longevity increases national savings but also strains pension systems. Policymakers must redesign retirement structures, savings incentives, and social insurance programs to reflect the reality of longer lives....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/ekrnvsig-1628/data/document.pdf", "num_examples": 108, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ekrnvsig- /home/sid/tuning/finetune/backend/output/ekrnvsig-1628/data/ekrnvsig-1628.json...
|
null
|
completed
|
1764881453
|
1764888263
|
NULL
|
/home/sid/tuning/finetune/backend/output/ekrnvsig- /home/sid/tuning/finetune/backend/output/ekrnvsig-1628/adapter...
|
False
|
Edit
Delete
|
|
da7edd9b-68c4-4b9b-98da-5377f50cff19
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
nlesxcge-4276
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
aging research
|
AFAR American aging research
|
/home/sid/tuning/finetune/backend/output/nlesxcge- /home/sid/tuning/finetune/backend/output/nlesxcge-4276/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Researchers believe that your longevity, that is, Researchers believe that your longevity, that is, the duration of your life, may rely on your having longevity assurance genes. Genes are the bits of DNA that determine an organism’s physical characteristics and drive a whole range of physiological processes. Longevity assurance genes are variations (called alleles) of certain genes that may allow you to live longer (and perhaps more healthily) than other people who inherit other versions of that gene.
WHY ARE LONGEVITY ASSURANCE GENES IMPORTANT?
If scientists could identify longevity genes in humans, in theory, they might also be able to develop ways to manipulate those genes to enable people to live much longer than they do today. Slowing the
aging process would also likely delay the appearance of agerelated diseases such as cancer, diabetes, and Alzheimer’s disease and therefore make people
healthier as well.
Most longevity assurance genes that have already been identified in lower organisms such as yeast, worms, and fruit flies act to increase lifespan and grant resistance to harmful environmental stress. For example, scientists have identified single gene variantions in roundworms that can extend lifespans by 40 to 100 percent. These genes also allow worms to withstand often fatal temperature extremes, excessive levels of toxic free radicals (cellular waste products), or damage due to ultraviolet light.
Some of the longevity assurance genes in lower organisms have similar counterparts among human or mammalian genes, which scientists are now studying. While researchers have not yet found genes that predispose us to greater longevity, some have identified single human gene variants that seem to have a protective effect against certain age-related diseases and are associated with long life. For example, inheriting one version of a gene for a particular protein called apolipoprotein E (Apo E) may decrease a
person’s risk of developing heart
disease and Alzheimer’s disease.
Identification of genes that prevent or delay crippling diseases at old age may help us find novel strategies for assuring a healthier, longer life, and enhancing the quality of life in the elderly.
Researchers believe that your longevity may rely on your having longevity assurance genes.
Infoaging Guide to Longevity | 3
HOW MUCH OF LONGEVITY IS GENETICALLY DETERMINED?
By some estimates, we humans have about 25,000 genes. But only a small fraction of those affect the length of our lives. It is hard to imagine that so few genes can be responsible for such a complex phenomenon as longevity. In looking at personality, psychologists ask how much is nature, that is, inherited, and how much is nurture, which means resulting from external influences. Similar questions exist about the heritability of lifespan. In other words, just how much of longevity is
genetically determined and how much it is mediated by external influences, such as smoking, diet, lifestyle, stress, and occupational exposures?
Studies do show that long-lived parents have long-lived children. Studies of adoptees confirm that their expected lifespans correlate more strongly to those of their birth parents than those of their adoptive parents. One study of twins reared apart suggests about a 30 percent role for heredity in lifespan, while another says the influence is even smaller.
Some scientists estimate the maximal lifespan of a human to be approximately 120 years, a full 50 years longer than the Biblical three score and ten (Psalms 90:10). The people who have actually achieved that maximum can be counted on one hand—or one finger. Mme. Jeanne Calment of France was 122 years old at her death in 1997. But although few challengers to her record exist, we are seeing more and more members of our society reach 100. In fact, in the United States today, there are more than 60,000 centenarians, and their ranks are projected to grow to nearly 1 million
by 2050. Much of this growth will be due to the convergence of the large aging Boomer demographic and improvements in health and medicine.
Most people who get to 100 do so by avoidance. They shun tobacco and excess alcohol, the sun and pollutants, sloth, bad diets, anger, and isolation. Still, many of us may know at least one smoking, drinking, sunburnt, lazy,
cantankerous recluse who has lived to 100—and wondered how he or she did it.
More and more, scientists are finding that part of the explanation lies in our genes. The siblings of centenarians have a four times greater probability of surviving to age 90 than do siblings of people who have an average life expectancy. When it comes to living 100 years, the probability is 17 times greater in male siblings of centenarians and eight times greater in female siblings of centenarians than the average lifespan of their birth cohort.
On the flip side, we humans carry a number of genes that are deleterious to our health and longevity. These genes increase our risk for heart disease and cancer, as well as age-related but harmless symptoms such as gray hair and wrinkles. Though we cannot change our genetic pedigrees, perhaps if we know what unhelpful genes we carry, we can take steps, such as ridding ourselves of bad health habits and adopting good ones, that can overcome the disadvantages our genes confer and live as long as those people with good genes.
WHAT WE HAVE LEARNED FROM LOWER ORGANISMS
Our understanding of genes and aging has exploded in recent years, due in large part to groundbreaking work done in simpler
organisms. By studying the effect of genetic modification on lifespan in laboratory organisms, researchers now provide fundamental insights into basic mechanisms of aging.
These include:
• Yeast
• Worms
• Fruit Flies
• Mice
Yeast Researchers have identified more than 100 genes in baker’s yeast (Saccharomyces cerevisiae) that are associated with increased longevity, and even more provocatively, have found human versions of many of these genes. Further study is ongoing.
As with all other organisms tested, researchers have reported that restricting the amount of calories available to yeast, either through reducing the sugar or amino acid content of the culture medium, can increase lifespan. Caloric
restriction does not extend lifespan in yeast strains lacking one of the longevity assurance genes, SIR2. This result has been shown in multiple organisms from yeast to flies, and even in mice. The SIR2 protein is the founding member of the sirtuin family involved in
genomic stability, metabolism, stress resistance, and aging. Researchers have found that
overexpression of Sir2 extends lifespan, ...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/nlesxcge-4276/data/document.pdf", "num_examples": 52, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/nlesxcge- /home/sid/tuning/finetune/backend/output/nlesxcge-4276/data/nlesxcge-4276.json...
|
null
|
completed
|
1764899965
|
1764903846
|
NULL
|
/home/sid/tuning/finetune/backend/output/nlesxcge- /home/sid/tuning/finetune/backend/output/nlesxcge-4276/adapter...
|
False
|
Edit
Delete
|
|
daa005f1-ff34-4dad-ac70-127a36177fdd
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
dzieiegf-8468
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity lives
|
Longevity and public financing
|
/home/sid/tuning/finetune/backend/output/dzieiegf- /home/sid/tuning/finetune/backend/output/dzieiegf-8468/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Longevity, Working Lives and Public Finances” is “Longevity, Working Lives and Public Finances” is a rigorous, policy-focused analysis exploring whether longer human lifespans can be financially sustainable within a welfare-state framework—specifically Finland’s. The central question is bold and practical: Can extended working lives generate enough tax revenue to offset the increased public spending caused by greater longevity, especially in health and long-term care?
The authors address this by integrating three strands of evidence:
Research on retirement decisions and pension policy
Empirical data on how mortality patterns influence health and long-term-care expenditures
The significant uncertainty and historical errors in mortality projections
They combine these inputs into a highly detailed overlapping-generations (OLG) general equilibrium model, calibrated to Finland’s economy and run across 500 stochastic population projections. This allows them to simulate how different longevity trajectories, retirement behaviors, and policy reforms affect fiscal sustainability over the next century.
🔍 Key Findings
1. Longevity is rising, but with uncertainty
Using stochastic population simulations, the paper demonstrates that life expectancy in Finland could vary significantly—making fiscal planning inherently risky. A 7–8 year rise in adult life expectancy is plausible, with wide uncertainty bands.
2. Longer lifetimes do not automatically extend working lives
Without policy intervention, people tend to retire early even as they live longer. Historical data shows Finland’s retirement age has barely increased despite decades of rising life expectancy.
3. Working lives can lengthen — but only with strong policy action
The model incorporates behavioral findings showing that:
Each +3 years of life expectancy increases working life by only ~6 months naturally.
Linking retirement age to life expectancy (as in many modern pension reforms) significantly boosts working years.
Adjusting disability pension rules is crucial, because disability pathways can undermine retirement-age reforms.
With coordinated policy, average retirement ages could rise by 1–4 years over coming decades.
4. Health and long-term care costs grow mainly with proximity to death, not chronological age
Using Finnish microdata, the authors show:
21–49% of healthcare costs and 27–75% of long-term-care costs are driven by the last years of life.
This means that aging populations do not automatically produce unsustainable cost explosions.
Policies that manage late-life disability and service intensity matter more than raw population aging.
This finding dramatically weakens the “aging → inevitable skyrocketing costs” assumption.
5. Fiscal sustainability depends almost entirely on whether working lives increase
The OLG model yields striking results:
If working lives do NOT lengthen, sustainability gaps grow significantly. Taxes would need to rise by 3–5 percentage points of GDP, even with proximity-to-death modeling.
With current retirement rules, longer lifespans still stress the system, but less severely.
With a full retirement-age reform linked to life expectancy, sustainability becomes essentially insensitive to longevity increases.
In other words: Extending work careers can fully offset longer lives — but only with policy support.
6. Worst-case scenarios occur when health costs are modeled naively
If one wrongly assumes that older people always consume more care just because of age (ignoring proximity to death):
Sustainability gaps increase sharply.
Public debt surges.
Taxes rise by many GDP points.
The authors emphasize that this naïve model is unrealistic, but serves to illustrate how policy misinterpretation of aging can lead to unnecessary alarm.
🧭 Overall Conclusion
The paper’s central message is optimistic but conditional:
Yes — longer lifetimes can be financially sustainable.
But only if societies simultaneously extend working lives.
This requires:
linking retirement ages to life expectancy
reforming disability and early-retirement pathways
recognizing that healthcare costs relate to dying, not simply aging
continual monitoring and adaptive policy design
With correct policies, the same generations who enjoy longer lives can also pay for them, maintaining fiscal balance without burdening younger cohorts.
However, uncertainty remains large. Continuous data collection, improved forecasting, and evidence-based policy adjustments are essential....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/dzieiegf-8468/data/document.pdf", "num_examples": 82, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/dzieiegf- /home/sid/tuning/finetune/backend/output/dzieiegf-8468/data/dzieiegf-8468.json...
|
null
|
completed
|
1764882577
|
1764887308
|
NULL
|
/home/sid/tuning/finetune/backend/output/dzieiegf- /home/sid/tuning/finetune/backend/output/dzieiegf-8468/adapter...
|
False
|
Edit
Delete
|
|
dbe862e7-0b59-47a0-b2cd-a6fdfe4ba542
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
vanxgwyq-2355
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Motivation for Longevity
|
Motivation for Longevity
|
/home/sid/tuning/finetune/backend/output/vanxgwyq- /home/sid/tuning/finetune/backend/output/vanxgwyq-2355/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is an academic manuscript analyzing why p This PDF is an academic manuscript analyzing why people want to live longer, how their motivations differ, and what psychological, social, cultural, and demographic factors shape desired longevity. It focuses on the concept of Subjective Life Expectancy (SLE)—how long individuals expect or want to live—and explores its relationship to gender, age, health, family structure, religion, and personal beliefs.
The core message is:
Longevity motivation is deeply shaped by personal meaning, gender, family responsibilities, health, and cultural context—not just by chronological age.
📘 Purpose of the Study
The document aims to understand:
What motivates people to desire longer lives
Why some people want to live to extreme ages (90, 100, 120+)
How gender roles and family expectations influence longevity desires
How health, autonomy, and independence shape longevity motivation
How cultural expectations (e.g., family caregiving) influence desired lifespan
It draws from psychological research, demographic studies, and global survey trends.
🧠 Core Themes and Key Insights
1. Longevity Desire ≠ Actual Life Expectancy
People’s desired lifespan often differs from:
Their statistical life expectancy
Their real expected survival
For example:
Women live longer but desire shorter lives than men.
Men expect shorter lives but desire longer ones.
This paradox reveals deeply gendered motivations.
2. Gender Differences in Longevity Motivation
The PDF emphasizes that:
Men generally want to live longer than women.
Women are more cautious about very old ages (85+).
Reasons for gender differences:
Women have higher rates of widowhood and late-life loneliness
Women fear dependency more
Men associate longevity with achievement and legacy
Women worry about burdening others and caregiving expectations
3. Health and Independence Are Crucial
People strongly want:
Physical function
Autonomy
Cognitive sharpness
Meaningful activity
Social connection
People do NOT want longevity if it means:
Frailty
Dementia
Chronic suffering
Being a burden on family
This creates the idea:
People desire “healthy longevity,” not just “long life.”
4. The Role of Family Structure
Family context heavily affects longevity desires:
Parents, especially mothers, want longer lives to see children succeed.
People without children often show lower longevity desire.
Caregiving responsibilities reduce desire for extreme old age.
Cultural expectations around caring for aging parents—and being cared for by children—shape people’s psychological comfort with a long life.
5. Cultural and Religious Influences
The PDF shows that:
Some religions encourage acceptance of natural lifespan.
Others view long life as a blessing or reward.
Cultures valuing elders (Asia, Africa) show higher positive longevity motivation.
Western cultures emphasize autonomy, making extreme old age less appealing.
6. Fear of Old Age and Death
People who have:
High anxiety about aging
High fear of death
tend to desire either:
Much shorter lives, or
Extremely long lives (120+)
This “U-shaped” response is driven by psychological coping mechanisms.
7. Future Orientation and Optimism
People who:
Feel in control of life
Are optimistic
Have long-term goals
Invest in health and learning
show stronger motivation for longer, meaningful life.
8. Subjective Life Expectancy (SLE) as a Predictor
SLE influences:
Retirement planning
Health behaviors
Saving and investment
Mental wellbeing
Long-term decision-making
The paper suggests using SLE as a tool for:
Public health planning
Longevity policy
Ageing research
Economic modeling
⭐ Overall Summary
“Motivation for Longevity” provides a deep psychological and sociocultural analysis of why people desire longer or shorter lives. Longevity motivation is shaped by gender, health, culture, family roles, fears, optimism, and expectations about quality of life in old age. The paper highlights that people want extended years only if they are healthy, autonomous, meaningful, and socially connected, and urges policymakers to consider human motivation when designing longevity strategies....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/vanxgwyq-2355/data/document.pdf", "num_examples": 70, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/vanxgwyq- /home/sid/tuning/finetune/backend/output/vanxgwyq-2355/data/vanxgwyq-2355.json...
|
null
|
completed
|
1764876744
|
1764882641
|
NULL
|
/home/sid/tuning/finetune/backend/output/vanxgwyq- /home/sid/tuning/finetune/backend/output/vanxgwyq-2355/adapter...
|
False
|
Edit
Delete
|
|
dbed4a66-5965-44a5-9888-bafec543f31c
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ncdikqyx-9709
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Christmas at Thompson Hal
|
This is the new version of Christmas data
|
/home/sid/tuning/finetune/backend/output/ncdikqyx- /home/sid/tuning/finetune/backend/output/ncdikqyx-9709/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Christmas at Thompson Hall” is a humorous and cha “Christmas at Thompson Hall” is a humorous and chaotic holiday story about Mr. and Mrs. Brown, an English couple trying to travel from France to England to spend Christmas Eve with Mrs. Brown’s family at Thompson Hall. Mrs. Brown is excited and determined to reach her relatives on time, but her husband complains constantly about his sore throat and cold weather, slowing their journey.
While staying overnight at a Paris hotel, Mr. Brown insists he cannot travel unless he gets a mustard poultice for his throat. Brave, loyal, and stubborn, Mrs. Brown sneaks through the hotel at midnight to get mustard. After a long and confusing search through dark corridors, she finally finds a large jar of mustard and prepares a plaster.
But when she returns to the room in the dark, she accidentally enters Room 353 instead of Room 333 and applies the mustard plaster to the throat of a complete stranger: Mr. Barnaby Jones, who is fast asleep.
Only after she applies it does she see she has made a terrible mistake. Terrified of waking him and unable to explain herself, she panics and runs away.
The next morning, the hotel discovers the mustard-covered handkerchief she left behind marked with “M. Brown.” The staff confronts the couple, and Mrs. Brown must admit that she mistakenly entered the wrong room. Mr. Jones, who has suffered a painful night, is furious and demands an explanation. Mr. Brown must awkwardly explain that his wife thought Mr. Jones was him in the dark.
Eventually, the situation is resolved without police involvement, though Mr. Jones remains deeply offended.
The Browns miss the morning train but leave Paris that night. During the train ride, they discover Mr. Jones is in the same compartment. Despite the embarrassment and humiliation, the couple finally escapes France and ultimately reaches Thompson Hall for Christmas—exhausted but relieved....
|
{"num_examples": 170, "bad_lines": {"num_examples": 170, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ncdikqyx- /home/sid/tuning/finetune/backend/output/ncdikqyx-9709/data/ncdikqyx-9709.json...
|
null
|
completed
|
1764330281
|
1764330812
|
NULL
|
/home/sid/tuning/finetune/backend/output/ncdikqyx- /home/sid/tuning/finetune/backend/output/ncdikqyx-9709/adapter...
|
False
|
Edit
Delete
|
|
dc1a9c89-f845-433d-95e7-c007a39f9fb5
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
bzxamcfa-3363
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
HOW LONGEVITY AND HEALTH
|
HOW LONGEVITY AND HEALTH INFORMATION SHAPES RETIRE
|
/home/sid/tuning/finetune/backend/output/bzxamcfa- /home/sid/tuning/finetune/backend/output/bzxamcfa-3363/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a research report on consumer behavior This PDF is a research report on consumer behavior, financial planning, and retirement decision-making, focusing on how information about personal longevity and health expectancy changes the retirement advice people give and receive. The study shows that when individuals are given clearer, more personalized information about how long they might live—or how healthy they are likely to remain—they adjust both their own retirement expectations and the financial advice they offer to others.
The central insight is simple but powerful:
👉 People make better retirement decisions when they understand realistic life expectancy and healthy-life projections.
The paper argues that traditional retirement advice often relies on vague or outdated assumptions, whereas longevity-informed advice leads to more sustainable planning, reduced financial risk, and improved well-being in later life.
🔶 1. Purpose of the Study
The report aims to:
Explore how people interpret longevity information
Determine how such information influences retirement planning behavior
Measure changes in willingness to delay retirement
Examine how health status affects financial advice decisions
Longevity health information sh…
It evaluates what happens when people confront accurate, evidence-based longevity estimates rather than intuitive guesses.
🔶 2. Key Findings
⭐ A) Longevity information changes retirement advice
When individuals are shown objective data about life expectancy:
They recommend saving more
They encourage delayed retirement
They adopt more conservative withdrawal strategies
Longevity health information sh…
This suggests that most people underestimate how long they will live and therefore underprepare financially.
⭐ B) Health expectancy influences financial guidance
People who receive information about how long they will remain healthy tend to:
Prioritize long-term planning
Adjust expectations about medical expenses
Offer more realistic guidance to their peers
Longevity health information sh…
Healthy-life expectancy, more than lifespan, shapes risk tolerance and retirement timing.
⭐ C) Personalized longevity data reduces bias
The report shows that general life expectancy numbers are too abstract.
When longevity data is:
personalized,
age-specific,
health-specific,
gender-specific,
people adjust their decisions more accurately.
Longevity health information sh…
🔶 3. Behavioral Insights
The document highlights several behavioral patterns:
✔ Optimism Bias & Longevity Blindness
Most individuals assume:
they will not live “very long”
their retirement savings will be enough
health costs will be modest
This leads to under-saving, early retirement, and risky withdrawal rates.
✔ Anchoring on Past Generations
People often base financial decisions on the experience of parents or grandparents—whose life expectancy was much lower.
Longevity information breaks this outdated anchor.
Longevity health information sh…
✔ Improved Advice Accuracy
After reviewing longevity or health expectancy data, individuals give better, more consistent advice to others planning retirement.
🔶 4. Implications for Financial Advisors & Policymakers
The paper recommends integrating longevity data into mainstream retirement planning:
Financial advisors should explicitly incorporate actuarial life expectancy into guidance.
Retirement tools should include personalized projections, not generic averages.
Governments should educate citizens on increasing lifespan trends to prevent old-age poverty.
Longevity health information sh…
Better information = better outcomes.
🔶 5. Broader Message
The report argues that the current retirement system assumes people live shorter lives. As longevity rises globally:
Advisors must adjust strategies
Individuals must plan for longer retirements
Policymakers must modernize pension design
Longevity health information sh…
Longevity information is therefore not optional—it is essential.
⭐ Perfect One-Sentence Summary
This PDF demonstrates that providing people with clear, personalized longevity and health expectancy information dramatically improves the quality of retirement advice and leads to more realistic, sustainable financial planning....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/bzxamcfa-3363/data/document.pdf", "num_examples": 30, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/bzxamcfa- /home/sid/tuning/finetune/backend/output/bzxamcfa-3363/data/bzxamcfa-3363.json...
|
null
|
completed
|
1764880864
|
1764886848
|
NULL
|
/home/sid/tuning/finetune/backend/output/bzxamcfa- /home/sid/tuning/finetune/backend/output/bzxamcfa-3363/adapter...
|
False
|
Edit
Delete
|
|
dc6b1283-ca23-42d1-9c37-b909b09b9b5f
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
fkjaceic-2926
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The role of polyamines i
|
The role of polyamines in protein-dependent
|
/home/sid/tuning/finetune/backend/output/fkjaceic- /home/sid/tuning/finetune/backend/output/fkjaceic-2926/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“The Role of Polyamines in Protein-Dependent Hypox “The Role of Polyamines in Protein-Dependent Hypoxic Tolerance of Drosophila” is a research article that investigates why dietary proteins and amino acids drastically reduce survival under chronic low-oxygen conditions (hypoxia), using Drosophila melanogaster as the model organism. The study reveals a surprising and biologically important mechanism linking amino acids, polyamines, and hypoxic stress tolerance.
Core Finding
Under chronic hypoxia (5% oxygen), even small amounts of dietary protein dramatically shorten the lifespan of adult flies. This effect is not seen under normal oxygen. The researchers discovered that this life-shortening effect is driven by:
Amino acids themselves
Their metabolic intermediates (L-ornithine, L-citrulline)
Polyamines (putrescine, spermidine, spermine)
Every natural amino acid tested decreased fly survival under hypoxia, even at low millimolar concentrations.
The role of polyamines in prote…
Why proteins become toxic in hypoxia
The study shows that chronic hypoxia unmasks a harmful effect of amino acid metabolism:
Amino acids feed into the polyamine synthesis pathway.
Polyamines, in turn, promote hypusination of eIF5A, a unique post-translational modification required for the active form of this protein.
Both polyamines and eIF5A hypusination are shown to reduce hypoxic tolerance and shorten lifespan.
The role of polyamines in prote…
Thus, amino acids → polyamines → eIF5A hypusination → reduced hypoxic survival.
Pharmacological evidence
Two inhibitors were used to dissect the mechanism:
DFMO, an inhibitor of ornithine decarboxylase (the first enzyme in polyamine synthesis), partially protected hypoxic flies from amino-acid toxicity but had no effect against polyamines themselves. This shows that polyamines are downstream of amino acids.
The role of polyamines in prote…
GC7, a potent inhibitor of eIF5A hypusination, partially rescued flies from both amino-acid- and polyamine-induced death. This demonstrates that eIF5A activation is a key step linking amino acids to reduced hypoxic tolerance.
The role of polyamines in prote…
Hypoxia-inducible factor (HIF-1α/Sima)
The authors investigated whether the classic hypoxia-response pathway played a role. They found:
Chronic hypoxia did not activate strong HIF-1α signalling in adult flies.
Loss-of-function mutants for sima (Drosophila HIF-1α) still showed the same amino-acid toxicity.
The role of polyamines in prote…
Thus, the mechanism is independent of HIF-1α, and represents a separate amino-acid sensing pathway.
Broader biological significance
The study provides strong evidence that:
Low-protein diets dramatically improve hypoxic tolerance, while proteins—through amino acids and polyamines—make tissues more vulnerable during oxygen shortage.
These mechanisms likely have parallels in mammals, where polyamine levels rise in ischemic conditions (stroke, myocardial infarction).
The role of polyamines in prote…
This suggests potential therapeutic strategies: targeting polyamine synthesis or eIF5A hypusination to improve survival under ischemic or hypoxic stress.
Conclusion
The paper identifies a previously unknown mechanism by which dietary amino acids reduce survival under chronic hypoxia. The key pathway is:
Amino acids → polyamine synthesis → eIF5A hypusination → reduced hypoxic tolerance
This mechanism explains why low-protein diets increase hypoxic survival and opens possibilities for treatments against hypoxia-related diseases....
|
{"num_examples": 162, "bad_lines": {"num_examples": 162, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/fkjaceic- /home/sid/tuning/finetune/backend/output/fkjaceic-2926/data/fkjaceic-2926.json...
|
null
|
completed
|
1764398087
|
1764398447
|
NULL
|
/home/sid/tuning/finetune/backend/output/fkjaceic- /home/sid/tuning/finetune/backend/output/fkjaceic-2926/adapter...
|
False
|
Edit
Delete
|
|
dcb17d41-e193-4c98-b275-b10297b614c0
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jihupolu-2798
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity Risk
|
Longevity Risk and Private Pensions
|
/home/sid/tuning/finetune/backend/output/jihupolu- /home/sid/tuning/finetune/backend/output/jihupolu-2798/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is an analytical report examining ho This document is an analytical report examining how longevity risk affects both the public pension system and the private insurance/annuity market in Italy, with a focus on modeling, forecasting, and evaluating policy and market-based solutions.
Purpose of the Report
To analyze:
The impact of increasing life expectancy on future pension liabilities
How longevity risk is shared between the state and private financial institutions
Whether private-sector instruments (annuities, life insurance, capital markets) could help reduce the overall burden of longevity risk in Italy
Core Topics and Content
1. What Longevity Risk Is
The report explains longevity risk as the financial risk that individuals live longer than expected, increasing the cost of lifelong pensions and annuities. This risk threatens the sustainability of:
Public PAYG pension systems
Life insurers offering annuity products
Private retirement plans
2. Italy’s Demographic Trends
Italy faces:
One of the highest life expectancies in the world
Rapid population aging
Very low birth rates
This creates a widening gap between pension contributions and payouts.
The report uses mortality projections to quantify how these demographic changes will influence pension expenditures.
3. Modeling Longevity Risk
The study applies:
Cohort life tables
Projected mortality improvements
Scenario-based models comparing expected vs. stressed longevity outcomes
These models are used to estimate how pension liabilities change under different longevity trajectories.
4. Public Pension System Impact
Key insights:
The Italian social security system carries most of the national longevity risk.
Even small increases in life expectancy significantly increase long-term pension liabilities.
Parameter adjustments (e.g., retirement age, benefit formulas) help, but do not fully offset longevity pressures.
5. Role of Private Insurance Markets
The document evaluates whether private-sector solutions can meaningfully absorb longevity risk:
Life insurers and annuity providers could take on some risk, but they face:
Capital constraints
Regulatory solvency requirements
Adverse selection
Low annuitization rates in Italy
Reinsurance and capital-market instruments (e.g., longevity bonds, longevity swaps) have potential but remain underdeveloped.
Conclusion: The private market can help, but cannot replace the public system as the primary risk bearer.
6. Possible Policy Solutions
The report outlines strategies such as:
Increasing retirement ages
Promoting private annuities
Improving mortality forecasting
Developing longevity-linked financial instruments
Implementing risk-sharing mechanisms across generations
7. Overall Conclusion
Longevity risk represents a substantial financial challenge to Italy’s pension system.
While private markets can provide complementary tools, they are not sufficient on their own. Effective policy response requires:
Continual pension reform
Better risk forecasting
Broader development of private annuity and longevity-hedging markets
If you'd like, I can also create:
📌 an executive summary
📌 a one-page cheat sheet
📌 a comparison with your other longevity documents
📌 or a multi-document integrated summary
Just let me know!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jihupolu-2798/data/document.pdf", "num_examples": 259, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jihupolu- /home/sid/tuning/finetune/backend/output/jihupolu-2798/data/jihupolu-2798.json...
|
null
|
queued
|
1765049043
|
1765050139
|
NULL
|
/home/sid/tuning/finetune/backend/output/jihupolu- /home/sid/tuning/finetune/backend/output/jihupolu-2798/adapter...
|
False
|
Edit
Delete
|
|
ddccee11-28af-48ae-b39e-fc4eaf40d4f7
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
wtkdpdnf-7423
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Extreme longevity may be
|
Extreme longevity may be the rule
|
/home/sid/tuning/finetune/backend/output/wtkdpdnf- /home/sid/tuning/finetune/backend/output/wtkdpdnf-7423/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This study by Breed et al. (2024) investigates the This study by Breed et al. (2024) investigates the longevity of Balaenid whales, focusing on the southern right whale (SRW, Eubalaena australis) and the North Atlantic right whale (NARW, Eubalaena glacialis). By analyzing over 40 years of mark-recapture data, the authors estimate life spans and survival patterns, revealing that extreme longevity (exceeding 130 years) is likely the norm rather than the exception in Balaenid whales, challenging previously accepted maximum life spans of 70–75 years. The study also highlights the impact of anthropogenic factors, particularly industrial whaling, on the significantly reduced life span of the endangered NARW.
Key Findings
Southern right whales (SRWs) have a median life span of approximately 73.4 years, with 10% of individuals surviving beyond 131.8 years.
North Atlantic right whales (NARWs) have a median life span of only 22.3 years, with 10% living past 47.2 years—considerably shorter than SRWs.
The reduced NARW life span is attributed to anthropogenic mortality factors, including ship strikes and entanglements, not intrinsic biological differences.
The study uses survival function modeling, bypassing traditional aging methods that rely on lethal sampling and growth layer counts, which tend to underestimate longevity.
Evidence from other whales, especially bowhead whales, supports the hypothesis that extreme longevity is widespread among Balaenids and possibly other large cetaceans.
Background and Context
Early longevity estimates in whales, such as blue and fin whales, came from counting annual growth layers in ear plugs, revealing ages up to 110–114 years.
Bowhead whales have been documented to live over 150 years, with some individuals estimated at 211 years based on aspartic acid racemization (AAR) and corroborating archaeological evidence (e.g., embedded antique harpoon tips).
Longevity estimates from traditional methods are biased low due to:
Difficulty in counting growth layers in very old whales due to tissue remodeling.
Removal of older age classes from populations by industrial whaling.
The need for lethal sampling to obtain age data, which is rarely possible in protected species.
The relation between body size and longevity supports the potential for extreme longevity in large whales, although bowhead whales exceed predictions from terrestrial mammal models.
Methodology
Data Sources:
SRW mark-recapture data from South Africa (1979–2021), including 2476 unique females, of which 139 had known birth years.
NARW mark-recapture data from the North Atlantic (1974–2020), including 328 unique females, of which 205 had known birth years.
Survival Models:
Ten parametric survival models were fitted, including Gompertz, Weibull, Logistic, and Exponential mortality functions with adjustments (Makeham and bathtub).
Models were fit using Bayesian inference with the R package BaSTA, which accounts for left truncation (unknown birth years) and right censoring (individuals surviving past the study period).
Model selection was based on Deviance Information Criterion (DIC).
Validation:
Simulated datasets, generated from fitted model parameters, were used to test for bias and accuracy.
Models accurately recovered survival parameters with minimal bias.
Estimating Reproductive Output:
The total number of calves produced by females was estimated by integrating survival curves and applying calving intervals ranging from 3 to 7 years.
Results
Parameter Southern Right Whale (SRW) North Atlantic Right Whale (NARW)
Median life span (years) 73.4 (95% CI [60.0, 88.3]) 22.3 (95% CI [19.7, 25.1])
10% survive past (years) 131.8 (95% CI [110.9, 159.3]) 47.2 (95% CI [43.0, 53.3])
Annual mortality hazard (age 5) ~0.5% 2.56%
Maximum life span potential >130 years Shortened due to anthropogenic factors
**SRW survival best fits an unmodified Gompertz model; NARW fits a Gompertz model with
Smart Summary
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/wtkdpdnf-7423/data/document.pdf", "num_examples": 185, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/wtkdpdnf- /home/sid/tuning/finetune/backend/output/wtkdpdnf-7423/data/wtkdpdnf-7423.json...
|
null
|
completed
|
1764952794
|
1764953927
|
NULL
|
/home/sid/tuning/finetune/backend/output/wtkdpdnf- /home/sid/tuning/finetune/backend/output/wtkdpdnf-7423/adapter...
|
False
|
Edit
Delete
|
|
df23fec6-92d6-4bbd-acf5-cea980c69838
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
kvrwnerg-5889
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Business Case for life
|
The Business Case for
Healthy Longevity
|
/home/sid/tuning/finetune/backend/output/kvrwnerg- /home/sid/tuning/finetune/backend/output/kvrwnerg-5889/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“The Business Case for Healthy Longevity” is a pol “The Business Case for Healthy Longevity” is a policy and economic analysis explaining why investing in healthy longer lives is not just a social necessity but also a powerful economic opportunity. The document argues that as populations age globally, the goal should not be merely extending lifespan but expanding healthspan—the number of years people live in good health, remain productive, and stay engaged with society.
The report shows that healthy longevity strengthens economies, reduces healthcare costs, creates new markets, and reshapes the workforce. To achieve this, societies must encourage prevention, innovation, better public health systems, and age-inclusive policies that unlock the potential of older adults.
⭐ MAIN INSIGHTS
⭐ 1. Healthy Longevity Is an Economic Growth Engine
The document demonstrates that improving health at older ages leads to:
higher workforce participation
greater productivity
increased consumer spending
reduced medical and long-term care costs
Older adults who remain healthy contribute significantly to national economies and the private sector.
The Business Case for healthy l…
⭐ 2. Global Population Ageing Creates Massive Market Opportunities
As people live longer, demand grows for:
digital health
preventive medicine
healthy lifestyle services
elder-friendly housing
assistive technologies
financial products tailored to longer lives
Healthy longevity becomes a multi-trillion-dollar global market.
⭐ 3. Prevention and Early Intervention Provide the Highest Returns
The report emphasizes that delaying the onset of chronic diseases—even by a few years—creates:
large savings for health systems
fewer years lived with disability
higher quality of life
Investments in prevention, screening, physical activity, and healthy environments offer some of the best ROI in public policy.
⭐ 4. Health Systems Must Shift From Treatment to Prevention
Traditional healthcare systems are designed for acute illness, not chronic ageing-related conditions.
The document calls for:
integrated care
community-based health support
personalized and preventive medicine
use of data and digital technologies
long-term health planning
The Business Case for healthy l…
Healthy longevity requires redesigning health systems to focus on lifelong wellbeing.
⭐ 5. Employers Benefit From Healthy, Longer-Working Employees
The paper explains that businesses gain when older employees stay healthy enough to continue working:
lower turnover
preservation of skills and experience
multi-generational teams
reduced disability and absenteeism
Companies that invest in employee wellness and age-inclusive workplaces will outperform those that don’t.
⭐ 6. Innovation Will Drive the Future of Healthy Longevity
Key areas of innovation highlighted include:
AI-driven health tools
wearable sensors
remote monitoring
robotics
precision medicine
nutrition and fitness tech
These tools help older adults maintain independence and manage chronic conditions.
⭐ OVERALL CONCLUSION
“The Business Case for Healthy Longevity” argues that longer lives are only beneficial if they are healthy lives. Healthy longevity is not a cost it is a major economic and social opportunity. By promoting prevention, supporting innovation, and redesigning health and workplace systems, societies can unlock enormous gains in productivity, wellbeing, and economic growth.
The report ultimately positions healthy ageing as one of the most important investments of the 21st century—essential for governments, businesses, and communities....
|
{"num_examples": 609, "bad_lines": {"num_examples": 609, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/kvrwnerg- /home/sid/tuning/finetune/backend/output/kvrwnerg-5889/data/kvrwnerg-5889.json...
|
null
|
completed
|
1764446948
|
1764452511
|
NULL
|
/home/sid/tuning/finetune/backend/output/kvrwnerg- /home/sid/tuning/finetune/backend/output/kvrwnerg-5889/adapter...
|
False
|
Edit
Delete
|
|
dfdafbc4-4671-4acb-a35e-418f00834895
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ckbsdccy-2345
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Polygenic profile
|
Polygenic profile of elite strength athletes
|
/home/sid/tuning/finetune/backend/output/ckbsdccy- /home/sid/tuning/finetune/backend/output/ckbsdccy-2345/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Polygenic Profile of Elite Strength Athletes” mak “Polygenic Profile of Elite Strength Athletes” make quiz generator can easily extract points, topics, key ideas, questions, or presentation slides you need to answer according to the all question with
16 Polygenic profile of elite s…
📘 Universal Description (Easy + App-Friendly)
Polygenic Profile of Elite Strength Athletes explains how elite strength performance (such as in weightlifting and powerlifting) is influenced by the combined effect of many genes, rather than by a single “strength gene.”
The study shows that muscle strength and power are highly heritable traits, but they are polygenic, meaning they depend on the presence of many small genetic variations working together, along with training and environment.
Researchers examined 217 genetic variants previously linked to strength and power traits. From these, they identified 28 genetic variants that were more common in elite strength athletes than in non-athletes.
The study introduced the idea of a polygenic profile, which means counting how many “strength-related” alleles a person carries. Results showed that:
All highly elite strength athletes carried a high number of strength alleles
Most non-athletes carried far fewer strength alleles
The probability of being an elite strength athlete increases as the number of strength-related alleles increases
The paper emphasizes that genes related to:
muscle growth
fast-twitch muscle fibers
energy metabolism
neural adaptation
muscle contraction
are especially important for strength performance.
However, the paper strongly states that genetics alone cannot determine athletic success. Training quality, coaching, nutrition, psychology, and opportunity remain essential. Genetic information is not accurate enough for talent selection and should only be used to support, not replace, traditional performance testing.
The authors conclude that elite strength performance reflects a complex interaction between many genes and environmental factors, and that genetic testing should be used cautiously and ethically in sport.
📌 Main Topics (Easy for Apps to Extract)
Sports genomics
Strength and power performance
Polygenic traits
Genetic variants (SNPs)
Elite athletes vs non-athletes
Muscle physiology
Talent identification
Genetic contribution to performance
Ethical use of genetics in sport
🔑 Key Points (Notes / Slides Friendly)
Strength is a highly heritable trait
No single gene determines strength
Elite athletes carry more strength-related alleles
Many genes influence muscle and energy systems
Genetics explains potential, not success
Training and environment remain essential
Genetics should not be used for athlete selection
🧠 Easy Explanation (Beginner Level)
Elite strength athletes tend to have many small genetic advantages rather than one special gene. These genetic traits help muscles grow stronger and adapt better to training, but hard work and training are still necessary to become elite.
🎯 One-Line Summary (Perfect for Quizzes & Presentations)
Elite strength performance depends on the combined effect of many genes, not a single genetic factor, and genetics alone cannot predict athletic success.
📝 Example Questions an App Can Generate
What does “polygenic” mean in sports performance?
Why is strength considered a heritable trait?
How many genetic variants were linked to elite strength status?
Why can genetic testing not be used alone for talent identification?
Which biological systems are influenced by strength-related genes?
in the end you have to ask
If you want, I can now:
✅ create a full quiz (MCQs + answers)
✅ turn this into presentation slides
✅ simplify it for school-level learning
✅ generate exam-style questions
✅ convert it into flashcards
Just tell me what you want next 👍...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/ckbsdccy-2345/data/document.pdf", "num_examples": 97, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ckbsdccy- /home/sid/tuning/finetune/backend/output/ckbsdccy-2345/data/ckbsdccy-2345.json...
|
null
|
queued
|
1765660140
|
1765660411
|
NULL
|
/home/sid/tuning/finetune/backend/output/ckbsdccy- /home/sid/tuning/finetune/backend/output/ckbsdccy-2345/adapter...
|
False
|
Edit
Delete
|
|
e029e108-c235-41b5-be53-87932a549e3a
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
orpnxghx-2101
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Evaluation of gender
|
Evaluation of gender differences on mitochondrial
|
/home/sid/tuning/finetune/backend/output/orpnxghx- /home/sid/tuning/finetune/backend/output/orpnxghx-2101/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This study investigates gender differences in mito This study investigates gender differences in mitochondrial bioenergetics, oxidative stress, and apoptosis in the C57Bl/6J (B6) mouse strain, a commonly used laboratory rodent model that shows no significant differences in longevity between males and females. The research explores whether the previously observed gender-based differences in longevity and oxidative stress in other species, often attributed to higher estrogen levels in females, are reflected in mitochondrial function and apoptotic markers in this mouse strain.
Background and Rationale
It is widely observed that in many species, females tend to live longer than males, often explained by higher estrogen levels in females potentially reducing oxidative damage.
However, this trend is not universal: in some species including certain mouse strains (C57Bl/6J), longevity does not differ between sexes, and in others (e.g., Syrian hamsters, nematodes), males may live longer.
Previous studies in rat strains (Wistar, Fischer 344) with female longevity advantage showed lower mitochondrial reactive oxygen species (ROS) production and higher antioxidant defenses in females.
The Mitochondrial Free Radical Theory of Aging suggests that aging rate is related to mitochondrial ROS production, which causes oxidative damage.
This study aims to test if gender differences in mitochondrial bioenergetics, ROS production, oxidative stress, and apoptosis exist in B6 mice, which do not show sex differences in lifespan.
Experimental Design and Methods
Animals: 10-month-old male (n=11) and female (n=12) C57Bl/6J mice were used.
Tissues studied: Heart, skeletal muscle (gastrocnemius + quadriceps), and liver.
Mitochondrial isolation: Tissue-specific protocols were used to isolate mitochondria immediately post-sacrifice.
Measurements performed:
Mitochondrial oxygen consumption: State 3 (active) and State 4 (resting) respiration measured polarographically.
ATP content: Determined via luciferin-luciferase assay in freshly isolated mitochondria.
ROS production: H2O2 generation from mitochondrial complexes I and III measured fluorometrically with specific substrates and inhibitors.
Oxidative stress markers:
Protein carbonyls in cytosolic fractions (ELISA).
8-hydroxy-2′-deoxyguanosine (8-oxodG) levels in mitochondrial DNA (HPLC-EC-UV).
Apoptosis markers:
Caspase-3 and caspase-9 activity (fluorometric assays).
Cleaved caspase-3 protein (Western blot).
Mono- and oligonucleosomes (DNA fragmentation, ELISA).
Key Quantitative Results
Parameter Tissue Male (Mean ± SEM) Female (Mean ± SEM) Statistical Difference
Body weight (g) Whole body 30.1 ± 0.55 24.1 ± 1.04 Male > Female (p<0.001)
Heart weight (mg) Heart 171 ± 0.01 135 ± 0.01 Male > Female (p<0.001)
Liver weight (g) Liver 1.52 ± 0.09 1.15 ± 0.09 Male > Female (p<0.01)
Skeletal muscle weight (mg) Quadriceps + gastrocnemius ~403 (sum) ~318 (sum) Male > Female (p<0.001)
Oxygen Consumption (nmol O2/min/mg protein) Heart, State 3 77.8 ± 7.5 65.0 ± 7.3 No significant difference
Skeletal Muscle, State 3 61.4 ± 4.9 64.8 ± 5.5 No significant difference
Liver, State 3 36.1 ± 4.5 34.9 ± 2.5 No significant difference
ATP content (nmol ATP/mg protein) Heart 3.7 ± 0.5 2.8 ± 0.4 No significant difference
Skeletal Muscle 0.12 ± 0.05 0.28 ± 0.06 No significant difference
ROS production (nmol H2O2/min/mg protein) Heart (complex I substrate) 0.7 ± 0.1 0.7 ± 0.05 No difference
Skeletal muscle (succinate) 5.9 ± 0.6 7.5 ± 0.5 Female > Male (p<0.05)
Liver (complex I substrate) 0.13 ± 0.05 0.13 ± 0.05 No difference
Protein carbonyls (oxidative damage marker) Heart, muscle, liver No difference No difference No significant difference
8-oxodG in mtDNA (oxidative DNA damage) Skeletal muscle, liver No difference No difference No significant difference
Caspase-3 and Caspase-9 activity (apoptosis markers) Heart, muscle, liver No difference No difference No significant difference
Cleaved caspase-3 (Western blot) Heart, muscle, liver No difference No difference No significant difference
Mono- and oligonucleosomes (DNA fragmentation) Heart, muscle, liver No difference No difference No significant difference
Core Findings and Interpretations
No significant sex differences were found in mitochondrial oxygen consumption or ATP content in heart, skeletal muscle, or liver mitochondria.
Mitochondrial ROS production rates were similar between sexes in heart and liver; only female skeletal muscle showed slightly higher ROS production with succinate substrate, an isolated finding.
Measures of oxidative damage to proteins and mitochondrial DNA did not differ between males and females.
Markers of apoptosis (caspase activities, cleaved caspase-3, DNA fragmentation) were not different between sexes in any tissue examined.
Despite females having higher estrogen levels, no associated protective effect on mitochondrial bioenergetics, oxidative stress, or apoptosis was observed in this mouse strain.
The lack of differences in mitochondrial function and oxidative damage correlates with the absence of sex differences in lifespan in the C57Bl/6J strain.
These data support the Mitochondrial Free Radical Theory of Aging, emphasizing the role of mitochondrial ROS production in aging rate, independent of estrogen-mediated effects.
The study suggests that body size differences might explain sex differences in longevity and oxidative stress observed in other species (e.g., rats), as mice exhibit smaller body weight differences between sexes.
The estrogen-related increase in antioxidant defenses or mitochondrial function is not universal, and estrogen’s protective role may vary by species and strain.
Apoptosis rates do not differ between sexes in middle-aged mice, but differences could potentially emerge at older ages (not specified).
Timeline Table: Key Experimental Procedures
Step Description
Animal age at study 10 months old male and female C57Bl/6J mice
Tissue collection and mitochondrial isolation Heart, skeletal muscle, liver isolated post-sacrifice
Measurements Oxygen consumption, ATP content, ROS production, oxidative damage, apoptosis markers
Data analysis Statistical comparison of males vs females
Keywords
Mitochondria
Reactive Oxygen Species (ROS)
Oxidative Stress
Apoptosis
Mitochondrial DNA (mtDNA)
Estrogen
Longevity
C57Bl/6J Mice
Mitochondrial Free Radical Theory of Aging
Conclusions
In the C57Bl/6J mouse strain, gender does not influence mitochondrial bioenergetics, oxidative stress levels, or apoptosis markers, consistent with the lack of sex differences in longevity in this strain.
Higher estrogen levels in females do not confer measurable mitochondrial protection or reduced oxidative stress in this model.
The results suggest that oxidative stress generation, rather than estrogen levels, determines aging rate in this species.
Body size and species-specific factors may underlie observed sex differences in longevity and oxidative stress in other animals.
Further research is needed in models where males live longer than females (e.g., Syrian hamsters) and in older animals to clarify the influence of sex on apoptosis and aging.
Key Insights
Gender differences in mitochondrial ROS production and apoptosis are not universal across species or strains.
Estrogen’s role in modulating mitochondrial function and oxidative stress is complex and strain-dependent.
Mitochondrial ROS production remains a central factor in aging independent of sex hormones in the studied mouse strain.
Additional Notes
The study used well-controlled, comprehensive biochemical and molecular assays to evaluate mitochondrial function and apoptosis.
The findings challenge the assumption that female longevity advantage is directly mediated by estrogen effects on mitochondria.
The lack of sex differences in this mouse strain provides a useful baseline for comparative aging studies.
This summary reflects the study’s content strictly as presented, without introducing unsupported interpretations or data.
Smart Summary...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/orpnxghx-2101/data/document.pdf", "num_examples": 211, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/orpnxghx- /home/sid/tuning/finetune/backend/output/orpnxghx-2101/data/orpnxghx-2101.json...
|
null
|
completed
|
1764954871
|
1764957369
|
NULL
|
/home/sid/tuning/finetune/backend/output/orpnxghx- /home/sid/tuning/finetune/backend/output/orpnxghx-2101/adapter...
|
False
|
Edit
Delete
|
|
e4dffdab-9f24-4368-977c-25eb1a2a48cf
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
iouivtmm-2239
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The Snowman
|
This is the new version of Christmas data
|
/home/sid/tuning/finetune/backend/output/iouivtmm- /home/sid/tuning/finetune/backend/output/iouivtmm-2239/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“The Snowman” is about a snowman who falls in love “The Snowman” is about a snowman who falls in love with a warm stove he sees inside a house. He doesn’t understand that heat will melt him, and when spring comes, he melts away....
|
{"num_examples": 12, "bad_lines": {"num_examples": 12, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/iouivtmm- /home/sid/tuning/finetune/backend/output/iouivtmm-2239/data/iouivtmm-2239.json...
|
{"message": "Training failed: You can& {"message": "Training failed: You can't train a model that has been loaded in 8-bit or 4-bit precision on a different device than the one you're training on. Make sure you loaded the model on the correct device using for example `device_map={'':torch.cuda.current_device()}` or `device_map={'':torch.xpu.current_device()}`"}...
|
failed
|
1764312844
|
1764312993
|
NULL
|
/home/sid/tuning/finetune/backend/output/iouivtmm- /home/sid/tuning/finetune/backend/output/iouivtmm-2239/adapter...
|
False
|
Edit
Delete
|
|
e62ac31b-cbd5-4910-bf31-f9b2fba57195
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ljrlcirv-5496
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Healthy Ageing
|
Healthy Ageing
|
/home/sid/tuning/finetune/backend/output/ljrlcirv- /home/sid/tuning/finetune/backend/output/ljrlcirv-5496/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is an academic research article titl This document is an academic research article titled “Healthy Ageing and Mediated Health Expertise” by Christa Lykke Christensen, published in Nordicom Review (2017). It explores how older adults understand health, how they think about ageing, and most importantly, how media influence their beliefs and behaviors about healthy living.
✅ Main Purpose of the Article
The study investigates:
How older people use media to learn about health.
Whether they trust media health information.
How media messages shape their ideas of active ageing, lifestyle, and personal responsibility for health.
🧓📺 Core Focus
The article is based on 16 qualitative interviews with Danish adults aged 65–86. Through these interviews, the author analyzes how elderly people react to health information in media such as TV, magazines, and online content.
⭐ Key Insights and Themes
1️⃣ Two Different Ageing Strategies Identified
The research shows that older adults fall into two broad groups:
(A) Those who maintain a youthful lifestyle into old age
Highly active (gym, sports, diet programs).
Use media health content as guidance (exercise shows, magazines, expert advice).
Believe good lifestyle can prolong life.
Try hard to “control” ageing through diet and activity.
(B) Those who accept natural ageing
Define health as simply “not being sick.”
Value mobility, independence, social interaction.
More relaxed about diet and exercise.
Focus on quality of life, relationships, emotional well-being.
More critical and skeptical of media health claims.
2️⃣ Role of Media
The article describes a dual influence:
Positive influence
Media provide accessible knowledge.
Inspire healthy habits.
Offer motivation and new routines.
Negative influence
Information often contradicts itself.
Creates pressure to meet unrealistic standards.
Can lead to guilt, frustration, confusion.
Overemphasis of diet/exercise overshadows social and emotional health.
3️⃣ “The Will to Be Healthy”
Inspired by previous research, the article explains that modern society expects older people to:
Stay active
Eat perfectly
Avoid illness through personal discipline
Continuously self-improve
Older adults feel that being healthy becomes a moral obligation, not just a personal choice.
4️⃣ Media’s Framing of Ageing
The media often portray older adults as:
Energetic
Positive
Fit
Productive
These representations push the idea of “successful ageing,” creating pressure for older individuals to avoid looking or feeling old.
5️⃣ Tension and Dilemmas
The study reveals emotional conflicts such as:
Wanting a long life but not wanting to feel old.
Trying to follow health advice but feeling overwhelmed.
Personal health needs vs. societal expectations.
Desire for autonomy vs. media pressure.
📌 Conclusions
The article concludes that:
Health and ageing are shaped heavily by media messages.
Older people feel responsible for their own ageing process.
Media act as a “negotiating partner” — guiding, confusing, pressuring, or inspiring.
Ageing today is not passive; it requires continuous decision-making and self-management.
There is no single way to age healthily — each individual balances ideals, limitations, and life experience....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/ljrlcirv-5496/data/document.pdf", "num_examples": 2, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ljrlcirv- /home/sid/tuning/finetune/backend/output/ljrlcirv-5496/data/ljrlcirv-5496.json...
|
null
|
completed
|
1764894090
|
1764900108
|
NULL
|
/home/sid/tuning/finetune/backend/output/ljrlcirv- /home/sid/tuning/finetune/backend/output/ljrlcirv-5496/adapter...
|
False
|
Edit
Delete
|
|
e79ebb98-ee16-4b4e-bad1-f67528a16b3c
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jzoubfzk-5182
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Superior proteome
|
Superior proteome stability in the longest lived
|
/home/sid/tuning/finetune/backend/output/jzoubfzk- /home/sid/tuning/finetune/backend/output/jzoubfzk-5182/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Superior proteome stability in the longest-lived a Superior proteome stability in the longest-lived animal” investigates why the ocean quahog (Arctica islandica)—a clam that can live over 500 years, the longest-lived animal known—ages extraordinarily slowly. The study reveals that its exceptional lifespan is strongly linked to remarkable stability of its proteome (the full set of proteins in its cells).
The paper explains that aging in most organisms is driven by the gradual accumulation of damaged, misfolded, or aggregated proteins, which disrupt cellular function. Arctica islandica, however, shows:
Key Findings
Extremely low levels of protein oxidation even in very old individuals
Highly efficient protein repair and recycling mechanisms
Exceptional resistance to stress, including oxidative and metabolic stress
Slower protein turnover, meaning proteins remain functional longer without degradation
Stable cellular environment that prevents the buildup of toxic protein aggregates
Together, these mechanisms preserve protein quality for centuries, protecting cells from age-related decline.
Implications
The study suggests that proteome stability is a core determinant of maximum lifespan in animals. It also offers insight into how improving protein maintenance systems in humans could potentially reduce age-related diseases such as neurodegeneration, cardiovascular decline, and metabolic dysfunction.
In essence, Arctica Islandica’s longevity is not a mystery of size or environment—it is a triumph of biochemical housekeeping, where proteins stay “young” far longer than in any other species studied....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jzoubfzk-5182/data/document.pdf", "num_examples": 105, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jzoubfzk- /home/sid/tuning/finetune/backend/output/jzoubfzk-5182/data/jzoubfzk-5182.json...
|
null
|
completed
|
1764867070
|
1764867287
|
NULL
|
/home/sid/tuning/finetune/backend/output/jzoubfzk- /home/sid/tuning/finetune/backend/output/jzoubfzk-5182/adapter...
|
False
|
Edit
Delete
|
|
e7d237b6-d50f-4a6c-9350-eb07238f3609
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
fnakzpii-4028
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Global and National
|
Global and National Declines in Life
|
/home/sid/tuning/finetune/backend/output/fnakzpii- /home/sid/tuning/finetune/backend/output/fnakzpii-4028/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Period life expectancy at birth [life expecta
Period life expectancy at birth [life expectancy thereafter] is the most-frequently used indicator
of mortality conditions. More broadly, life expectancy is commonly taken as a marker of human
progress, for instance in aggregate indices such as the Human Development Index (United
Nations Development Programme 2020). The United Nations (UN) regularly updates and makes
available life expectancy estimates for every country, various country aggregates and the world
for every year since 1950 (Gerland, Raftery, Ševčíková et al. 2014), providing a 70-year
benchmark for assessing the direction and magnitude of mortality changes....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/fnakzpii-4028/data/document.pdf", "num_examples": 36, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/fnakzpii- /home/sid/tuning/finetune/backend/output/fnakzpii-4028/data/fnakzpii-4028.json...
|
null
|
completed
|
1764895634
|
1764904653
|
NULL
|
/home/sid/tuning/finetune/backend/output/fnakzpii- /home/sid/tuning/finetune/backend/output/fnakzpii-4028/adapter...
|
False
|
Edit
Delete
|
|
e8a86172-d83a-4cef-b533-855787689e8a
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
xgeawmeb-9443
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Institutional Change
|
Institutional Change and the Longevity
|
/home/sid/tuning/finetune/backend/output/xgeawmeb- /home/sid/tuning/finetune/backend/output/xgeawmeb-9443/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Institutional Change and the Longevity of the Chi “Institutional Change and the Longevity of the Chinese Empire” is a historical–institutional analysis that explains how the Chinese empire survived for over two millennia through deliberate and adaptive institutional reforms. The study argues that the empire’s longevity cannot be understood simply through military power or cultural unity; instead, it was the result of continuous reinvention of political institutions, especially in response to crises such as population growth, territorial expansion, administrative overload, and fiscal stress.
The paper highlights several transformative reforms across dynasties:
1. Establishment of a Centralized Bureaucracy
Early imperial rulers replaced hereditary aristocracies with a merit-based civil service, enabling the state to govern vast territories through professional administrators rather than powerful families.
2. Evolution of the Examination System
The civil service exam system matured over centuries, creating one of the most stable and sophisticated systems of bureaucratic recruitment in world history. This system helped prevent elite capture and ensured a constant supply of educated officials.
3. Fiscal and Land Reforms
Successive dynasties introduced new taxation methods, land redistribution policies, and state granaries to stabilize rural society and prevent unrest—key ingredients of regime durability.
4. Military Institutional Adjustments
From the Tang to the Ming dynasties, China shifted between militia systems, hereditary military households, and standing armies to manage internal and external security pressures.
5. Governance Adaptability
The empire demonstrated an exceptional ability to learn from failures, absorb local customs, integrate diverse populations, and decentralize or recentralize authority when necessary.
The paper concludes that the Chinese empire endured because of its capacity for long-term institutional adaptation. Rather than rigid tradition, it was institutional flexibility, combined with bureaucratic professionalism and continuous reform, that supported one of the longest-lasting political systems in human history.
If you want, I can also provide:
✅ A short 3–4 line summary
✅ A simple student-friendly version
✅ Quiz / MCQs from this file
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/xgeawmeb-9443/data/document.pdf", "num_examples": 190, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/xgeawmeb- /home/sid/tuning/finetune/backend/output/xgeawmeb-9443/data/xgeawmeb-9443.json...
|
null
|
queued
|
1765225425
|
1765227215
|
NULL
|
/home/sid/tuning/finetune/backend/output/xgeawmeb- /home/sid/tuning/finetune/backend/output/xgeawmeb-9443/adapter...
|
False
|
Edit
Delete
|
|
e8f2db05-3631-4a4a-baef-c571146cbc9e
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
szdogwpc-2381
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Understanding the long-te
|
Understanding the long-term effects of chronic dis
|
/home/sid/tuning/finetune/backend/output/szdogwpc- /home/sid/tuning/finetune/backend/output/szdogwpc-2381/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Understanding the Long-Term Effects of Chronic Di “Understanding the Long-Term Effects of Chronic Disease” is a scientific short communication that examines how chronic diseases—such as heart disease, diabetes, arthritis, chronic respiratory illness, and cancer—affect individuals not just physically but also mentally, socially, and economically over long periods of time. Unlike short-term illnesses, chronic diseases persist for years or a lifetime, creating ongoing challenges for patients, families, and healthcare systems.
The article explains that chronic diseases are rapidly increasing worldwide due to aging populations, unhealthy lifestyles, urbanization, and environmental exposures. These conditions progressively damage the body, reduce quality of life, and often lead to long-term disability. Because chronic diseases cannot usually be cured, they require continuous management, lifestyle changes, and long-term medical care.
⭐ MAIN POINTS
⭐ 1. Physical Effects
Chronic diseases often cause progressive deterioration of organs and bodily functions.
Examples include:
Heart disease / stroke: reduced mobility, heart failure, low endurance
Diabetes: nerve damage, kidney disease, vision loss, infections
COPD/asthma: breathing difficulty, fatigue, reduced activity
Arthritis: chronic pain, stiffness, disability
As conditions worsen, individuals may depend on others for daily activities.
They also face a higher risk of:
infections
falls
injuries
medication side effects
understanding-the-longterm-effe…
⭐ 2. Psychological & Emotional Effects
The emotional burden of lifelong illness can be severe. Chronic diseases commonly lead to:
depression
anxiety
emotional distress
feelings of helplessness
social withdrawal
Constant medical appointments and uncertainty about future health add stress.
Caregivers also experience burnout, emotional exhaustion, and mental strain.
understanding-the-longterm-effe…
⭐ 3. Economic & Social Effects
Chronic diseases impose major financial and social burdens.
Economic impacts include:
high medical costs (hospital visits, medication, monitoring)
loss of income from reduced work ability
long-term disability
Social impacts include:
stigma or discrimination
social isolation
reduced community participation
stress on family members and caregivers
These combined effects can deepen poverty, weaken families, and strain national healthcare systems.
understanding-the-longterm-effe…
⭐ 4. Prevention & Management
The article stresses that although chronic diseases are long-term, their effects can be reduced.
Prevention includes:
healthy diet
regular physical activity
smoking cessation
early health screening
addressing risk factors early in life
Management includes:
medication adherence
lifestyle modifications
physical therapy
pain management
mental health support
regular check-ups
Effective prevention and proper management help patients maintain independence and improve quality of life.
understanding-the-longterm-effe…
⭐ OVERALL CONCLUSION
Chronic diseases create long-lasting physical, emotional, social, and economic challenges for both individuals and societies. While they cannot always be cured, their impact can be significantly reduced through early detection, preventive lifestyle changes, consistent medical care, and strong psychological and social support systems. With proper management, many individuals with chronic diseases can still lead meaningful, independent lives....
|
{"num_examples": 38, "bad_lines": {"num_examples": 38, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/szdogwpc- /home/sid/tuning/finetune/backend/output/szdogwpc-2381/data/szdogwpc-2381.json...
|
null
|
completed
|
1764414215
|
1764414367
|
NULL
|
/home/sid/tuning/finetune/backend/output/szdogwpc- /home/sid/tuning/finetune/backend/output/szdogwpc-2381/adapter...
|
False
|
Edit
Delete
|
|
e92b93d5-8def-4f45-b4bc-5650464dbd48
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
sdcmouqg-1500
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The Burglar's Christmas.
|
This is the new version of Christmas data
|
/home/sid/tuning/finetune/backend/output/sdcmouqg- /home/sid/tuning/finetune/backend/output/sdcmouqg-1500/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“The Burglar’s Christmas” follows William, a young “The Burglar’s Christmas” follows William, a young man who has failed at everything he tried. Hungry, cold, and alone on Christmas Eve in Chicago, he feels completely defeated and believes he has ruined his life. He has no money, no home, and no hope left.
Desperate for food, William finally decides to steal. He enters a wealthy home, planning to take jewelry from an upstairs room. But while robbing a bedroom, he discovers something shocking: the house belongs to his own parents, and the woman who catches him stealing is his mother.
Instead of being angry or afraid, his mother recognizes him immediately. She calls him “Willie,” embraces him, and tells him she has prayed for him every day. William breaks down in shame, calling himself a thief and a failure, but his mother refuses to let him go. She tells him that love does not depend on success, and that he can never lose her love.
She begs her husband, William’s father, James, to take their son back. Although he is stern and proud, James agrees, saying William is still his son. William’s mother gives him food, comfort, and warmth, holding him as she did when he was a child.
By the end of the story, William realizes he is forgiven. On this Christmas night, he is given not only a home again, but also a chance to start over. His mother’s unconditional love saves him at the lowest point of his life....
|
{"num_examples": 97, "bad_lines": {"num_examples": 97, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/sdcmouqg- /home/sid/tuning/finetune/backend/output/sdcmouqg-1500/data/sdcmouqg-1500.json...
|
null
|
completed
|
1764329404
|
1764329643
|
NULL
|
/home/sid/tuning/finetune/backend/output/sdcmouqg- /home/sid/tuning/finetune/backend/output/sdcmouqg-1500/adapter...
|
False
|
Edit
Delete
|
|
eab6dc08-1acf-4052-8d09-7d27fe12b912
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
vyghrbzb-3159
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Pandemics and the Economi
|
Pandemics and the Economics of Aging and Longevity
|
/home/sid/tuning/finetune/backend/output/vyghrbzb- /home/sid/tuning/finetune/backend/output/vyghrbzb-3159/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is an academic chapter examining how pand This PDF is an academic chapter examining how pandemics—especially COVID-19—interact with aging populations, longevity trends, and the economics of health and survival. It combines insights from demography, economics, health policy, and epidemiology to show how pandemics reshape mortality patterns, longevity gains, public spending, and the wellbeing of older adults.
The central message:
Pandemics do not just affect death rates—they transform long-term economic and demographic patterns, especially in aging societies.
📘 Purpose of the Chapter
The document explores:
How pandemics alter survival rates by age
Why older adults experience the highest mortality burden
Economic trade-offs between longevity investments and pandemic preparedness
How societies should rethink health systems in the context of demographic aging
How pandemics interact with inequality, economic resilience, and the value of life
It positions pandemics as a major factor influencing the economics of longevity, aging, and intergenerational welfare.
🧠 Core Themes and Arguments
1. Pandemics Hit Aging Societies Much Harder
The chapter explains that COVID-19 caused:
Extremely high mortality among older adults
Severe pressure on health systems
Significant declines in life expectancy
Long-term economic losses concentrated among the elderly
It highlights that the demographic structure of a society strongly determines the overall mortality impact of a pandemic.
2. Pandemics Reduce Longevity Gains
For decades, life expectancy had been rising. Pandemics can:
Reverse these gains
Increase mortality rates for older cohorts
Create “scarring effects” in population health
It notes that longevity is not guaranteed—health shocks can disrupt historical progress.
3. Economic Value of Life and Risk
The text examines how societies evaluate:
The value of preventing deaths
The cost of lockdowns
The economic returns of reducing mortality risks
How much governments should invest in protecting older adults
Pandemics raise complicated questions about resource allocation, equity, and the economic value of extended life.
4. Intergenerational Impacts
The pandemic created tensions between:
Younger people (job losses, school closures)
Older adults (higher mortality risk)
The chapter discusses the economics of fairness:
Who bears the cost of pandemic control?
Who benefits most from saved lives?
How generational burden-sharing should be designed?
5. Longevity, Health Systems, and Preparedness
The document explains that aging societies must:
Strengthen chronic disease management
Build resilient health systems
Improve long-term care
Prepare for repeated pandemics
It argues that the rising share of elderly people requires rethinking pandemic preparedness—because older adults are both more vulnerable and more expensive to protect.
6. COVID-19 as an Economic and Demographic Shock
The chapter uses COVID-19 as a case study to show:
Economic shutdowns
Health system overload
Labor market disruptions
Inequality between rich and poor older adults
Disproportionate mortality among low-income, marginalized, and unhealthy aging populations
It highlights that pandemics expose and magnify pre-existing inequalities, especially in health.
7. Lessons for the Future
The text concludes that societies should invest in:
Disease prevention
Universal health coverage
Vaccination systems
Social protection
Healthy aging policies
Cross-border pandemic collaboration
It stresses that pandemics will become more common, and their impact will grow as populations age.
⭐ Overall Summary
This PDF provides a comprehensive, multidisciplinary examination of how pandemics fundamentally reshape the dynamics of aging, longevity, mortality, and the economics of health. It argues that aging societies must rethink how they value life, prepare for pandemics, and build resilient, equitable health systems capable of protecting older generations....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/vyghrbzb-3159/data/document.pdf", "num_examples": 153, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/vyghrbzb- /home/sid/tuning/finetune/backend/output/vyghrbzb-3159/data/vyghrbzb-3159.json...
|
null
|
completed
|
1764875653
|
1764886481
|
NULL
|
/home/sid/tuning/finetune/backend/output/vyghrbzb- /home/sid/tuning/finetune/backend/output/vyghrbzb-3159/adapter...
|
False
|
Edit
Delete
|
|
eac03b01-a1c0-44e8-b712-40228fa50d55
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
yhpaiokf-1148
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Insurance and the Life
|
Insurance and the Longevity Economy
|
/home/sid/tuning/finetune/backend/output/yhpaiokf- /home/sid/tuning/finetune/backend/output/yhpaiokf-1148/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The report “Insurance and the Longevity Economy” e The report “Insurance and the Longevity Economy” explores how rising global life expectancy and demographic shifts are transforming economic behavior, health systems, and financial security. It introduces the concept of a longevity economy, where longer life spans reshape savings, work patterns, healthcare needs, and public policy. Using a global survey of 15,000 people across 12 countries, the report uncovers a longevity paradox: while individuals worry about healthcare access, financial preparedness, retirement adequacy, and long-term independence, they often overestimate their actual readiness.
The report evaluates how insurance can evolve to meet the needs of 100-year lives by aligning life span, health span, and wealth span. It highlights opportunities for insurers to innovate through integrated solutions that combine mortality, longevity, and health risks; flexible and personalised savings products; dynamic underwriting supported by data and technology; and reimagined long-term care models. It also stresses the importance of insurer collaboration with policymakers to strengthen social safety nets, manage systemic risks, and ensure sustainable protection for aging populations. Overall, the document provides a strategic roadmap for insurers to lead and support a resilient longevity economy.
If you want, I can also create short, extra-short, detailed, or bullet-point versions....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/yhpaiokf-1148/data/document.pdf", "num_examples": 408, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/yhpaiokf- /home/sid/tuning/finetune/backend/output/yhpaiokf-1148/data/yhpaiokf-1148.json...
|
null
|
queued
|
1765051527
|
1765053986
|
NULL
|
/home/sid/tuning/finetune/backend/output/yhpaiokf- /home/sid/tuning/finetune/backend/output/yhpaiokf-1148/adapter...
|
False
|
Edit
Delete
|
|
eaf15e4e-34b7-45f6-af33-87617548f0bf
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ufydvoij-3348
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Genetic longevity
|
Genetic Longevity
|
/home/sid/tuning/finetune/backend/output/ufydvoij- /home/sid/tuning/finetune/backend/output/ufydvoij-3348/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Markus Valge, Richard Meitern and Peeter Hõrak*
D Markus Valge, Richard Meitern and Peeter Hõrak*
Department of Zoology, University of Tartu, Tartu, Estonia
Life-history traits (traits directly related to survival and reproduction) co-evolve and materialize through physiology and behavior. Accordingly, lifespan can be hypothesized as a potentially informative marker of life-history speed that subsumes the impact of diverse morphometric and behavioral traits. We examined associations between parental longevity and various anthropometric traits in a sample of 4,000–11,000 Estonian children in the middle of the 20th century. The offspring phenotype was used as a proxy measure of parental genotype, so that covariation between offspring traits and parental longevity (defined as belonging to the 90th percentile of lifespan) could be used to characterize the aggregation between longevity and anthropometric traits. We predicted that larger linear dimensions of offspring associate with increased parental longevity and that testosterone-dependent traits associate with reduced paternal longevity. Twelve of 16 offspring traits were associated with mothers’ longevity, while three traits (rate of sexual maturation of daughters and grip strength and lung capacity of sons) robustly predicted fathers’ longevity. Contrary to predictions, mothers of children with small bodily dimensions lived longer, and paternal longevity was not linearly associated with their children’s body size (or testosterone-related traits). Our study thus failed to find evidence that high somatic investment into brain and body growth clusters with a long lifespan across generations, and/or that such associations can be detected on the basis of inter-generational phenotypic correlations.
KEYWORDS
anthropometric traits, body size, inter-generational study, longevity, obesity, sex difference
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/ufydvoij-3348/data/document.pdf", "num_examples": 17, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ufydvoij- /home/sid/tuning/finetune/backend/output/ufydvoij-3348/data/ufydvoij-3348.json...
|
null
|
completed
|
1764896608
|
1764902018
|
NULL
|
/home/sid/tuning/finetune/backend/output/ufydvoij- /home/sid/tuning/finetune/backend/output/ufydvoij-3348/adapter...
|
False
|
Edit
Delete
|
|
eaf682f7-d4eb-4235-a8eb-3c6718f0d703
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
grbyzvsu-9946
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
LIFE EXPECTANCY AND HUMAN
|
LIFE EXPECTANCY AND HUMAN CAPITAL INVESTMENTS
|
/home/sid/tuning/finetune/backend/output/grbyzvsu- /home/sid/tuning/finetune/backend/output/grbyzvsu-9946/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a theoretical and economic analysis th This PDF is a theoretical and economic analysis that examines how life expectancy influences human capital investment—particularly education, skill acquisition, and long-term personal development. The central purpose of the paper is to explain why people invest more in education and training when they expect to live longer, and how improvements in survival rates reshape economic behavior, societal development, and intergenerational outcomes.
The core message:
Longer life expectancy increases the returns to human capital, incentivizes individuals to acquire more education and skills, and plays a crucial role in shaping economic growth and income distribution.
🎓 1. Purpose and Motivation
The paper addresses key questions:
Why do individuals invest more in education when life expectancy rises?
How does increased longevity affect economic growth?
How do survival improvements change intergenerational human capital transmission?
What are the broader implications for inequality and development?
It links demography with economics, showing that human capital decisions depend heavily on expected lifespan.
LIFE EXPECTANCY AND HUMAN CAPIT…
🧠 2. Core Theoretical Insight
Human capital investment—like education or training—has upfront costs but produces returns over time.
If people expect to live longer:
They enjoy returns for more years
They have more incentive to invest
They delay retirement
They allocate more time to schooling in youth
They acquire training even in mid-life
Thus, longer life expectancy raises the value of human capital.
LIFE EXPECTANCY AND HUMAN CAPIT…
👶 3. The Overlapping Generations Framework
The paper uses an OLG (Overlapping Generations) model, where:
Parents invest in children
Children become productive adults
Longer life expectancy changes optimal investments
Key mechanisms:
⭐ Higher expected lifespan → higher returns on education
Parents allocate more resources toward schooling.
⭐ Children attend school longer
Their lifetime earnings potential increases.
⭐ Economy accumulates more knowledge
Driving long-run growth.
LIFE EXPECTANCY AND HUMAN CAPIT…
📈 4. Empirical and Theoretical Implications
✔ More schooling
Increased life expectancy correlates with more years of formal education.
✔ Higher productivity
A more educated workforce boosts national growth.
✔ Lower fertility
Parents invest more per child as education becomes more valuable.
✔ Intergenerational impact
Educated parents pass on higher human capital to children.
✔ Economic development pathway
Longevity is a key driver in the transition from low- to high-income economies.
LIFE EXPECTANCY AND HUMAN CAPIT…
⚠️ 5. Inequality and Distributional Effects
The document also examines how life expectancy interacts with economic inequality:
Higher-income families invest more in children, widening gaps.
Unequal improvements in survival can reinforce inequality.
Policy interventions may be required to equalize educational opportunity.
The overall conclusion:
Longevity-driven human capital growth can either reduce or increase inequality depending on policy design.
LIFE EXPECTANCY AND HUMAN CAPIT…
🧩 6. Policy Implications
⭐ Support for early-life education
Because returns amplify over longer lifespans.
⭐ Investments in public health
Better health → higher life expectancy → higher human capital.
⭐ Incentives for lifelong learning
Especially in aging societies.
⭐ Reduce barriers to education
To avoid inequality expansion.
LIFE EXPECTANCY AND HUMAN CAPIT…
⭐ Overall Summary
This PDF explains that life expectancy is a powerful determinant of human capital investment. Longer lives increase the payoff from education, encourage skill acquisition, and promote economic growth through a more productive workforce. However, if survival and educational opportunities are unevenly distributed, inequality may rise. The paper provides a strong theoretical foundation for understanding why healthier, longer-living societies tend to be more educated and more economically advanced....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/grbyzvsu-9946/data/document.pdf", "num_examples": 70, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/grbyzvsu- /home/sid/tuning/finetune/backend/output/grbyzvsu-9946/data/grbyzvsu-9946.json...
|
null
|
completed
|
1764886987
|
1764900188
|
NULL
|
/home/sid/tuning/finetune/backend/output/grbyzvsu- /home/sid/tuning/finetune/backend/output/grbyzvsu-9946/adapter...
|
False
|
Edit
Delete
|
|
ebb71696-6557-46e6-b524-bf6e8229c5ed
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ldrmouen-6866
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
financial impact
|
financial impact of longevity and risk
|
/home/sid/tuning/finetune/backend/output/ldrmouen- /home/sid/tuning/finetune/backend/output/ldrmouen-6866/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
e economic and fiscal effects of an aging society e economic and fiscal effects of an aging society have been extensively studied and are generally recognized by policymakers, but the financial consequences associated with the risk that people live longer than expected—longevity risk—has received less attention.1 Unanticipated increases in the average human life span can result from misjudging the continuing upward trend in life expectancy, introducing small forecasting errors that compound over time to become potentially significant. This has happened in the past. There is also risk of a sudden large increase in longevity as a result of, for example, an unanticipated medical breakthrough. Although longevity advancements increase the productive life span and welfare of millions of individuals, they also represent potential costs when they reach retirement. More attention to this issue is warranted now from the financial viewpoint; since longevity risk exposure is large, it adds to the already massive costs of aging populations expected in the decades ahead, fiscal balance sheets of many of the affected countries are weak, and effective mitigation measures will take years to bear fruit. The large costs of aging are being recognized, including a belated catchup to the currently expected increases in average human life spans. The costs of longevity risk—unexpected increases in life spans—are not well appreciated, but are of similar magnitude. This chapter presents estimates that suggest that if everyone lives three years longer than now expected—the average underestimation of longevity in the past—the present discounted value of the additional living expenses of everyone during those additional years of life amounts to between 25 and 50 percent of 2010 GDP. On a global scale, that increase amounts to tens of trillions of U.S. dollars, boosting the already recognized costs of aging substantially. Threats to financial stability from longevity risk derive from at least two major sources. One is the
Note: This chapter was written by S. Erik Oppers (team leader), Ken Chikada, Frank Eich, Patrick Imam, John Kiff, Michael Kisser, Mauricio Soto, and Tao Sun. Research support was provided by Yoon Sook Kim. 1See, for example, IMF (2011a).
threats to fiscal sustainability as a result of large longevity exposures of governments, which, if realized, could push up debttoGDP ratios more than 50 percentage points in some countries. A second factor is possible threats to the solvency of private financial and corporate institutions exposed to longevity risk; for example, corporate pension plans in the United States could see their liabilities rise by some 9 percent, a shortfall that would require many multiples of typical yearly contributions to address. Longevity risk threatens to undermine fiscal sustainability in the coming years and decades, complicating the longerterm consolidation efforts in response to the current fiscal difficulties.2 Much of the risk borne by governments (that is, current and future taxpayers) is through public pension plans, social security schemes, and the threat that private pension plans and individuals will have insufficient resources to provide for unexpectedly lengthy retirements. Most private pension systems in the advanced economies are currently underfunded and longevity risk alongside low interest rates further threatens their financial health. A threepronged approach should be taken to address longevity risk, with measures implemented as soon as feasible to avoid a need for much larger adjustments later. Measures to be taken include: (i) acknowledging government exposure to longevity risk and implementing measures to ensure that it does not threaten medium and longterm fiscal sustainability; (ii) risk sharing between governments, private pension providers, and individuals, partly through increased individual financial buffers for retirement, pension system reform, and sustainable oldage safety nets; and (iii) transferring longevity risk in capital markets to those that can better bear it. An important part of reform will be to link retirement ages to advances in longevity. If undertaken now, these mitigation measures can be implemented in a gradual and sustainable way. Delays would increase risks to financial and fiscal stability, potentially requiring much larger and disruptive measures in the future.
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/ldrmouen-6866/data/document.pdf", "num_examples": 203, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ldrmouen- /home/sid/tuning/finetune/backend/output/ldrmouen-6866/data/ldrmouen-6866.json...
|
null
|
completed
|
1764898789
|
1764908982
|
NULL
|
/home/sid/tuning/finetune/backend/output/ldrmouen- /home/sid/tuning/finetune/backend/output/ldrmouen-6866/adapter...
|
False
|
Edit
Delete
|
|
ec4dd73a-8133-431e-9be7-14937289f402
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
rpqusbca-8795
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Energy Poverty and Life
|
Energy Poverty and Life Expectancy in Nigeria
|
/home/sid/tuning/finetune/backend/output/rpqusbca- /home/sid/tuning/finetune/backend/output/rpqusbca-8795/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This study investigates the impact of energy pover This study investigates the impact of energy poverty on life expectancy in Nigeria over the period from 1981 to 2023. Utilizing time series data and the Autoregressive Distributed Lag (ARDL) model, the research examines both short-run and long-run effects, revealing a statistically significant negative relationship between energy poverty and life expectancy. The study emphasizes the critical role of energy access as a determinant of public health and longevity, urging policy reforms to improve energy infrastructure and accessibility in Nigeria to enhance health outcomes and sustainable development.
Key Concepts
Term Definition/Explanation
Life Expectancy Average number of years a newborn is expected to live, given current sex- and age-specific mortality rates.
Energy Poverty Lack of access to affordable, reliable, and clean energy services, including electricity and clean cooking fuels.
ARDL Model An econometric technique used to estimate both short-run and long-run relationships in time series data.
Sustainable Development Goals (SDGs) United Nations goals, including Goal 3 (Health and Well-being) and Goal 7 (Affordable and Clean Energy).
Background and Context
Nigeria faces a persistent energy crisis, with about 43% of the population (86 million people) lacking access to reliable and modern energy.
Life expectancy in Nigeria is significantly lower than the global average, estimated at 54.9 years for women and 54.3 years for men, compared to global averages of 76 and 70.7 years respectively.
Energy poverty in Nigeria manifests through:
Limited electricity access.
Dependence on biomass and kerosene for cooking.
Frequent power outages affecting households, hospitals, and public infrastructure.
Existing government policies (e.g., National Health Policy, Renewable Energy Master Plan) have not sufficiently improved energy access or life expectancy.
Life expectancy is a key indicator of national development and is strongly influenced by socioeconomic and infrastructural factors.
Theoretical Framework
The study is grounded in Human Capital Theory (Schultz, Becker), which posits that investments in health, education, and other social services enhance individual productivity and contribute to overall economic growth and well-being.
Access to modern energy is viewed as a critical enabler of:
Health services.
Clean environments.
Improved living standards.
Energy poverty undermines health by increasing exposure to harmful fuels and limiting access to healthcare, thereby shortening life expectancy.
Empirical Literature Highlights
Roy (2025): Clean energy access significantly increases life expectancy globally.
Olise (2025): Kerosene positively affects quality of life in Nigeria in the short and long run; premium motor spirit negatively affects life expectancy; electricity consumption had no significant impact.
Onisanwa et al. (2024): Socioeconomic factors including income, education, urbanization, and environmental degradation determine life expectancy in Nigeria.
Fan et al. (2024): Energy poverty adversely affects public health, especially in developed regions.
Abu & Orisa-Couple (2022): Unsafe energy sources (kerosene, generators) cause burns and mortality in Port Harcourt.
Okorie & Lin (2022): Energy poverty increases risk of catastrophic health expenditure among Nigerian households.
Onwube et al. (2021): Real GDP per capita, household consumption, and exchange rates positively influence life expectancy; inflation and imports have negative effects.
Data and Methodology
Data: Annual time series data (1981-2023) from World Bank’s World Development Indicators and Global Database of Inflation.
Variables:
Variable Description Expected Sign
LFE Life expectancy at birth Dependent
EPOV Energy poverty (access to electricity and clean cooking fuels) Negative (β1 < 0)
GDPK GDP per capita (constant 2015 US$) Positive (β2 > 0)
GHEX Government health expenditure per capita Positive (β3 > 0)
PVL Prevalence of undernourishment (%) Negative (β4 < 0)
LTR Literacy rate (secondary school enrollment %) Positive (β5 > 0)
Econometric Approach:
Stationarity tested using Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests.
Cointegration tested via ARDL Bounds testing.
Short-run and long-run relationships estimated using ARDL and Error Correction Model (ECM).
Descriptive Statistics
Variable Mean Min Max Std. Dev Notes
Life Expectancy (LFE) 48.78 yrs 45.49 yrs 54.59 yrs 2.87 Moderate variability over time
Energy Poverty (EPOV) 52.59% 28.20% 86.10% 13.60 Volatile energy poverty environment
GDP per capita (GDPK) $1922.55 $1408.21 $2679.56 466.60 Modest economic growth
Govt. Health Expenditure (GHEX) $6.73 $0.30 $15.84 5.62 Low health spending
Prevalence of Undernourishment (PVL) 10.61% 6.50% 19.00% 2.68 Moderate food insecurity
Literacy Rate (LTR) 33.31% 17.41% 54.88% 9.79 Low to moderate literacy
Correlation Matrix Summary
Positive moderate correlation with life expectancy: GDP per capita (0.651), government health expenditure (0.598), literacy rate (0.434).
Negative correlation: Energy poverty (-0.450).
Low correlation: Prevalence of undernourishment (0.333).
Unit Root and Cointegration Tests
Energy poverty (EPOV) stationary at level (I(0)).
Life expectancy (LFE), GDP per capita (GDPK), government health expenditure (GHEX), prevalence of undernourishment (PVL), and literacy rate (LTR) stationary at first difference (I(1)).
ARDL Bounds test confirmed cointegration, indicating a stable long-run relationship between energy poverty and life expectancy.
Regression Results
Variable Short-Run Coefficient Significance Long-Run Coefficient Significance Interpretation
Energy Poverty (EPOV) -0.299 Significant -0.699 Highly significant Energy poverty reduces life expectancy both short and long term; effect stronger over time.
GDP per capita (GDPK) 0.026 Insignificant 0.332 Significant Economic growth positively affects life expectancy, especially in the long run.
Govt. Health Expenditure (GHEX) 0.071 Significant -0.054 Insignificant Short-run benefits of health spending on life expectancy, but no significant long-run effect.
Prevalence of Undernourishment (PVL) -0.377 Significant -0.225 Significant Food insecurity negatively impacts life expectancy both short and long term.
Literacy Rate (LTR) 0.003 Insignificant 0.044 Marginal Positive but insignificant effect on life expectancy.
Error Correction Term -0.077 Highly significant Not specified Not specified Adjusts 77% of deviation from equilibrium each year, confirming model stability.
Diagnostic and Stability Tests
Breusch-Godfrey Serial Correlation LM test, Breusch-Pagan-Godfrey Heteroskedasticity test, and Ramsey RESET test showed no serial correlation, heteroskedasticity, or misspecification—indicating a robust model.
CUSUM and CUSUMSQ tests confirmed no structural breaks or parameter instability in the model over the study period.
Timeline of Key Trends (1981–2023)
Period Life Expectancy Trend Energy Poverty Trend Key Events/Context
1981–1995 Below 46.7 years, stagnant Increasing energy poverty Structural Adjustment era, economic challenges
1999–2003 Slight increase to ~47.2 years Fluctuations in energy poverty Transition to civilian rule, policy shifts
2003–2023 Gradual sustained increase to 54.6 years Sharp surge in energy poverty from 2010 onward Population growth, poor infrastructure, subsidy removal
Policy Recommendations
Prioritize Energy Sector Reforms:
Expand on-grid power generation and improve transmission and distribution infrastructure.
Promote affordable off-grid renewable energy solutions and clean cooking technologies.
Stabilize energy prices and enhance reliability of energy supply.
Increase and Improve Public Health Expenditure:
Boost healthcare infrastructure and access.
Implement institutional reforms to reduce corruption and improve resource allocation.
Address Food Insecurity:
Develop coordinated agricultural, nutritional, and welfare policies to reduce undernourishment.
Focus on Rural and Underserved Communities:
Target energy access expansion to marginalized populations to improve health and longevity.
Integrate Energy Policy with Health and Development Goals:
Align energy access initiatives with Sustainable Development Goals (SDG 3 and SDG 7).
Core Insights
Energy poverty significantly undermines life expectancy in Nigeria, with stronger effects observed over the long term.
Economic growth has a positive but delayed impact on life expectancy.
Public health expenditure improves life expectancy in the short run but shows diminished long-run effectiveness, likely due to governance challenges.
Food insecurity consistently reduces life expectancy.
Literacy improvements have a positive but statistically insignificant influence on longevity.
The relationship between energy poverty and life expectancy in Nigeria has remained stable over four decades despite policy efforts.
Keywords
Energy Poverty, Life Expectancy, Nigeria, ARDL Model, Sustainable Development Goals, Public Health, Economic Growth, Food Insecurity, Human Capital Theory.
Conclusion
This comprehensive empirical analysis confirms that energy poverty is a critical and persistent barrier to improving life expectancy in Nigeria. The negative impact of inadequate access to modern energy services on health outcomes necessitates urgent policy attention. Sustainable improvements in longevity will require integrated strategies that combine energy reforms, enhanced public health spending, food security measures, and economic growth, underpinned by strong institutional governance. Addressing energy poverty is not only vital for health but also essential for Nigeria’s broader development and achievement of international sustainability targets.
Smart Summary
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/rpqusbca-8795/data/document.pdf", "num_examples": 150, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/rpqusbca- /home/sid/tuning/finetune/backend/output/rpqusbca-8795/data/rpqusbca-8795.json...
|
null
|
completed
|
1764955678
|
1764958175
|
NULL
|
/home/sid/tuning/finetune/backend/output/rpqusbca- /home/sid/tuning/finetune/backend/output/rpqusbca-8795/adapter...
|
False
|
Edit
Delete
|
|
ec60b6a9-04b8-4f64-a05d-bc49b56f3205
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
oaedizhh-8535
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Global and National
|
Global and National Declines in Life
|
/home/sid/tuning/finetune/backend/output/oaedizhh- /home/sid/tuning/finetune/backend/output/oaedizhh-8535/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Period life expectancy at birth [life expecta
Period life expectancy at birth [life expectancy thereafter] is the most-frequently used indicator
of mortality conditions. More broadly, life expectancy is commonly taken as a marker of human
progress, for instance in aggregate indices such as the Human Development Index (United
Nations Development Programme 2020). The United Nations (UN) regularly updates and makes
available life expectancy estimates for every country, various country aggregates and the world
for every year since 1950 (Gerland, Raftery, Ševčíková et al. 2014), providing a 70-year
benchmark for assessing the direction and magnitude of mortality changes....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/oaedizhh-8535/data/document.pdf", "num_examples": 6, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/oaedizhh- /home/sid/tuning/finetune/backend/output/oaedizhh-8535/data/oaedizhh-8535.json...
|
null
|
completed
|
1764895619
|
1764904639
|
NULL
|
/home/sid/tuning/finetune/backend/output/oaedizhh- /home/sid/tuning/finetune/backend/output/oaedizhh-8535/adapter...
|
False
|
Edit
Delete
|
|
ecf582cc-dba1-4f3c-866f-b15689de6f26
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
tujokmko-0114
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity Pay Chart
|
Longevity Pay Chart
|
/home/sid/tuning/finetune/backend/output/tujokmko- /home/sid/tuning/finetune/backend/output/tujokmko-0114/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The “Longevity Pay Chart” is an official document The “Longevity Pay Chart” is an official document issued by the Office of Human Resources in Houston, Texas, outlining the monthly longevity pay rates awarded to employees based on their total years of service. The chart establishes a clear, incremental payment structure designed to reward long-term commitment and continued service to the organization.
Longevity pay begins after 2 years of service and increases by $20 per month every two years, reflecting steady recognition of employee tenure. Payments start at $20 per month for employees with 2 years of service and rise consistently until reaching $420 per month at 42 years of service. The structure provides a transparent and predictable progression, allowing employees to understand how their monthly longevity compensation will grow over time.
The document also notes that these rates became effective on September 1, 2005, serving as the official policy for determining monthly longevity compensation for eligible employees.
If you want, I can also provide:
✅ A short 3–4 line summary
✅ A simple student-friendly version
✅ A table or chart version
Just let me know!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/tujokmko-0114/data/document.pdf", "num_examples": 6, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/tujokmko- /home/sid/tuning/finetune/backend/output/tujokmko-0114/data/tujokmko-0114.json...
|
null
|
queued
|
1765224262
|
1765224310
|
NULL
|
/home/sid/tuning/finetune/backend/output/tujokmko- /home/sid/tuning/finetune/backend/output/tujokmko-0114/adapter...
|
False
|
Edit
Delete
|
|
ecfabcdf-3bbf-44e1-b243-51108ea3c712
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
aefvwxmf-5946
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
LIFE PLANNING IN THE AGE
|
LIFE PLANNING IN THE AGE OF LONGEVITY
|
/home/sid/tuning/finetune/backend/output/aefvwxmf- /home/sid/tuning/finetune/backend/output/aefvwxmf-5946/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Life Planning in the Age of Longevity” is a conci “Life Planning in the Age of Longevity” is a concise 6-page toolkit brief published by the Stanford Center on Longevity. It provides a practical action plan to help people prepare for longer lifespans by focusing on three essential areas: Healthy Living, Social Engagement, and Financial Security.
The document explains that while many Americans want to live long lives—and even expect to reach age 90 or 100—most are not taking the necessary steps to ensure good health, adequate finances, and emotional fulfillment in later years.
Key Themes of the PDF
1. The Longevity Gap
Many Americans underestimate the implications of living much longer.
Surveys show that although 77% want to live to 100, only a third feel financially or physically prepared.
People often plan only 5–10 years ahead, despite likely living decades longer.
2. Healthy Living Actions
The brief outlines nine evidence-based steps in two categories:
Healthy Daily Activities
Exercise 150+ minutes per week
Limit sitting time
Maintain a healthy body mass index
Eat 5 servings of fruits & vegetables
Get 7–9 hours of sleep
Avoid Risky Behaviors
Don’t smoke
Don’t over-consume alcohol
Avoid illicit drug use
The report notes a mixed national trend: more exercise and less smoking, but higher obesity and more sedentary lifestyles.
3. Social Engagement
Social connection is shown to be as important as avoiding major health risks:
Socially isolated individuals have mortality rates similar to smokers and double those of obese individuals.
Social Engagement Steps
Meaningful Relationships
Deep interaction with a spouse/partner
Frequent connection with family and friends
Support network
Group Involvement
Talk to neighbors
Volunteer
Work for pay
Participate in a religious or community group
National engagement levels have remained relatively low (around 51–56%).
4. Financial Security
There are nine financial steps, divided into:
Cash Flow
Earn above 200% of the poverty level
Keep unsecured debt manageable
Save enough for emergencies ($3,000)
Asset Growth
Save for major non-retirement goals
Save for retirement and understand needs
Own a home
Protection
Have health insurance
Obtain disability and long-term care coverage
Buy life insurance
The brief stresses that many Americans struggle especially with financial preparation and need support from employers and policymakers.
5. Overall Message
No single step guarantees a long, happy life, but taking action in all three domains greatly increases the odds.
Motivation and inspiration are just as important as facts.
Individuals cannot always succeed alone—support from communities, families, employers, and government is vital.
6. Final Action Steps
The document encourages readers to:
Learn about personal longevity expectations.
Choose 1–2 steps to improve right away.
Review tailored briefs for their generation.
Focus on motivational strategies, not just information.
The core takeaway:
Small, steady action—started early—can dramatically improve health, happiness, and financial stability in a long life.
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/aefvwxmf-5946/data/document.pdf", "num_examples": 25, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/aefvwxmf- /home/sid/tuning/finetune/backend/output/aefvwxmf-5946/data/aefvwxmf-5946.json...
|
null
|
completed
|
1764883308
|
1764888092
|
NULL
|
/home/sid/tuning/finetune/backend/output/aefvwxmf- /home/sid/tuning/finetune/backend/output/aefvwxmf-5946/adapter...
|
False
|
Edit
Delete
|
|
ee3a8559-8a91-4dc5-8dd1-38d5cba8bfdc
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
izyokdgc-1266
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity Economy Princip
|
This is the new version of economics
|
/home/sid/tuning/finetune/backend/output/izyokdgc- /home/sid/tuning/finetune/backend/output/izyokdgc-1266/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The Longevity Economy Principles: The Foundation f The Longevity Economy Principles: The Foundation for a Financially Resilient Future (World Economic Forum, 2024) is an in-depth report that outlines how societies, governments, and industries must adapt to the rapidly ageing global population. With life expectancy rising and birth rates falling, the report stresses that traditional economic, social, and retirement systems are no longer sufficient. It presents six core principles designed to guide global action toward a financially resilient, healthy, inclusive, and purpose-driven future for people living longer lives.
The document begins with a foreword explaining the urgent demographic transformation and the challenges it creates—such as inadequate retirement funding, widespread ageism, unequal health outcomes, and shrinking workforces. The executive summary highlights that although people are living longer, many cannot afford extended lifespans, and societies must drastically rethink education, work, financial systems, and social care.
It then presents six key Longevity Principles, each supported by case studies, data, and collaboration strategies:
Ensure financial resilience across key life events
The report notes that nearly 40% of individuals face financial instability after unexpected events such as illness, job loss, or caregiving duties. It explains how public-private collaboration, protective social policies, and innovative savings tools (like the UK Premium Bonds) can help prevent people from falling into poverty.
Longevity_Economy_Principles_20…
Provide universal access to impartial financial education
With only 33% of adults worldwide being financially literate, the report stresses how poor financial knowledge contributes to inequality and shorter life expectancy. It showcases successful national programmes from Singapore, New Zealand, and Denmark that integrate financial literacy into schools, workplaces, and communities.
Longevity_Economy_Principles_20…
Prioritize healthy ageing
Since one-fifth of life is now spent in poor health, the report argues that prevention, equitable healthcare access, and strong health systems are essential to achieving longer, healthier, more productive lives. It connects chronic disease, medical costs, and inequality to financial insecurity in older age.
Longevity_Economy_Principles_20…
Evolve jobs and lifelong skill-building for a multigenerational workforce
As birth rates decline and older workers become essential to economies, the report calls for redesigned jobs, flexible work models, anti-ageism efforts, and continuous upskilling. It stresses that by 2050, retirement ages would need to rise by 8.4 years to maintain current workforce ratios.
Longevity_Economy_Principles_20…
Design systems and environments for social connection and purpose
Social connection is identified as a pillar of healthy longevity. Loneliness increases healthcare costs, workplace absenteeism, and mortality risk. The report recommends community-based solutions, age-friendly environments, and intergenerational programmes to reduce isolation and increase purpose in older age.
Longevity_Economy_Principles_20…
Intentionally address longevity inequalities
Gender, race, socioeconomic status, geography, and caregiving burdens all shape who benefits from longevity. The report urges governments and organizations to design inclusive financial systems, caregiving support, and equitable access to health and career opportunities. It highlights examples from Germany, the UK, and AXA’s anti-ageism initiatives.
Longevity_Economy_Principles_20…
The report concludes by emphasizing that a successful longevity economy requires coordinated global action—uniting policymakers, businesses, communities, and financial institutions—to create systems where longer lives can be lived with financial security, health, dignity, and purpose....
|
{"num_examples": 347, "bad_lines": {"num_examples": 347, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/izyokdgc- /home/sid/tuning/finetune/backend/output/izyokdgc-1266/data/izyokdgc-1266.json...
|
null
|
completed
|
1764356031
|
1764356981
|
NULL
|
/home/sid/tuning/finetune/backend/output/izyokdgc- /home/sid/tuning/finetune/backend/output/izyokdgc-1266/adapter...
|
False
|
Edit
Delete
|
|
f07dbf9a-f1cf-485d-9f0e-0f7774367fc7
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
xoxdqjib-2028
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Christmas Around theWorld
|
This is the new version of Christmas data
|
/home/sid/tuning/finetune/backend/output/xoxdqjib- /home/sid/tuning/finetune/backend/output/xoxdqjib-2028/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
⭐ “Christmas Around the World”
“Christmas Aroun ⭐ “Christmas Around the World”
“Christmas Around the World” is an educational unit designed to teach students how different countries and cultures celebrate Christmas. It includes traditions, foods, decorations, holiday customs, gift-giving practices, and greetings from nine countries. The unit also contains hands-on crafts, recipes, and activities to help students experience global Christmas traditions.
The document begins by explaining that Christmas customs vary widely across the world due to culture, religion, history, and local beliefs. Students are encouraged to decorate an International Christmas Tree using ornament printables from the unit.
The main section covers how nine countries celebrate Christmas:
>🇯🇵 Japan
Christmas is mainly a commercial holiday. Though only 1% of the population is Christian, cities are decorated with lights. Homes may have trees, parties, and lanterns.
Gift-giving traditions include oseibo (end-of-year gifts), and the Japanese Santa, Hoteiosho, gives toys to well-behaved children.
>🇨🇳 China
Christmas is celebrated mostly in big cities, though the major winter holiday is Chinese New Year. Trees are decorated with lanterns, paper chains, and flowers.
Santa is called Dun Che Lao Ren (“Christmas Old Man”).
Children hang stockings, and homes display colorful paper lanterns.
>🇷🇺 Russia
Christmas is celebrated on January 7 (Orthodox calendar).
Families may fast before the Christmas Eve meal. Trees are decorated with fruit, candy, and dolls. A traditional gift is the Matryoshka (nested) doll.
Christmas was banned after 1917 and revived only in 1992.
>🇬🇧 Great Britain
Christmas traditions include decorating homes, making puddings, baking cookies, and placing lights on trees. The famous Christmas pudding uses 13 ingredients for Jesus and the disciples.
Families stir the pudding from east to west to honor the Wise Men’s journey.
Father Christmas brings gifts on Christmas Day.
>🇫🇷 France
Children set their shoes by the fireplace for Père Noël to fill with gifts. Père Fouettard punishes naughty children.
Trees are decorated with colorful stars, and the crèche (Nativity scene) is the main decoration.
Popular holiday desserts include Bûche de Noël and Galette des Rois.
>🇮🇹 Italy
Christmas season runs from December 14 to January 6.
Gifts are brought by La Befana on Epiphany.
The focus of decorations is the Nativity scene, a tradition begun by St. Francis of Assisi.
On Christmas Eve, families eat a meatless or seafood dinner, followed by midnight Mass.
>🇩🇪 Germany
Christmas begins with Advent. Families use advent calendars and light a candle each Sunday.
Germany is the birthplace of the Christmas tree tradition; Martin Luther first decorated an indoor tree with candles.
Trees are decorated with fruit, cookies, and small gifts, and the Christ Child brings presents.
>🇪🇸 Spain
Christmas Eve features fasting until midnight Mass, then a feast of seafood, sweets, and turrón (almond nougat).
Children receive gifts from the Three Kings on January 5.
Cities host large nativity displays and big parades where candy is thrown to children.
>🇲🇽 Mexico
Christmas celebration begins around December 15.
Families host Posadas, reenacting Mary and Joseph’s search for shelter.
There are piñatas, Pastorela plays, and plenty of family feasts.
Children get gifts on January 6 for El Día de los Reyes (Three Kings Day).
The poinsettia, native to Mexico, is the main Christmas plant.
The unit also contains suggested crafts, recipes, and cultural projects for each country, giving students a hands-on way to learn about global holiday traditions.
...
|
{"num_examples": 41, "bad_lines": {"num_examples": 41, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/xoxdqjib- /home/sid/tuning/finetune/backend/output/xoxdqjib-2028/data/xoxdqjib-2028.json...
|
null
|
completed
|
1764331624
|
1764331730
|
NULL
|
/home/sid/tuning/finetune/backend/output/xoxdqjib- /home/sid/tuning/finetune/backend/output/xoxdqjib-2028/adapter...
|
False
|
Edit
Delete
|
|
f0d792ca-c8f4-4cea-9e5a-f838a0d96e47
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jcskuiyn-2380
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Drivers of your health
|
Drivers of your health and longevity
|
/home/sid/tuning/finetune/backend/output/jcskuiyn- /home/sid/tuning/finetune/backend/output/jcskuiyn-2380/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Drivers of Your Health and Longevity” is a compre “Drivers of Your Health and Longevity” is a comprehensive report outlining the 23 key modifiable factors that significantly influence a person’s health, lifespan, and overall well-being. It emphasizes that 19 out of these 23 drivers lie outside the traditional healthcare system, meaning most of what determines longevity comes from everyday habits and environmental conditions.
These drivers are grouped into major categories:
1. Physical Inputs
Covers diet, supplements, substance use, hydration, and their direct effects on disease risk, cognitive health, and mortality. Examples include fasting improving metabolic health, omega-3 protecting the brain and heart, and sleep duration affecting mortality.
2. Movement
Includes mobility and exercise. The report highlights that regular physical activity can extend life by 3–5 years, reduce mortality risk, and improve overall physical and mental function.
3. Daily Living
Encompasses social interaction, productive activities, content consumption, and hygiene. Strong social relationships, volunteering, and balanced media usage are linked to better physical and mental health.
4. Exposure
Focuses on nature, atmospheric conditions, light, noise, and environmental materials. Evidence shows that nature exposure, reduced pollution, sunlight, and safe environments contribute to better mental health, reduced stress, and lower mortality.
5. Stress
Explains how both positive (eustress) and chronic stress affects disease risk, cognitive function, and life expectancy.
6. State of Being
Includes mindsets, beliefs, body composition, physical security, and economic security. Optimism, gratitude, financial stability, and safety are shown to have strong physiological and psychological benefits.
7. Healthcare
Covers vaccination, early detection, treatment, and medication adherence. Effective healthcare interventions (e.g., vaccines, screening, treatments) significantly reduce mortality and improve survival rates.
📌 Overall Purpose of the Report
The document emphasizes that longevity is not determined primarily by genetics or medical care, but by daily choices, behaviors, and environmental exposures. By optimizing these 23 modifiable drivers, individuals can dramatically improve their health span and lifespan.
If you want, I can also provide:
✅ A short summary
✅ A quiz based on this file
✅ Key insights
✅ A table of the 23 drivers
Just tell me!
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jcskuiyn-2380/data/document.pdf", "num_examples": 141, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jcskuiyn- /home/sid/tuning/finetune/backend/output/jcskuiyn-2380/data/jcskuiyn-2380.json...
|
null
|
queued
|
1765224167
|
1765224806
|
NULL
|
/home/sid/tuning/finetune/backend/output/jcskuiyn- /home/sid/tuning/finetune/backend/output/jcskuiyn-2380/adapter...
|
False
|
Edit
Delete
|
|
f1c97c1d-69d8-4731-a3cf-f328f16a626a
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
mmcchdcn-4745
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Unhealthy Longevity in US
|
Unhealthy Longevity in the
United States
|
/home/sid/tuning/finetune/backend/output/mmcchdcn- /home/sid/tuning/finetune/backend/output/mmcchdcn-4745/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Unhealthy Longevity” explains a critical paradox “Unhealthy Longevity” explains a critical paradox in the United States: Americans are living longer than previous generations, but they are spending more of those added years in poor health. The document analyzes why the U.S. has worse health outcomes than other wealthy nations despite high medical spending.
The central message is that U.S. longevity is increasingly unhealthy longevity—meaning extra years of life come with chronic disease, disability, and high healthcare costs. This threatens quality of life, economic productivity, and the sustainability of public health systems.
⭐ MAIN POINTS
⭐ 1. The U.S. Lives Longer—But Not Healthier
Life expectancy has risen, but healthy life expectancy has not kept pace. Many Americans spend later years with:
diabetes
heart disease
obesity-related illness
mobility limitations
mental health burden
Compared with peer nations, the U.S. enters old age with more disease and disability.
unhealthy-longevity-US
⭐ 2. Chronic Diseases Drive Unhealthy Longevity
Most added years of life in the U.S. are lived with chronic, lifestyle-related conditions.
Contributors include:
poor diet quality
sedentary lifestyles
obesity
smoking history
high stress
environmental exposures
The report emphasizes that these diseases begin early in life and accumulate over decades.
⭐ 3. A Preventable Problem
The U.S. has the medical technology to control many chronic diseases, but prevention is weak.
Major weaknesses include:
limited access to affordable primary care
racial and socioeconomic health inequalities
underinvestment in public health
inconsistent preventive care
heavy reliance on expensive, late-stage medical treatment
These structural issues allow chronic disease burdens to grow rather than shrink.
unhealthy-longevity-US
⭐ 4. The Economic Consequences Are Severe
Unhealthy longevity increases:
Medicare and Medicaid spending
disability claims
workforce dropout
caregiver burden
healthcare premiums
As more Americans survive into old age with chronic illness, the cost trajectory becomes unsustainable for families and the government alike.
⭐ 5. The U.S. Is an Outlier Among Rich Countries
Countries with similar wealth Japan, France, Canada, Australia spend less and achieve:
longer healthy life expectancy
better chronic disease control
lower disability in older adults
The report argues that the U.S. performs poorly because of system-level failures, not because Americans age differently biologically.
⭐ 6. Solutions for Healthier Longevity
The document outlines a national strategy to convert longer lives into healthier lives:
prioritize prevention across the lifespan
expand access to primary care
reduce obesity through policy (nutrition standards, activity programs)
target social determinants (education, income, environment)
improve long-term care systems
reduce inequality in health opportunities
The emphasis is on population-level preventive action, not just medical treatment.
⭐ OVERALL CONCLUSION
The report concludes that America’s ageing challenge is not that people are living too long—it is that they are living longer in poor health. Without major changes in prevention, healthcare structure, and social policy, the U.S. will face rising disability, spiraling costs, and declining quality of life for its older population.
But with better prevention, healthier lifestyles, and equity-driven reform, the U.S. can transform unhealthy longevity into healthy, productive, and meaningful longer lives....
|
{"num_examples": 509, "bad_lines": {"num_examples": 509, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/mmcchdcn- /home/sid/tuning/finetune/backend/output/mmcchdcn-4745/data/mmcchdcn-4745.json...
|
null
|
completed
|
1764413885
|
1764416019
|
NULL
|
/home/sid/tuning/finetune/backend/output/mmcchdcn- /home/sid/tuning/finetune/backend/output/mmcchdcn-4745/adapter...
|
False
|
Edit
Delete
|
|
f1ca94e6-2baa-48a2-86f3-9cc494b02e90
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jrmnhvmx-0672
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
International Database
|
International Database on Longevity
|
/home/sid/tuning/finetune/backend/output/jrmnhvmx- /home/sid/tuning/finetune/backend/output/jrmnhvmx-0672/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a comprehensive documentation and over This PDF is a comprehensive documentation and overview of the International Database on Longevity (IDL)—the world’s largest, most rigorously validated scientific database dedicated to tracking individuals who have lived to extreme ages (110 years and older). The document explains how the database is built, how ages are scientifically verified, which countries contribute data, and how researchers use these records to study human longevity and mortality at the highest ages.
The core purpose of the IDL is to provide accurate, validated, international data on supercentenarians, allowing demographic researchers, biologists, and statisticians to understand mortality patterns beyond age 110—a topic often full of uncertainty, myth, and unreliable reporting.
🌍 1. What the IDL Is
The International Database on Longevity (IDL) is:
A public research database
Created by leading longevity researchers
Focused exclusively on validated individuals aged 110+
Based on international civil registration systems
Continuously updated as new cases are confirmed
It aims to eliminate false age claims and ensure scientific reliability.
International Database on Longe…
🔍 2. What the Database Contains
The IDL includes:
Individual-level data on supercentenarians
Validated age-at-death
Birth and death dates
Geographic information
Sex and demographic characteristics
Censored individuals (still alive or lost to follow-up)
Documentation on verification processes
Some countries provide exhaustive lists of all persons aged 110+; others provide sampled or partial data.
International Database on Longe…
📝 3. Why Age Validation Is Necessary
Extreme ages are often misreported due to errors such as:
Missing documents
Duplicate identities
Cultural age inflation
Family-based misreporting
Administrative mistakes
The IDL implements strict validation methods:
Cross-checking civil records
Analyzing genealogical information
Ensuring consistency between documents
Verifying unique identity
Only individuals with high-confidence proof of age are included.
International Database on Longe…
🌐 4. Countries Covered
The database includes data from:
France
Germany
United States
United Kingdom
Canada
Switzerland
Sweden
Japan
Denmark
Belgium
Czech Republic (sample)
Others with varying depth of validation
Each country’s rules, data sources, and levels of coverage are described.
International Database on Longe…
📈 5. Scientific Goals of the IDL
The database supports research on:
⭐ A. Mortality at Extreme Ages
Does mortality plateau after age 110?
Is there a maximum human lifespan?
⭐ B. Survival Models
Testing demographic models beyond typical life-table limits.
⭐ C. Longevity Trends Across Countries
Comparing patterns internationally.
⭐ D. Biological and Social Determinants
Sex differences, geographic variation, and historical trends.
⭐ E. Extreme-Age Validation Science
Improving methods for verifying unusually long life spans.
International Database on Longe…
🧪 6. Key Features of the IDL Data
Right-censored data for persons still alive
Left-truncated data for those who entered the risk pool at a known age
Survival records starting at age 110
Consistent formatting across countries
Metadata on each individual
The structure allows researchers to estimate death rates at very high ages without relying on unreliable claims.
International Database on Longe…
🔬 7. Major Scientific Insights Enabled by the IDL
Research using the IDL has contributed to:
Discovery of mortality plateaus beyond age 105–110
Evidence supporting the idea that death rates stop rising exponentially at extreme ages
Better understanding of why women are far more likely to reach 110+
Insights into potential limits vs. non-limits of human longevity
Historical comparisons (e.g., supercentenarians born in 1880–1900 vs. today)
International Database on Longe…
📚 8. Purpose of the Document Itself
This PDF specifically provides:
An overview of the IDL
Explanation of its structure
Details on data sources
Verification standards
Country-specific documentation
Methodological notes on survival and mortality calculations
It serves as the official guide for researchers using the IDL.
International Database on Longe…
⭐ Overall Summary
The PDF provides a clear and detailed explanation of the International Database on Longevity, the world’s most authoritative resource for validated data on individuals aged 110+. It shows how the database is constructed, how age validation works, which countries contribute, and how researchers use the data to study mortality patterns at the extremes of human lifespan. The IDL is essential for answering key scientific questions about longevity, the limits of human life, and demographic change....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jrmnhvmx-0672/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/jrmnhvmx- /home/sid/tuning/finetune/backend/output/jrmnhvmx-0672/data/jrmnhvmx-0672.json...
|
null
|
failed
|
1764887671
|
1764891584
|
NULL
|
/home/sid/tuning/finetune/backend/output/jrmnhvmx- /home/sid/tuning/finetune/backend/output/jrmnhvmx-0672/adapter...
|
False
|
Edit
Delete
|
|
f1e2ad89-237f-4edd-9532-cd48ea51bfef
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
uwdxhzxi-4941
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Protocol for comparative
|
Protocol for comparative seed longevity testing
|
/home/sid/tuning/finetune/backend/output/uwdxhzxi- /home/sid/tuning/finetune/backend/output/uwdxhzxi-4941/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The “Protocol for Comparative Seed Longevity Testi The “Protocol for Comparative Seed Longevity Testing” is an official technical information sheet from the Millennium Seed Bank (MSB) that describes a standardized method used to compare the seed longevity of different plant species stored in conservation collections. The goal of the protocol is to generate a seed survival curve that reveals how quickly seed viability declines under controlled ageing conditions, allowing species to be ranked into longevity categories.
The method uses controlled rehydration followed by accelerated ageing. Seeds are first equilibrated at 47% relative humidity (RH) and 20°C to stabilize moisture content. They are then transferred to an ageing environment of 60% RH and 45°C, created using non-saturated lithium chloride (LiCl) solutions inside airtight containers. These uniform conditions ensure that all seed samples experience identical ageing stress.
During the ageing process, samples of 50 seeds are removed on a scheduled series of days (1, 2, 5, 9, 20, 30, 50, 75, 100, and 125). Each sample undergoes germination testing for at least 42 days, followed by a “cut test” to assess seed viability and identify empty, infested, or abnormal seeds. The resulting data are used to plot viability decline curves, typically analyzed using probit analysis and the Ellis & Roberts viability equation. A key output is p50, the time it takes for seed viability to drop to 50%, which enables clear comparisons across species and against two known “marker species” used by MSB.
The document also includes detailed preparation steps, practical guidance for ensuring accurate humidity control, tips for handling different seed types, and recommended equipment (such as hygrometers, fan-assisted ovens, airtight containers, and statistical software). It emphasizes that although the method does not predict exact natural longevity, it reliably ranks species and helps identify factors—such as seed maturity or post-harvest handling—that influence long-term seed survival.
If you want, I can also provide:
✅ A short summary
✅ A simple student-friendly version
✅ MCQs / quiz from this file
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/uwdxhzxi-4941/data/document.pdf", "num_examples": 34, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/uwdxhzxi- /home/sid/tuning/finetune/backend/output/uwdxhzxi-4941/data/uwdxhzxi-4941.json...
|
null
|
queued
|
1765224513
|
1765224846
|
NULL
|
/home/sid/tuning/finetune/backend/output/uwdxhzxi- /home/sid/tuning/finetune/backend/output/uwdxhzxi-4941/adapter...
|
False
|
Edit
Delete
|
|
f429da0d-8887-439f-a8b1-c6f8a9f33165
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
vfcirgqu-6668
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
he Role of Diet in Life
|
he Role of Diet in Longevity
|
/home/sid/tuning/finetune/backend/output/vfcirgqu- /home/sid/tuning/finetune/backend/output/vfcirgqu-6668/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The Role of Diet in Longevity” is an in-depth scie The Role of Diet in Longevity” is an in-depth scientific chapter explaining how food and nutrition directly influence health, disease risk, and lifespan. The chapter highlights that diet affects every stage of life—from infancy to old age—and that proper nutrition is one of the most important factors for living longer and staying healthier.
The text begins with the idea that “you are what you eat”, emphasizing that food shapes physical health, emotional balance, and overall well-being. It presents scientific evidence showing that moderate food restriction can extend lifespan in laboratory animals, and that proper nutrition protects humans from many chronic diseases linked to aging.
⭐ Key Insights from the Chapter
⭐ 1. Diet Influences Lifespan at Every Age
Infants, children, and adolescents need adequate nutrients for mental and physical development.
Adults should avoid becoming overweight, especially in countries like the U.S., where 30% of people are obese.
Obesity increases the risk of diabetes, hypertension, stroke, heart disease, and cancers.
Elderly people often face malnutrition due to depression, loneliness, dental problems, or low appetite.
📌 The chapter stresses that elderly individuals have different nutritional needs from younger adults and often require more vitamins such as D, B2, B6, and B12.
⭐ 2. Diet Strongly Affects Major Body Systems
A balanced diet protects and enhances:
Gastrointestinal function
Blood pressure
Immune system
Cognitive abilities
Poor nutrition increases the risk of diseases common in middle and old age, including:
coronary heart disease
cancer
diabetes
osteoporosis
infectious diseases (like pneumonia and tuberculosis)
⭐ 3. Evidence From Epidemiological Studies
Long-term studies show the power of diet in preventing disease.
For example, the Framingham Heart Study found that:
high intake of fruits and vegetables reduces stroke risk in men.
Dietary patterns strongly influence longevity by affecting chronic disease development.
⭐ 4. Processed Foods vs. Natural Foods
The chapter warns that modern diets often include:
highly processed foods (hamburgers, fries, soda, frozen meals)
misleading labels such as “natural” or “no additives”
These foods lack essential nutrients and contribute to weight gain and chronic illness.
Advertising and convenience culture push unhealthy eating, replacing fresh, nutrient-rich foods with refined, packaged products.
⭐ 5. National Dietary Recommendations
The chapter reviews U.S. national nutrition guidelines.
In 1986, the National Cancer Institute recommended increasing fiber intake and reducing fat consumption. However:
these goals were not met nationwide
many people still consume too much fat and too few fruits, vegetables, and whole grains
This highlights the need for better public education and food policies.
⭐ 6. Recommendations for Healthy Aging
To support longevity, the chapter recommends:
Improve eating habits early in life
Increase consumption of natural, unprocessed foods
Eat more fiber-rich foods: fruits, vegetables, grains
Reduce fat to less than 25–30% of total calories
Take vitamin supplements if diet is insufficient
Educate the public through schools and media
Develop dietary plans specifically for elderly individuals
These guidelines help prevent malnutrition in older adults and reduce diet-related diseases.
⭐ Overall Meaning
This chapter provides a clear scientific message:
➡️ Diet is one of the strongest controllable factors influencing how long and how well we live.
➡️ Poor nutrition contributes to nearly every age-related disease, while a balanced diet rich in fruits, vegetables, and whole foods promotes longevity.
➡️ Healthy eating must be maintained throughout life, with special attention to the changing needs of aging individuals.
The text offers a comprehensive explanation of why improving diet is essential for increasing lifespan and achieving healthy aging....
|
{"num_examples": 18, "bad_lines": {"num_examples": 18, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/vfcirgqu- /home/sid/tuning/finetune/backend/output/vfcirgqu-6668/data/vfcirgqu-6668.json...
|
null
|
completed
|
1764365027
|
1764365151
|
NULL
|
/home/sid/tuning/finetune/backend/output/vfcirgqu- /home/sid/tuning/finetune/backend/output/vfcirgqu-6668/adapter...
|
False
|
Edit
Delete
|
|
f43c3df4-1c53-4e15-8e53-b4860ba73d9d
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
umkokurv-2950
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
LONGEVITY RISK
|
LONGEVITY RISK
|
/home/sid/tuning/finetune/backend/output/umkokurv- /home/sid/tuning/finetune/backend/output/umkokurv-2950/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Longevity Risk: An Essay” is a detailed special r “Longevity Risk: An Essay” is a detailed special report by Karolos Arapakis and Gal Wettstein from the Center for Retirement Research at Boston College. The paper examines the growing challenge of longevity risk—the possibility that individuals may live longer than expected and exhaust their retirement savings.
The essay is structured around three major themes:
1. How Individuals Perceive Their Life Expectancy
The paper reviews research on how people estimate their own lifespan and highlights that individuals often underestimate the probability of living to very old ages. This subjective misperception can lead to poor retirement planning, under-saving, and greater vulnerability to longevity risk. The authors also discuss variations by demographic factors such as education, income, and race.
31 LONGEVITY RISK AN ESSAY
They further explore how events such as the COVID-19 pandemic influence both objective and perceived mortality.
31 LONGEVITY RISK AN ESSAY
2. Strategies to Manage Longevity Risk
The essay outlines several ways individuals try to protect themselves from outliving their assets:
Self-insurance, such as precautionary savings, following withdrawal rules (like the 4% rule), or relying on home equity.
31 LONGEVITY RISK AN ESSAY
Institutional protections, especially Social Security, which functions as an inflation-indexed life annuity.
31 LONGEVITY RISK AN ESSAY
Formal insurance options, including annuities and tontines, which pool risk among many individuals.
The paper notes that many popular self-insurance strategies are flawed — for example, only spending investment returns exposes retirees to market volatility and may result in overly low consumption.
31 LONGEVITY RISK AN ESSAY
3. Why Individuals Do Not Buy More Annuities (The Annuity Puzzle)
Although economic theory predicts widespread annuitization, real-world demand for private annuities is very low. The essay categorizes explanations into two groups:
Rational reasons
Desire to leave bequests
Adverse selection (longer-lived people prefer annuities, raising prices)
Liquidity needs and fear of late-life medical shocks
Crowd-out from Social Security benefits
31 LONGEVITY RISK AN ESSAY
Behavioral reasons
Present bias
Misunderstanding of survival probabilities
Viewing annuities as investments rather than insurance (“framing effect”)
31 LONGEVITY RISK AN ESSAY
The essay includes results from new surveys of retirement investors and financial advisors, showing:
Advisors are concerned about clients outliving savings but rarely recommend annuities.
31 LONGEVITY RISK AN ESSAY
Many individuals value annuities more than their market price, but logistical, psychological, and informational barriers hinder purchase.
31 LONGEVITY RISK AN ESSAY
Conclusion
The essay concludes that improving understanding of subjective longevity expectations, advisor behavior, and real-world barriers to annuitization is crucial for developing better retirement solutions. It highlights significant remaining gaps in the literature, especially regarding subjective tail risks and practical impediments to purchasing guaranteed lifetime income.
31 LONGEVITY RISK AN ESSAY
If you'd like, I can also create:
✔ a short summary
✔ a bullet-point version
✔ a quiz based on this file
✔ or combine summaries of multiple files you uploaded....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/umkokurv-2950/data/document.pdf", "num_examples": 303, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/umkokurv- /home/sid/tuning/finetune/backend/output/umkokurv-2950/data/umkokurv-2950.json...
|
null
|
queued
|
1765222791
|
1765223308
|
NULL
|
/home/sid/tuning/finetune/backend/output/umkokurv- /home/sid/tuning/finetune/backend/output/umkokurv-2950/adapter...
|
False
|
Edit
Delete
|
|
f458f62f-605d-4d2c-9a72-a02676873dac
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
rlitfkqf-2632
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
A New Map of Life
|
A New Map of Life
|
/home/sid/tuning/finetune/backend/output/rlitfkqf- /home/sid/tuning/finetune/backend/output/rlitfkqf-2632/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Longevity is not a synonym of old age. The increas Longevity is not a synonym of old age. The increase in life expectancy shapes lives from childhood to old age across different domains. Among those, the nature of work will undergo profound changes from skill development and the role of retirement to the intrinsic meaning of work. To put the striking potential of a 100 year life into a historical prospective it is useful to start from how technological and demographic development shaped the organization and the definition of work in the past. This longer view can more thoughtfully explore how different the nature of work has been, from working hours to the parallelism between work, employment and task-assignment.
Throughout history the role of work has been intertwined with social and technological change. Societies developed from hunter-gather to sedentary farmers, and they transitioned from the agricultural to the industrial revolution. The latter transformed a millennial long practice of self-employed farmers and artisans, working mostly for self-subsistence, without official working hours, relying on daylight and seasonality at an unchosen job from childhood until death, into employees working 10-16 hours per day for 311 days a year, mostlyindoorsfromyouthtoretirement. Thisdrastictransformationignitedfastshiftsofworkorganization not only in the pursue of higher productivity and technological advancement, but also of social wellbeing.
Among the first changes was the abandonment of unsustainable working conditions, such as day working hours, which sharply converged toward the eight hours day tendency between the 1910s and the 1940s, see Figure 1 (Huberman and Minns 2007; Feenstra, Inklaar, and Timmer 2015; Charlie Giattino and Roser 2013). Although beneficial for the workers, this reduction worried intellectuals, such as the economist John Maynard Keynes, who wrote: “How will we all keep busy when we only have to work 15 hours a week?” (Keynes 1930). Keynes predicted people’s work to become barely necessary given the level of productivity the economy would reach over the next century: “permanent problem would be how to occupy the leisure,
1
whichscienceandcompoundinterestwillhavewonforhim. [...] Afearfulproblemfortheordinaryperson” (p. 328). For a while, Keynes seemed right since the average workweek dropped from 47 hours in 1930 to slightly less than 39 by 1970. However, after declining for more than a century, the average U.S. work week has been stagnant for four decades, at approximately eight hours per day.1
Figure 1: Average working hours per worker over a full year. Before 1950 the data corresponds only to full-time production workers(non-agricultural activities). Starting 1950 estimates cover total hours worked in the economy as measured from primarily National Accounts data. Source: Charlie Giattino and Roser (2013). Data Sources: Huberman and Minns (2007) and Feenstra, Inklaar, and Timmer (2015).
Technological change did not make work obsolete, but changed the tasks and the proportion of labor force involved in a particular job. In the last seventy years, for example, the number of people employed in the agricultural sector dropped by one third (from almost 6 million to 2 million), while the productivity tripled. Feeding or delivering calves is still part of ranchers’ days, but activities like racking and analyzing genetic traits of livestock and estimating crop yields are a big part of managing and sustaining the ranch operations. In addition, the business and administration activity like bookkeeping, logistics, market pricing, employee supervision became part of the job due to the increase in average farm size from 200 to 450 acres. Another exampleistheeffectoftheautomatedtellermachine(ATM)onbanktellers, whosenumbergrewfromabout a quarter of a million to a half a million in the 45 years since the introduction of ATMs, see Figure 2 (Bessen 2016). ATM allowed banks to operate branch offices at lower cost, which prompted them to open many 1Despite the settling, differences in the number of hours worked between the low and the high skilled widened in the last fifty years. Men without a high school degree experienced an average reduction of eight working hours a week, while college graduates faced an increase of six hours a week. Similarly, female graduates work 11 hours a week more than those who did not complete high school (Dolton 2017). Overall, American full-time employees work on average 41.5 hours per week, and about 11.1% of employees work over 50 hours per week, which is much higher than countries with a comparable level of productivity like Switzerland, where 0.4% of employees work over 50 hours per week (Feenstra, Inklaar, and Timmer 2015) and part time work is commonplace...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/rlitfkqf-2632/data/document.pdf", "num_examples": 339, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/rlitfkqf- /home/sid/tuning/finetune/backend/output/rlitfkqf-2632/data/rlitfkqf-2632.json...
|
null
|
completed
|
1764899767
|
1764910976
|
NULL
|
/home/sid/tuning/finetune/backend/output/rlitfkqf- /home/sid/tuning/finetune/backend/output/rlitfkqf-2632/adapter...
|
False
|
Edit
Delete
|
|
f4fe4f1b-2cf4-4d24-89b8-c43f39f70940
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
olpuyuob-2241
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Aging and aging-related
|
Aging and aging-related disease
|
/home/sid/tuning/finetune/backend/output/olpuyuob- /home/sid/tuning/finetune/backend/output/olpuyuob-2241/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Aging is a gradual and irreversible pathophysiolog Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/olpuyuob-2241/data/document.pdf", "num_examples": 977, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/olpuyuob- /home/sid/tuning/finetune/backend/output/olpuyuob-2241/data/olpuyuob-2241.json...
|
null
|
completed
|
1764900526
|
1764918322
|
NULL
|
/home/sid/tuning/finetune/backend/output/olpuyuob- /home/sid/tuning/finetune/backend/output/olpuyuob-2241/adapter...
|
False
|
Edit
Delete
|
|
f519a1d9-d35d-4eeb-b31c-0558524cb9eb
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
nkrqbzis-7208
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
LONGEVITY PAY
|
LONGEVITY PAY
|
/home/sid/tuning/finetune/backend/output/nkrqbzis- /home/sid/tuning/finetune/backend/output/nkrqbzis-7208/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is an official University of Texas R This document is an official University of Texas Rio Grande Valley Handbook of Operating Procedures (HOP) policy outlining the rules, eligibility, and administration of Longevity Pay for full-time employees.
Purpose
To establish how longevity pay is administered for eligible UTRGV employees.
Who It Applies To
All full-time UTRGV employees working 40 hours per week.
Key Points of the Policy
Eligibility Requirements
An employee becomes eligible after two years of state service if they:
Are full-time on the first workday of the month
Are not on leave without pay
Have at least two years of lifetime service credit
Law enforcement staff with hazardous duty pay only receive longevity credit for non-hazardous duty service. Part-time, temporary, and academic employees are not eligible.
Service Credit Rules
Lifetime service credit includes:
All prior Texas state employment (full-time, part-time, temporary, academic, legislative)
Military service when returning to state employment
Faculty service (if later moving into a non-academic role)
Credit is not given for months fully on leave without pay.
Hazardous duty service is counted only if the employee is not currently receiving hazardous duty pay.
Longevity Pay Schedule
Paid in two-year increments at the following monthly rates:
Years Monthly Pay
2 $20
4 $40
6 $60
… …
42 $420
(Full table included in the policy.)
Payment Rules
Begins the first day of the month after completing each 24-month increment.
Not prorated.
Included in regular payroll (not a lump sum).
Affects taxes, retirement contributions, and overtime calculations.
Not included in payout of vacation/sick leave.
Transfers
The employer of record on the first day of the month is responsible for payment.
Return-to-Work Retirees
Special rules apply:
Those who retired before June 1, 2005, and returned before Sept 1, 2005 receive a frozen amount of longevity pay.
Those returning after Sept 1, 2005—or retiring on or after June 1, 2005—are not eligible.
Legal Authority
Texas Government Code Sections 659.041–659.047 govern longevity pay.
Revision Note
Reviewed and amended July 13, 2022 (non-substantive update)....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/nkrqbzis-7208/data/document.pdf", "num_examples": 30, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/nkrqbzis- /home/sid/tuning/finetune/backend/output/nkrqbzis-7208/data/nkrqbzis-7208.json...
|
null
|
queued
|
1765047887
|
1765047962
|
NULL
|
/home/sid/tuning/finetune/backend/output/nkrqbzis- /home/sid/tuning/finetune/backend/output/nkrqbzis-7208/adapter...
|
False
|
Edit
Delete
|
|
f56b9f91-f8e9-4170-a4a8-a0c1aec0e02e
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
gedbggrj-1228
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The rise in the number
|
The rise in the number longevity data
|
/home/sid/tuning/finetune/backend/output/gedbggrj- /home/sid/tuning/finetune/backend/output/gedbggrj-1228/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This research article examines an important parado This research article examines an important paradox in modern public health: as medical treatments improve and more people survive serious diseases, overall life expectancy may increase more slowly. The paper focuses on Sweden (1994–2016) and studies five major diseases—myocardial infarction, stroke, hip fracture, colon cancer, and breast cancer—to understand how survival improvements and rising disease prevalence interact to shape national life expectancy.
Using complete Swedish population-register data, the authors show that medical advances have significantly improved survival after major diseases. However, because these survivors still have higher long-term mortality than people who never had the disease, the growing number of long-term survivors can partly offset the gains in national life expectancy.
This phenomenon is described as a possible “failure of success”: the success of better treatments creates a larger population living with chronic after-effects, which slows overall mortality improvement.
⭐ MAIN FINDINGS
⭐ 1. Survival Improved Dramatically—Especially for Heart Attacks & Stroke
From 1994 to 2016:
Survival after myocardial infarction and stroke improved the most.
These two diseases produced the largest contributions to increased life expectancy.
Most gains came from improved short-term survival (first 3 years after diagnosis).
The rise in the number
Hip fractures, colon cancer, and breast cancer contributed much less to life expectancy growth.
⭐ 2. BUT… More People Than Ever Are Living With Disease Histories
Because fewer patients die immediately after diagnosis:
“Distant cases” (long-term survivors) increased sharply across all diseases.
The proportion of disease-free older adults decreased.
Survivors carry higher mortality risks for the rest of their lives.
This means the composition of the older population has shifted toward people with chronic disease histories who live longer—but still die sooner than people who never had the disease.
⭐ 3. Growing Disease Prevalence Slows Life Expectancy Gains
Even though survival is better, the higher number of survivors creates a population with:
more chronic illness
more long-term complications
higher late-life mortality
For several diseases, this negatively affected national life expectancy trends:
For stroke, improved survival was almost completely cancelled out by rising prevalence of long-term survivors.
For breast cancer, the benefit of improved survival was nearly halved by the increasing number of survivors.
Colon cancer and hip fracture survivors also contributed small negative effects.
The rise in the number
⭐ 4. Myocardial Infarction Is the Main Driver of Life Expectancy Growth
For men:
Improved survival after heart attacks contributed 1.61 years to the national life expectancy gain (≈49%).
For women:
It contributed 0.93 years (≈48%).
The rise in the number
This made heart-attack treatment improvements the single largest contributor to Sweden’s longevity gains during the study period.
⭐ 5. The Key Mechanism
The study shows national life expectancy changes depend on two forces:
A. Improved survival after disease → increases life expectancy
B. Growing number of long-term survivors with higher mortality → slows life expectancy
When (B) becomes large enough, it reduces the effect of (A).
⭐ OVERALL CONCLUSION
The article concludes that:
Medical progress has greatly improved survival after major diseases.
But because survivors remain at higher mortality risk, their increasing numbers partially slow national life expectancy gains.
This effect is small but significant—and will become more important as populations age and survival continues improving.
Failure to consider population composition may lead to misinterpreting life expectancy trends.
Prevention of disease (reducing new cases) is just as important as improving survival.
This study provides a new demographic insight:
➡️ Long-term survivors improve individual lives but can slow national-level longevity trends....
|
{"num_examples": 136, "bad_lines": {"num_examples": 136, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/gedbggrj- /home/sid/tuning/finetune/backend/output/gedbggrj-1228/data/gedbggrj-1228.json...
|
null
|
completed
|
1764398246
|
1764398551
|
NULL
|
/home/sid/tuning/finetune/backend/output/gedbggrj- /home/sid/tuning/finetune/backend/output/gedbggrj-1228/adapter...
|
False
|
Edit
Delete
|
|
f5bedd1a-23d7-4760-9ae7-2ecab35312e7
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
zffohwkh-0508
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
LONGEVITY AND REGENERATIV
|
LONGEVITY AND REGENERATIVE THERAPIES BIL
|
/home/sid/tuning/finetune/backend/output/zffohwkh- /home/sid/tuning/finetune/backend/output/zffohwkh-0508/merged_fp16_hf...
|
Four keys of longevity
|
/home/sid/tuning/finetune/backend/output/dazprfqd- /home/sid/tuning/finetune/backend/output/dazprfqd-5160/merged_fp16_hf...
|
dazprfqd-5160
|
The Longevity and Regenerative Therapies Bill, 202 The Longevity and Regenerative Therapies Bill, 2024 establishes a comprehensive legal framework in The Bahamas to regulate, approve, and oversee all therapies related to longevity, stem cells, gene therapy, immunotherapy, and regenerative medicine. Its purpose is to ensure that advanced medical treatments are developed and administered safely, ethically, and in alignment with global scientific standards, while promoting innovation and positioning The Bahamas as a leader in medical and wellness tourism.
The Act creates several governing bodies, including the National Longevity and Regenerative Therapy Board, responsible for fostering innovation, developing standards, monitoring compliance, and reporting to the Minister. It also establishes an independent Ethics Review Committee, which evaluates and approves applications for new therapies or research based on safety, efficacy, and ethical considerations.
The Bill outlines clear application and approval procedures for individuals or institutions seeking to administer or research therapies. Approvals may be full, provisional, or research-based, and no therapy can begin without written authorization. It further grants the Board powers to request information, inspect facilities, and maintain a national registry of approved therapies.
Strict prohibitions are included, such as bans on human embryo genetic modification intended for birth, unauthorized gene therapy testing, germline editing, and other unsafe or unethical practices. A Monitoring Body is created to ensure ongoing compliance with standards, inspect premises, and review marketing practices.
The Act also imposes licensing requirements for health facilities, gives the Minister authority to suspend unsafe operations, and sets out stringent penalties for violations, including fines and imprisonment. Finally, it repeals the previous Stem Cell Research and Therapy Act and preserves valid approvals issued under that legislation.
If you want, I can also provide:
✅ A short summary (3–4 lines)
✅ A one-page explanation
✅ A quiz or MCQs
✅ A simplified student-friendly version...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/zffohwkh-0508/data/document.pdf", "num_examples": 104, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/zffohwkh- /home/sid/tuning/finetune/backend/output/zffohwkh-0508/data/zffohwkh-0508.json...
|
null
|
queued
|
1765220519
|
1765220764
|
/home/sid/tuning/finetune/backend/output/dazprfqd- /home/sid/tuning/finetune/backend/output/dazprfqd-5160/adapter...
|
/home/sid/tuning/finetune/backend/output/zffohwkh- /home/sid/tuning/finetune/backend/output/zffohwkh-0508/adapter...
|
False
|
Edit
Delete
|
|
f670a141-a6c7-4eea-bb7e-c1e9c370a932
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jbzddgkz-1697
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Socioeconomic Implication
|
Socioeconomic Implications of Increased life
|
/home/sid/tuning/finetune/backend/output/jbzddgkz- /home/sid/tuning/finetune/backend/output/jbzddgkz-1697/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is a comprehensive analysis authored This document is a comprehensive analysis authored by Rick Gorvett and presented at the Living to 100 Symposium (2014). It examines the far-reaching socioeconomic, cultural, financial, and ethical consequences of significant increases in human longevity—an emerging reality driven by rapid scientific and medical progress.
Purpose of the Paper
While actuarial science traditionally focuses on the financial effects of longevity (health care costs, retirement systems, Social Security), this paper expands the discussion to explore the broader societal shifts that could occur as people routinely live far longer lives.
Scientific and Medical Context
The paper reviews:
The 30-year rise in life expectancy over the last century.
Advances in medicine, biotechnology, and aging science (e.g., insulin/IGF-1 pathway inhibition, caloric restriction research).
Cultural and historical reflections on the human desire for extended life.
Radical projections from futurists (Kurzweil, de Grey) versus more conservative demographic forecasts.
Main Implications of Increased Longevity
1. Economic & Financial Impacts
Pensions & retirement systems: Longer lifespans strain traditional retirement models; retirement ages and structures may need major redesign.
Workforce dynamics: Older workers may remain employed longer; effects on younger workers are uncertain but may not be negative.
Human capital: Longer lives encourage greater education, retraining, and skill acquisition throughout life.
Saving & investment behavior: With multiple careers and life stages, traditional financial planning may be replaced by more flexible, cyclical patterns.
2. Family & Personal Changes
Marriage & relationships: Longer life may normalize serial marriages, term contracts, or extended cohabitation; family structures may become more complex.
Family composition: Wider age gaps between siblings, blended families, and overlapping generations (parent and grandparent roles).
Education: Learning becomes lifelong, with repeated periods of study and retraining.
Health & fertility: Increased longevity requires parallel gains in healthy lifespan; fertility windows may expand.
3. Ethical and Social Considerations
Medical ethics: Some may reject life-extension technologies on moral or religious grounds, creating divergent longevity groups.
Value systems: A longer, healthier life may alter cultural norms, risk perception, and even legal penalties.
Potential downsides: Longevity may increase psychological strain; more years of life do not guarantee more years of satisfaction.
Overall Conclusion
The paper emphasizes the complexity and unpredictability inherent in a future of greatly extended lifespans. The interconnectedness of economic, social, family, health, and ethical factors makes actuarial modeling extremely challenging.
To adapt, society may need to reinvent the traditional three-phase life cycle—education, work, retirement—into a more fluid structure with:
>multiple careers,
>repeated education periods,
>flexible work patterns,
and a diminished emphasis on traditional retirement.
The author ultimately argues that actuaries and policymakers must prepare for a profound and multidimensional transformation of societal systems as longevity rises....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jbzddgkz-1697/data/document.pdf", "num_examples": 157, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jbzddgkz- /home/sid/tuning/finetune/backend/output/jbzddgkz-1697/data/jbzddgkz-1697.json...
|
null
|
completed
|
1764868151
|
1764868537
|
NULL
|
/home/sid/tuning/finetune/backend/output/jbzddgkz- /home/sid/tuning/finetune/backend/output/jbzddgkz-1697/adapter...
|
False
|
Edit
Delete
|
|
f75c926d-0c38-4f55-94c4-51999fec932e
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ccnsiohe-1868
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity and mortality
|
Longevity and mortality in cats
|
/home/sid/tuning/finetune/backend/output/ccnsiohe- /home/sid/tuning/finetune/backend/output/ccnsiohe-1868/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF presents a large-scale, 37-year retrospec This PDF presents a large-scale, 37-year retrospective veterinary study analyzing the lifespan, mortality patterns, and causes of death in domestic cats treated at a single institution between 1983 and 2019. It is one of the longest and most comprehensive institutional datasets on cat longevity, offering valuable insights for veterinarians, researchers, and pet owners.
The study’s primary goal is to identify demographic factors, disease patterns, and life expectancy trends that influence how long cats live and what most commonly leads to their death.
🔶 1. Scope and Purpose of the Study
The study analyzes medical records to:
Determine median lifespan and age distribution among cats
Categorize causes of death as pathological or non-pathological
Explore how age, sex, breed, neutering status, and diagnosable diseases influence longevity
Understand long-term trends in feline health and aging
Longevity and mortality in cats…
It emphasizes that feline longevity is shaped by complex, interrelated factors, not by single variables alone.
🔶 2. Key Findings
⭐ A) Median Lifespan and Age Categories
The population included 8,738 cats, with lifespan divided into three major groups:
Less than 7 years
7–11 years
12 years or older (elderly group)
Longevity and mortality in cats…
This allowed the researchers to compare health risks and mortality patterns across stages of feline life.
⭐ B) Pathological vs. Non-Pathological Causes of Death
Deaths were grouped into:
✔ Pathological
cancer
kidney disease
heart disease
infectious diseases
trauma
✔ Non-Pathological
euthanasia due to age-related decline
undiagnosed age-related deterioration
Longevity and mortality in cats…
Pathological causes dominated younger age groups, while non-pathological age-related decline dominated older cats.
⭐ C) Most Common Diseases in Elderly Cats
Older cats (12+ years) most frequently presented with:
Chronic kidney disease (CKD)
Hyperthyroidism
Heart disease
Diabetes mellitus
Cancer
Longevity and mortality in cats…
As expected, multimorbidity increased with age.
⭐ D) Longevity Trends Over Time
The study observes:
gradual increases in lifespan across the decades
improved veterinary care and diagnostics
shifts in leading causes of death
Longevity and mortality in cats…
These patterns reflect advancements in feline medicine and preventive care.
🔶 3. Statistical Methods
The researchers used:
Descriptive statistics (percentages, means, medians)
Regression models to analyze risk factors
Trend analysis across three decades
Comparisons between age groups, breeds, and sexes
Longevity and mortality in cats…
This allowed them to evaluate the strength and significance of each longevity predictor.
🔶 4. Study Insights
✔ Aging is strongly associated with increasing disease prevalence
Elderly cats almost always had multiple chronic diseases.
✔ Certain diseases dramatically shorten lifespan
Examples include aggressive cancers and end-stage kidney disease.
✔ Domestic shorthairs dominated the dataset
Making breed-specific conclusions limited but still informative.
✔ Euthanasia decisions often coincided with age-related decline
A major “non-pathological” contributor to reported mortality.
Longevity and mortality in cats…
🔶 5. Importance of the Study
This long-term dataset provides one of the clearest pictures of:
How long pet cats typically live
Which diseases most commonly affect them
How mortality patterns change with age
How veterinary medicine has improved survival over time
The findings help guide veterinarians in early detection, disease management, and preventive care strategies.
⭐ Perfect One-Sentence Summary
This PDF reports a 37-year retrospective study revealing how age, disease, and long-term health trends shape the lifespan and mortality of domestic cats, providing one of the most comprehensive datasets on feline longevity....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/ccnsiohe-1868/data/document.pdf", "num_examples": 13, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ccnsiohe- /home/sid/tuning/finetune/backend/output/ccnsiohe-1868/data/ccnsiohe-1868.json...
|
null
|
completed
|
1764881415
|
1764887073
|
NULL
|
/home/sid/tuning/finetune/backend/output/ccnsiohe- /home/sid/tuning/finetune/backend/output/ccnsiohe-1868/adapter...
|
False
|
Edit
Delete
|
|
f79e649f-eda8-48e0-9d2a-2c56d701f647
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ynjzdyfn-6686
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Gut microbiota variations
|
Gut microbiota variations over the lifespan and
|
/home/sid/tuning/finetune/backend/output/ynjzdyfn- /home/sid/tuning/finetune/backend/output/ynjzdyfn-6686/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This study investigates how the gut microbiota (th This study investigates how the gut microbiota (the community of microorganisms living in the gut) changes throughout the reproductive lifespan of female rabbits and how these changes relate to longevity. It compares two maternal rabbit lines:
Line A – a standard commercial line selected mainly for production traits.
Line LP – a long-lived line created using longevity-based selection criteria.
🔬 What the Study Did
Researchers analyzed 319 fecal samples collected from 164 female rabbits across their reproductive lives (from first parity to death/culling). They used advanced DNA sequencing of the gut microbiome, including:
16S rRNA sequencing
Bioinformatics (DADA2, QIIME2)
Alpha diversity (richness/evenness within a sample)
Beta diversity (differences between samples)
Zero-inflated negative binomial mixed models (ZINBMM)
Animals were categorized into three longevity groups:
LL: Low longevity (died/culled before 5th parity)
ML: Medium longevity (5–10 parities)
HL: High longevity (more than 10 parities)
🧬 Key Findings
1. Aging Strongly Alters the Gut Microbiome
Age caused a consistent decline in diversity:
Lower richness
Lower evenness
Reduced Shannon index
20% of ASVs in line A and 16% in line LP were significantly associated with age.
Most age-associated taxa declined with age.
Age explained the greatest proportion of sample-to-sample microbiome variation.
2. Longevity Groups Have Distinct Microbiomes
High-longevity rabbits (HL) showed lower evenness, meaning fewer taxa dominated the community.
Differences between longevity groups were more pronounced in line A than line LP.
In line A, 15–16% of ASVs differed between HL and LL/ML.
In line LP, only 4% differed.
Suggests genetic selection for longevity stabilizes microbiome patterns.
3. Strong Genetic Line Effects
LP rabbits consistently had higher alpha diversity than A rabbits.
About 6–12% of ASVs differed between lines even when comparing animals of the same longevity, proving:
Genetics shape the microbiome independently of lifespan.
Several bacterial families were consistently different between lines, such as:
Lachnospiraceae
Oscillospiraceae
Ruminococcaceae
Akkermansiaceae
🧩 What It Means
The gut microbiota shifts dramatically with age, even under identical feeding and environmental conditions.
Specific bacteria decline as rabbits age, likely tied to immune changes, reproductive stress, or physiological aging.
Longevity is partially linked to microbiome composition—but genetics strongly determines how much the microbiome changes.
The LP line shows more microbiome stability, hinting at genetic resilience.
🌱 Why It Matters
This research helps:
Understand aging biology in mammals
Identify microbial markers of longevity
Improve breeding strategies for long-lived, healthy livestock
Explore microbiome-driven approaches for health and productivity...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/ynjzdyfn-6686/data/document.pdf", "num_examples": 47, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ynjzdyfn- /home/sid/tuning/finetune/backend/output/ynjzdyfn-6686/data/ynjzdyfn-6686.json...
|
null
|
completed
|
1764894867
|
1764900849
|
NULL
|
/home/sid/tuning/finetune/backend/output/ynjzdyfn- /home/sid/tuning/finetune/backend/output/ynjzdyfn-6686/adapter...
|
False
|
Edit
Delete
|
|
f7f3213e-1270-4ffb-821c-694072765fe7
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
xxsdsakk-4069
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Estimates of the Heritabi
|
Estimates of the Heritability of Human Longevity
|
/home/sid/tuning/finetune/backend/output/xxsdsakk- /home/sid/tuning/finetune/backend/output/xxsdsakk-4069/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This investigation critically examines the heritab This investigation critically examines the heritability of human longevity, challenging prior estimates that have ranged between 15–30% by demonstrating that these figures are substantially inflated due to assortative mating—the nonrandom pairing of mates with respect to longevity-associated traits. Using an unprecedentedly large dataset derived from Ancestry public family trees, encompassing hundreds of millions of historical individuals primarily of European descent living in North America and Europe during the 19th and early 20th centuries, the authors applied advanced structural equation modeling to disentangle genetic, sociocultural, and assortative mating effects on lifespan correlations.
The study concludes that the true transferable variance (t²)—an upper bound on heritability (h²) that includes both genetic and sociocultural inherited factors—is well below 10% for birth cohorts across the 1800s and early 1900s. This suggests that earlier heritability estimates of longevity have been substantially overestimated because they did not adequately correct for assortative mating effects.
Key Concepts and Definitions
Term Definition
Heritability (h²) The fraction of phenotypic variance attributable to genetic variance.
Transferable variance (t²) Phenotypic variance due to all inherited factors, encompassing both genetic (h²) and sociocultural (b²) components, plus their covariance.
Sociocultural inheritance (b²) Non-genetic factors that influence phenotype and are transmitted through families (e.g., socioeconomic status).
Assortative mating (a) The correlation between latent genetic and sociocultural states of spouses that influences phenotypic correlations beyond genetic inheritance.
Nominal heritability Heritability estimated without correction for assortative mating or shared environment, typically based on correlation and additive relatedness.
Methodology Overview
Data Source: Aggregated and anonymized pedigrees (SAP) were created by collapsing 54 million publicly available Ancestry subscriber-generated family trees, resulting in over 831 million unique historical individuals linked by parent–child and spousal edges.
Data Quality Controls:
Removed self-edges and gender-incongruent parent-child edges.
Added missing spousal edges between parents.
Focused on individuals with known birth and death years who had offspring, limiting analysis primarily to birth cohorts from the early 1800s to 1920.
Addressed data artifacts such as birth year rounding.
Analysis Approach:
Estimated phenotypic correlations of lifespan between various relatives (siblings, cousins, spouses, in-laws).
Calculated nominal heritability using standard regression methods correcting for variance differences.
Developed and applied a structural equation model incorporating three key parameters:
Transferable variance (t²),
Inheritance coefficient (b),
Assortative mating coefficient (a).
Utilized correlations among siblings-in-law and cosiblings-in-law to solve for these parameters.
Applied an assortment-correction method using remote relative pairs and their in-law equivalents to validate estimates.
Timeline Table: Analytical Focus and Data Coverage
Period Data Characteristics and Focus
Pre-1700 Mostly European births; sparse data quality Not specified
1700–1800 Increasing data quality; European and North American births
1800–1920 Primary focus; high data quality; large sample sizes in millions
Post-1920 Decline in death-year data; excluded from lifespan analysis
Major Findings
1. Nominal Heritability Estimates Confirm Prior Literature but Are Inflated
Nominal heritability estimates for lifespan correlated with previous findings (15–30%).
Lifespan correlations among blood relatives were similar to past studies.
However, spouses and in-law relatives also showed substantial lifespan correlations, sometimes comparable to or exceeding those of blood relatives.
This indicated that shared environments and assortative mating inflate these estimates.
2. Assortative Mating Significantly Inflates Heritability Estimates
Assortative mating coefficient (a) was consistently high across all analyses, often exceeding 0.8, indicating strong nonrandom mating based on lifespan-influencing factors.
The presence of assortative mating causes phenotypic correlations between relatives to deviate from the linear relationship expected under pure additive genetics.
Correlations between in-law relatives (who do not share genetics) were substantial, confirming the importance of assortative mating rather than shared genetics alone.
3. Structural Equation Modeling Reveals True Transferable Variance (t²) Is <10%
Using sibling-in-law and cosibling-in-law correlations, the model estimated transferable variance (t²) consistently below 7% for all gender combinations and birth cohorts.
This t² value represents an upper bound on heritability (h²) because it includes both genetic and sociocultural transmitted factors.
The inheritance coefficient (b) was estimated between 0.40–0.45, slightly less than the genetic expectation of 0.5, reflecting combined genetic and sociocultural inheritance.
Shared household environmental effects were also quantified and found to be substantial but separate from transferable variance.
4. Independent Validation Using Remote Relatives Supports Low Heritability
Assortment-correction method applied to remote relatives (piblings, first cousins, first cousins once removed) and their in-law equivalents consistently estimated assortative mating coefficients (a) close to or above 0.5.
Transferable variance estimates from these analyses also remained below 10%, validating the sibling-in-law modeling approach.
5. Transferable Variance Decreases with Increasing Birth-Cohort Disparity Among Relatives
Lifespan correlation and transferable variance (t²) were higher when relatives were born closer in time; as the birth-year gap increased, t² declined significantly.
Assortative mating coefficient (a) remained stable across birth-year offsets, suggesting that the decline in transferable variance was not due to mating patterns.
This suggests that genetic and sociocultural factors affecting lifespan vary with historical context, likely reflecting changing environmental hazards and causes of death over time.
Quantitative Summary Table: Structural Equation Model Estimates by Birth Cohort
Birth Cohort Period Transferable Variance (t²) Assortative Mating Coefficient (a) Inheritance Coefficient (b) Shared Childhood Environment (csib) Shared Adult Environment (csp)
1800s–1830s ~5.9–6.5% (across relatives) ~0.68–0.88 ~0.40–0.44 ~4.3% (siblings) ~6.6% (spouses)
1840s–1870s ~4.0–5.5% ~0.53–0.88 ~0.40 ~5.1% ~5.0%
1880s–1910s ~4.0–7.2% ~0.43–0.89 ~0.40 ~6.0% ~4.4%
Values represent means across gender pairs with standard deviations; b fixed at 0.5 for some estimates; all data derived from sibling-in-law and remote relative analyses.
Core Insights
Previous heritability estimates of human longevity (~15–30%) are substantially inflated due to assortative mating.
True heritability (h²) is likely below 10%, and possibly considerably lower after accounting for sociocultural inheritance.
Assortative mating for lifespan-related factors is strong, with a coefficient often >0.8, indicating mates tend to share longevity-related traits, both genetic and environmental.
Sociocultural factors (e.g., socioeconomic status) are a significant inherited component influencing longevity, evidenced by lifespan correlations among in-law relatives and supported by sociological literature.
Transferable variance (t²) decreases as birth cohorts diverge, implying that historical environmental changes modulate the impact of inherited factors on longevity.
Fundamental biological aging processes (e.g., rate of hazard doubling) appear consistent historically, but lifespan-affecting factors mostly modify susceptibility to historically transient environmental hazards, not aging rate itself.
Implications
Genetic studies of longevity should account for assortative mating and sociocultural inheritance to avoid overestimating genetic contributions.
Interventions targeting environmental and sociocultural factors could have a larger impact on lifespan extension than currently assumed genetic predispositions.
Historical and birth cohort context is critical when interpreting heritability and lifespan data.
The biological basis of aging remains consistent, but its interaction with environment and social factors is dynamic and complex.
References to Relevant Literature Mentioned
Smart Summary
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/xxsdsakk-4069/data/document.pdf", "num_examples": 206, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/xxsdsakk- /home/sid/tuning/finetune/backend/output/xxsdsakk-4069/data/xxsdsakk-4069.json...
|
null
|
completed
|
1764954903
|
1764958204
|
NULL
|
/home/sid/tuning/finetune/backend/output/xxsdsakk- /home/sid/tuning/finetune/backend/output/xxsdsakk-4069/adapter...
|
False
|
Edit
Delete
|
|
f7faa905-3aa6-459f-be9b-983c6c267d98
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
uubiabzb-7541
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Life guidance
|
Determination of signs of life
|
/home/sid/tuning/finetune/backend/output/uubiabzb- /home/sid/tuning/finetune/backend/output/uubiabzb-7541/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The “Signs of Life – Guidance Visual Summary (v1.2 The “Signs of Life – Guidance Visual Summary (v1.2)” is a clinical guideline for healthcare professionals to determine whether a live birth has occurred before 24 weeks of gestation in cases where—after discussion with parents—active survival-focused care is not appropriate. It provides clear, compassionate instructions for identifying signs of life, documenting birth and death, communicating with parents, and delivering palliative and bereavement care.
signs-of-life-guidance-visual-s…
The guidance is designed to reduce uncertainty, ensure legal accuracy, protect families from additional trauma, and support parents through one of the most emotionally sensitive experiences in healthcare.
Core Components
1. Determining a Live Birth
A live birth is diagnosed when one or more persistent visible signs of life are observed:
Easily visible heartbeat
Visible pulsation of the umbilical cord
Breathing, crying, or sustained gasps
Definite, purposeful movement of arms or legs
signs-of-life-guidance-visual-s…
Not signs of life:
Brief reflexes—such as transient gasps, chest wall twitches, or short muscle movements only in the first minute after birth—do not constitute live birth.
signs-of-life-guidance-visual-s…
Clinicians are instructed to observe respectfully, often while the baby is held by the parents. A stethoscope is not required, and parents’ observations may be included if they choose to share them.
2. Actions After a Live Birth
Once a sign of life is seen:
A doctor (usually an obstetrician) must be called to confirm and document the live birth.
The doctor may rely on the midwife’s account and is not always required to attend in person.
Accurate documentation avoids legal complications when issuing a neonatal death certificate.
signs-of-life-guidance-visual-s…
Comfort care must then follow a perinatal palliative care pathway, addressing the baby’s needs and the parents’ emotional and physical well-being.
3. Communication With Parents
The guidance places strong emphasis on sensitive, trauma-reducing communication.
Parents should be gently told that:
Babies born before 24 weeks are extremely small and typically do not survive.
Babies who die just before birth may briefly show reflex movements that are not signs of life.
Babies who survive may show signs of life for minutes—or occasionally hours.
signs-of-life-guidance-visual-s…
Clinicians should:
Listen actively
Use the parents’ preferred language
Respect whether parents want the experience described as a “loss,” “death,” “end of pregnancy,” or “miscarriage”
signs-of-life-guidance-visual-s…
Each situation is unique and must be handled with individualized sensitivity.
4. Bereavement Care (For All Births)
Bereavement care is required in every case, regardless of signs of life.
The guidance instructs staff to:
Follow the National Bereavement Care Pathway
Provide privacy, time, and space
Support memory-making
Offer choices around burial, cremation, or sensitive disposal
Inform parents of support services and ensure follow-up with community care, GP, and mental health teams
signs-of-life-guidance-visual-s…
This ensures parents receive compassionate, individualized support during and after their loss.
5. Documenting Birth and Death
Documentation follows strict legal requirements:
If signs of life are present
A doctor and midwife must confirm and record the live birth.
A neonatal death certificate must be completed by a doctor who witnessed the signs—or the coroner must be informed.
Parents are required to register the birth and death.
signs-of-life-guidance-visual-s…
If no signs of life are present (miscarriage)
Document the miscarriage.
No legal registration is required, but offer a certificate of loss or certificate of birth.
signs-of-life-guidance-visual-s…
6. Included and Excluded Births
Included
In-hospital spontaneous births under 22+0 weeks
In-hospital births at 22+0 to 23+6 weeks where survival-focused care is not appropriate
Pre-hospital births under 22 weeks (same principles apply)
signs-of-life-guidance-visual-s…
Excluded
Medical terminations
Uncertain gestational age
Spontaneous births at 22–23+6 weeks where active neonatal care is planned or unclear
signs-of-life-guidance-visual-s…
Conclusion
The “Signs of Life – Guidance Visual Summary (v1.2)” is a clear and compassionate roadmap for clinicians caring for families experiencing extremely preterm birth where survival-focused care is not appropriate. It ensures:
>accurate identification of live birth
>consistent legal documentation
>sensitive communication
>high-quality palliative and bereavement care
respect for parents’ emotional needs and preferences
Its ultimate purpose is to provide clarity, compassion, and consistency during a profoundly difficult and delicate moment....
|
{"num_examples": 14, "bad_lines": {"num_examples": 14, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/uubiabzb- /home/sid/tuning/finetune/backend/output/uubiabzb-7541/data/uubiabzb-7541.json...
|
null
|
completed
|
1764441607
|
1764441642
|
NULL
|
/home/sid/tuning/finetune/backend/output/uubiabzb- /home/sid/tuning/finetune/backend/output/uubiabzb-7541/adapter...
|
False
|
Edit
Delete
|
|
f92c3762-7643-4d94-94ef-f7f0dc0794ed
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
eboeihhf-2915
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Productive Longevity
|
Productive Longevity
|
/home/sid/tuning/finetune/backend/output/eboeihhf- /home/sid/tuning/finetune/backend/output/eboeihhf-2915/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
1. Meaning of Productive Longevity
The brief de 1. Meaning of Productive Longevity
The brief defines productive longevity as the ability of older workers (generally 55+) to stay engaged in meaningful, productive economic activities—either as employees or entrepreneurs—while maintaining health, skills, and income security.
🌍 Why It Matters
The world is aging fast: by 2050, 1 in 6 people will be 65+, and 80% of them will live in low- and middle-income countries.
Aging increases dependency ratios, strains pensions and healthcare, and slows growth.
Many countries are “getting old before getting rich,” giving them little time to prepare.
Older workers' continued participation does not reduce jobs for youth—the “lump of labor fallacy.”
📊 Key Facts Highlighted
Older adults in poorer countries work more, often because they cannot afford to retire.
Women live longer but participate far less in paid work due to care burdens.
Many older workers are in the informal or self-employed sector, lacking training, financing, or protections.
Productivity of older workers does not necessarily decline—experience and emotional skills often compensate.
🔧 Three Major Categories of Policy Constraints & Solutions
The document provides a structured framework:
I. Supply-Side (Workers)
Barriers that stop older workers from working or being productive:
Mandatory retirement ages
High taxation on continued work
Poor health, chronic disease, stress
Outdated skills, low digital literacy
Internalized ageism (“I’m too old to learn”)
Lack of access to childcare/eldercare (especially for older women)
Limited access to credit and productive assets for older entrepreneurs
Solutions include:
Raising/flexibilizing retirement ages
Tax reforms to incentivize working longer
Affordable childcare & long-term care
Lifelong learning and adult-friendly training
Mental & physical health programs
Support for senior entrepreneurs (digital skills, microfinance, mentoring)
Community-based empowerment initiatives like Older People’s Associations
II. Demand-Side (Firms & Employers)
Barriers that stop employers from hiring or investing in older workers:
Seniority wages that increase with age
High social contributions
Employer ageism (“older workers can’t learn tech”)
Lack of age-inclusive employment practices
Underinvestment in worker training
Solutions include:
Performance-based wage systems
Reforming rigid labor regulations
Lowering payroll taxes in age-biased systems
Anti-ageism awareness campaigns
Incentives for firms to invest in training & ergonomic workplaces
Flexible work arrangements and phased retirement
III. Matching (Labor Market Services)
Older workers often cannot access:
Job matching services
Digital job platforms
Career counseling
Training suited to adult learning
Solutions include:
Age-inclusive employment services
Tailored job search support
Updated digital interfaces for older adults
Public-private partnerships to place older workers
📈 Five Major Takeaways
Evidence on what works in low-income countries is still limited—research gaps are huge.
Countries should adopt an aging lens across all policies.
Lifelong learning is critical but currently underdeveloped.
Productive longevity must start early in life through strong human capital investments.
Low-income countries must prioritize:
Raising productivity of informal older workers
Improving opportunities for women and youth
🏛️ What the World Bank Is Doing
Pension reform (retirement age, sustainability)
Childcare & long-term care system development
Lifelong learning system improvements
Limited efforts so far on employer-side or job-matching reforms
Diagnostics and advisory reports in many countries
New pilots such as the Chinese “time bank” for eldercare
Emphasis on creating cross-sectoral aging strategies
🚀 What the World Bank Could Do More
Collect better data (like Health & Retirement Surveys)
Support adult retraining and age-inclusive labor programs
Encourage employer investment in older workers
Promote community-based models for senior livelihoods
Provide aging-focused development policy financing (DPFs)
Integrate aging into agriculture, digital economy, and social protection reforms
🎯 Purpose of the Document
This brief serves as:
A policy roadmap
A diagnostic tool
A call for cross-sectoral action
An introduction to the emerging productive longevity agenda within the World Bank...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/eboeihhf-2915/data/document.pdf", "num_examples": 173, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/eboeihhf- /home/sid/tuning/finetune/backend/output/eboeihhf-2915/data/eboeihhf-2915.json...
|
null
|
completed
|
1764874279
|
1764880074
|
NULL
|
/home/sid/tuning/finetune/backend/output/eboeihhf- /home/sid/tuning/finetune/backend/output/eboeihhf-2915/adapter...
|
False
|
Edit
Delete
|