|
4dbfae9f-c39b-4ff8-b197-0587c285ae4a
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hmtwvmxg-4462
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity Pay
|
Longevity Pay and Hazardous Duty Pay
|
/home/sid/tuning/finetune/backend/output/hmtwvmxg- /home/sid/tuning/finetune/backend/output/hmtwvmxg-4462/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Longevity Pay and Hazardous Duty Pay (Policy 03-40 Longevity Pay and Hazardous Duty Pay (Policy 03-406) is an official four-page compensation policy issued by Stephen F. Austin State University (SFA), originally effective September 1, 2023. It establishes the rules, eligibility conditions, payment schedules, and administrative procedures for two forms of supplemental pay: Longevity Pay for full-time non-academic employees, and Hazardous Duty Pay for commissioned law enforcement officers.
Purpose and Coverage
The policy applies to:
Full-time non-academic staff working 40 hours per week
Commissioned law enforcement officers employed by SFA
Faculty, part-time workers below 40 hours, charter school teachers, and other exempt groups are excluded.
1. Longevity Pay
Eligibility
Applies to full-time, non-academic employees (excluding those eligible for hazardous duty pay).
Employees must work 40 hours/week, or have combined appointments equaling 40 hours.
Prior Texas state service—including part-time, student work, faculty service, and legislative service—is credited once verified.
Longevity pay begins on the first day of the month after completing 2 years of state service (and each additional 2-year increment).
Cannot be prorated.
Payment Amount
Longevity pay is $20 per month for each 2 years of state service, with a maximum of $420 per month.
The policy provides a full incremental table, ranging from:
0–2 years → $0
2–4 years → $20
Continuing in 2-year increments up to
42+ years → $420 maximum
Administrative Rules
Pay is included in regular payroll (no lump-sum checks).
A change affecting eligibility takes effect the next month, not mid-month.
Impacts federal withholding, retirement contributions, and insurance calculations.
Not included in lump-sum vacation payouts at termination—but is included in vacation/sick payout calculations for deceased employees’ estates.
2. Hazardous Duty Pay (HDP)
Who Qualifies
Full-time commissioned law enforcement officers performing hazardous duties.
Eligibility and definitions follow Texas Government Code §§ 659.041–047, 659.305.
Payment Amount
HDP is $10 per month for each year of hazardous-duty-eligible state service.
Begins after 12 months of service, starting the next month.
Continues at the same rate until the next full year is completed.
No statutory cap, except for certain Texas Department of Criminal Justice roles (not applicable here).
The provided example lists increments from:
1–2 years → $10
2–3 years → $20
Up to
5–6 years → $50
Special Transition Rules
An employee switching from non-hazardous to hazardous duty:
Retains prior longevity pay for past non-hazardous service
Earns no additional Longevity Pay while receiving HDP
Hazardous-duty time counts toward future state service calculations
An employee switching from hazardous duty to non-hazardous duty:
Stops receiving HDP immediately
Becomes eligible for Longevity Pay, including credit for previous hazardous duty years
Procedural and Payroll Notes
Both Longevity Pay and HDP are part of total compensation, not base salary.
Both affect:
Federal tax withholding
OASDI
Group insurance calculations
Retirement contribution levels
Neither type of pay is included in termination vacation payouts, but both are included in estate payouts after an employee’s death.
Overall Summary
This policy clearly defines how SFA compensates long-serving employees and those performing hazardous duties. It provides:
Transparent eligibility criteria
Exact monthly pay schedules
Rules for service verification, timing, transitions, and payroll treatment
It ensures consistent, compliant administration of supplemental compensation across the university’s workforce.
If you’d like, I can also prepare:
📌 a shorter executive summary
📌 a side-by-side comparison with your other longevity pay documents
📌 a fully integrated meta-summary across all compensation/ longevity files
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/hmtwvmxg-4462/data/document.pdf", "num_examples": 27, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hmtwvmxg- /home/sid/tuning/finetune/backend/output/hmtwvmxg-4462/data/hmtwvmxg-4462.json...
|
null
|
queued
|
1765051008
|
1765051380
|
NULL
|
/home/sid/tuning/finetune/backend/output/hmtwvmxg- /home/sid/tuning/finetune/backend/output/hmtwvmxg-4462/adapter...
|
False
|
Edit
Delete
|
|
fa2412f1-1dd3-4cc4-a725-71764cd89464
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hnaapmmu-5222
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Extreme Human Lifespan
|
Extreme Human Lifespan
|
/home/sid/tuning/finetune/backend/output/hnaapmmu- /home/sid/tuning/finetune/backend/output/hnaapmmu-5222/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The indexed individual, from now on termed M116, w The indexed individual, from now on termed M116, was the world's oldest verified living person from January 17th 2023 until her passing on August 19th 2024, reaching the age of 117 years and 168 days (https://www.supercentenarian.com/records.html). She was a Caucasian woman born on March 4th 1907 in San Francisco, USA, from Spanish parents and settled in Spain since she was 8. A timeline of her life events and her genealogical tree are shown in Supplementary Fig. 1a-b. Although centenarians are becoming more common in the demographics of human populations, the so-called supercentenarians (over 110 years old) are still a rarity. In Catalonia, the historic nation where M116 lived, the lifeexpectancy for women is 86 years, so she exceeded the average by more than 30 years (https://www.idescat.cat). In a similar manner to premature aging syndromes, such as Hutchinson-Gilford Progeria and Werner syndrome, which can provide relevant clues about the mechanisms of aging, the study of supercentenarians might also shed light on the pathways involved in lifespan. To unfold the biological properties exhibited by such a remarkable human being, we developed a comprehensive multiomics analysis of her genomic, transcriptomic, metabolomic, proteomic, microbiomic and epigenomic landscapes in different tissues, as depicted in Fig. 1a, comparing the results with those observed in non-supercentenarian populations. The picture that emerges from our study shows that extremely advanced age and poor health are not intrinsically linked and that both processes can be distinguished and dissected at the molecular level.
RESULTS AND DISCUSSION Samples from the subject were obtained from four different sources: total peripheral blood, saliva, urine and stool at different times. Most of the analyses were performed in the blood material at the time point of 116 years and 74 days, unless otherwise specifically indicated (Data set 1). The simple karyotype of the supercentenarian did not show any gross chromosomal alteration (Supplementary Fig. 1c). Since many reports indicate the involvement of telomeres in aging and lifespan1, we interrogated the telomere length of the M116 individual using High-Throughput Quantitative Fluorescence In Situ Hybridization (HT-Q-FISH) analysis2. Illustrative confocal images with DAPI staining and the telomeric probe (TTAGGG) for M116 and two control samples are shown in Fig. 1b. Strikingly, we observed that the supercentenarian exhibited the shortest mean telomere length among all healthy volunteers3 with a value of barely 8 kb (Fig. 1c). Even more noticeably, the M116 individual displayed a 40% of short telomeres below the 20th percentile of all the studied samples (Fig. 1c). Thus, the observed far reach longevity of our case occurred in the chromosomal context of extremely short telomeres. Interestingly, because the M116 individual presented an overall good health status, it is tempting to speculate that, in this ...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/hnaapmmu-5222/data/document.pdf", "num_examples": 146, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hnaapmmu- /home/sid/tuning/finetune/backend/output/hnaapmmu-5222/data/hnaapmmu-5222.json...
|
null
|
completed
|
1764899005
|
1764907799
|
NULL
|
/home/sid/tuning/finetune/backend/output/hnaapmmu- /home/sid/tuning/finetune/backend/output/hnaapmmu-5222/adapter...
|
False
|
Edit
Delete
|
|
3e216ca3-7478-49f0-bd49-aadd46412cf3
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hocmrche-4984
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The Multiomics Blueprint
|
The Multiomics Blueprint of Extreme Human Lifespan
|
/home/sid/tuning/finetune/backend/output/hocmrche- /home/sid/tuning/finetune/backend/output/hocmrche-4984/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This study presents a comprehensive multiomics ana This study presents a comprehensive multiomics analysis of an extraordinary human subject, M116, the world’s oldest verified living person from January 2023 until her death in August 2024 at the age of 117 years and 168 days. Born in 1907 in San Francisco to Spanish parents, M116 spent most of her life in Spain. Despite surpassing the average female life expectancy in Catalonia by over 30 years, she maintained an overall good health profile until her final months. The research aimed to dissect the molecular and cellular factors contributing to her extreme longevity by integrating genomic, epigenomic, transcriptomic, proteomic, metabolomic, and microbiomic data derived primarily from blood, saliva, urine, and stool samples.
Key Insights and Findings
Longevity is multifactorial, with no single genetic or molecular determinant but rather a complex interplay of rare genetic variants, preserved molecular functions, and adaptive physiological traits.
Extreme age and poor health are decoupled; M116 exhibited biological markers of advanced age alongside molecular features indicative of healthy aging.
Molecular assessments reveal preserved and robust biological functions that likely contributed to her extended lifespan.
Genomic Landscape
Telomere Length:
M116 exhibited extremely short telomeres (~8 kb), shorter than all healthy volunteers studied, with 40% of her telomeres below the 20th percentile.
This suggests telomere attrition acts more as a biological aging clock rather than a predictor of age-associated diseases in this context.
The short telomeres may have contributed to cancer resistance by limiting malignant cell replication.
Structural Variants (SVs):
Ten rare SVs identified via Optical Genome Mapping, including a large 3.3 Mb deletion on chromosome 4 and a 93.5 kb deletion on chromosome 17.
These SVs may play unknown roles but were not associated with detrimental gross chromosomal alterations.
Rare Genetic Variants:
Whole Genome Sequencing identified ~3.8 million SNVs; after filtering, 91,666 variants of interest (VOI) affecting 25,146 genes were analyzed.
Seven homozygous rare variants unique to M116 were found in genes linked to immune function, cognitive retention, longevity, pulmonary function, neuroprotection, and DNA repair (e.g., DSCAML1, MAP4K3, TSPYL4, NT5DC1, PCDHA cluster, TIMELESS).
Functional enrichment highlighted pathways involving:
Immune system regulation (e.g., T cell differentiation, response to pathogens, antigen receptor signaling)
Neuroprotection and brain health
Cardioprotection and heart development
Cholesterol metabolism and insulin signaling
Mitochondrial function and oxidative phosphorylation
Mitochondrial function assays showed robust mitochondrial membrane potential and superoxide ion levels in M116’s PBMCs, surpassing those in younger controls, indicating preserved mitochondrial health.
Burden Tests:
Identified genes with significantly higher rare variant load related to neuroprotection and longevity (e.g., EPHA2, MAL, CLU, HAPLN4).
No single gene or pathway explained longevity; rather, multiple pathways acted synergistically.
Blood Cellular and Molecular Characteristics
Clonal Hematopoiesis of Indeterminate Potential (CHIP):
M116 harbored CHIP-associated mutations: one in SF3B1 (RNA splicing factor) and two in TET2 (DNA demethylase) with variant allele frequency >2%.
Despite this, she did not develop malignancies or cardiovascular disease, suggesting CHIP presence does not necessarily translate to disease.
Single-cell RNA Sequencing (scRNA-seq) of PBMCs:
Identified a diverse immune cell repertoire including naive and memory B cells, NK cells, monocytes, and T cell subpopulations.
Notably, M116 exhibited an expanded population of age-associated B cells (ABCs), expressing markers SOX5 and FCRL2, a feature unique compared to other supercentenarians.
The T cell compartment was dominated by effector and memory cytotoxic T cells, consistent with prior observations in supercentenarians.
Metabolomic and Proteomic Profiles
Metabolomics (1H-NMR Analysis):
Compared with 6,022 Spanish individuals, M116’s plasma showed:
Extremely efficient lipid metabolism:
Very low VLDL-cholesterol and triglycerides
Very high HDL-cholesterol (“good cholesterol”)
High numbers of medium and large HDL and LDL particles, indicating effective lipoprotein maturation.
Low levels of lipid biomarkers associated with poor health (saturated fatty acids, esterified cholesterol, linoleic acid, acetone).
High free cholesterol levels linked to good health and survival.
Low glycoproteins A and B, suggesting a low systemic inflammatory state (“anti-inflammaging”).
Cardiovascular risk-associated metabolites supported excellent cardiovascular health.
Some amino acid levels (glycine, histidine, valine, leucine) were low, and lactate and creatinine were high, consistent with very advanced chronological age and imminent mortality.
Proteomics of Extracellular Vesicles (ECVs):
Compared to younger post-menopausal women, 231 proteins were differentially expressed.
GO enrichment revealed eight functional clusters: coagulation, immune system, lipid metabolism, apoptosis, protein processing, detoxification, cellular adhesion, and mRNA regulation.
Proteomic signatures indicated:
Increased complement activation and B cell immunity
Enhanced lipid/cholesterol transport and lipoprotein remodeling
Elevated oxidative stress response and detoxification mechanisms
The most elevated protein was serum amyloid A-1 (SAA1), linked to Alzheimer’s disease, yet M116 showed no neurodegeneration.
Gut Microbiome Composition
16S rDNA sequencing compared M116’s stool microbiome to 445 healthy controls (61-91 years old).
M116’s microbiome showed:
Higher alpha diversity (Shannon index 6.78 vs. 3.05 controls), indicating richer microbial diversity.
Distinct beta diversity, clearly separating her microbiome from controls.
Markedly elevated Actinobacteriota phylum, primarily due to Bifidobacteriaceae family and Bifidobacterium genus, which typically decline with age but are elevated in centenarians.
Bifidobacterium is associated with anti-inflammatory effects, production of short-chain fatty acids, and conjugated linoleic acid, linking to her efficient lipid metabolism.
Lower relative abundance of pro-inflammatory genera such as Clostridium and phyla Proteobacteria and Verrucomicrobiota, associated with frailty and inflammation in older adults.
Diet likely influenced microbiome composition; M116 consumed a Mediterranean diet and daily yogurts containing Streptococcus thermophilus and Lactobacillus delbrueckii, which promote Bifidobacterium growth.
Epigenetic and Biological Age Analysis
DNA Methylation Profiling (Infinium MethylationEPIC BeadChip):
Identified 69 CpG sites with differential methylation (β-value difference >50%) compared to controls aged 21-78 years.
Majority (68%) showed hypomethylation, consistent with known aging-associated DNA methylation changes.
Differential CpGs were more often outside CpG islands and enriched in gene bodies or regulatory regions.
Hypomethylation correlated with altered expression of genes involved in:
Vascular stemness (EGFL7)
Body mass index regulation (ADCY3)
Macular degeneration (PLEKHA1)
Bone turnover (VASN)
Repetitive DNA Elements:
Unlike typical age-associated global hypomethylation, M116 retained hypermethylation in repetitive elements (LINE-1, ALU, ERV), suggesting preserved genomic stability.
Epigenetic Clocks:
Six different DNA methylation-based epigenetic clocks and an independent rDNA methylation clock (using Whole Genome Bisulfite Sequencing) consistently estimated M116’s biological age to be significantly younger than her chronological age (~117 years).
This indicates a decelerated epigenetic aging process in M116’s cells, which may contribute to her longevity.
Integration and Conclusions
Coexistence of Advanced Age Biomarkers and Healthy Aging Traits:
M116 simultaneously exhibited biological signatures indicative of very old age (short telomeres, CHIP mutations, aged B cell populations) and preserved healthy molecular and functional profiles (genetic variants protective against diseases, efficient lipid metabolism, anti-inflammatory gut microbiome, epigenome stability, robust mitochondrial function).
Decoupling of Aging and Disease:
These findings challenge the assumption that aging and disease are inseparably linked, showing that extreme longevity can occur with a healthy functional tissue environment despite advanced biological age markers.
Multidimensional and Multifactorial Basis of Longevity:
The supercentenarian’s extended lifespan likely resulted from the synergistic effects of rare genetic variants, favorable epigenetic patterns, preserved mitochondrial and immune function, healthy metabolism, and a beneficial microbiome, rather than any single factor.
Potential Implications:
Understanding the interplay of these factors could open avenues for promoting healthy aging and preventing age-related diseases in the general population.
Timeline and Demographics of M116
Event Date / Age Notes
Birth March 4, 1907 San Francisco, USA
Moved to Spain 1915 (age 8) Following father’s death
Lived in elderly residence 2001 - 2024 Olot, Catalonia, Spain
COVID-19 Infection Not specified Survived
Death August 19, 2024 (age 117y, 168d) While sleeping, no major neurodegeneration or cancer recorded
Summary Table of Key Molecular Features in M116
Feature Status in M116 Interpretation/Significance
Telomere length Extremely short (~8 kb) Aging clock marker; may limit cancer risk
Structural variants 10 rare SVs, including large deletions Unknown effect; no gross chromosomal abnormalities
Rare homozygous variants 7 unique variants in longevity/immune-related genes Suggest combined genetic contribution to longevity
CHIP mutations Present (SF3B1, TET2 mutations) No malignancy or cardiovascular disease
Mitochondrial function Robust membrane potential & superoxide levels Preserved energy metabolism
Immune cell composition Expanded ABCs, enriched cytotoxic T cells Unique immune profile linked to longevity
Lipid metabolism Very efficient (high HDL, low VLDL) Cardiovascular protection
Inflammation Low glycoproteins A & B levels Reduced inflammaging
Gut microbiome High Bifidobacterium abundance Anti-inflammatory, supports metabolism
DNA methylation Predominantly hypomethylated CpGs with preserved methylation in repeats Epigenetic stability and decelerated aging
Biological age (epigenetic clocks) Significantly younger than chronological age Indicative of healthy aging
Proteomic profile Upregulated immune and lipid metabolism proteins; elevated SAA1 Protective mechanisms with unexplained elevated SAA1
Keywords
Supercentenarian, Extreme Longevity, Multiomics, Telomere Attrition, Rare Genetic Variants, Clonal Hematopoiesis (CHIP), Immune Cell Profiling, Mitochondrial Function, Metabolomics, Proteomics, Gut Microbiome, DNA Methylation, Epigenetic Clock, Biological Age, Inflammaging, Lipid Metabolism
Conclusion
This landmark study of M116 provides the first extensive multiomics blueprint of extreme human lifespan, revealing that exceptional longevity arises from a balance of advanced biological aging markers coupled with preserved and enhanced molecular functions across multiple systems. The results underscore the importance of immune competence, metabolic health, epigenetic stability, and microbiome composition in sustaining health during extreme aging, offering valuable insights into the biological underpinnings of healthy human longevity.
Smart Summary
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/hocmrche-4984/data/document.pdf", "num_examples": 319, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hocmrche- /home/sid/tuning/finetune/backend/output/hocmrche-4984/data/hocmrche-4984.json...
|
null
|
completed
|
1764952862
|
1764954304
|
NULL
|
/home/sid/tuning/finetune/backend/output/hocmrche- /home/sid/tuning/finetune/backend/output/hocmrche-4984/adapter...
|
False
|
Edit
Delete
|
|
c5b70c7a-ebc1-4954-a591-c0238ee7f574
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hohzvwua-5184
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Striving for Active
|
Striving for Active and Healthy Longevity
|
/home/sid/tuning/finetune/backend/output/hohzvwua- /home/sid/tuning/finetune/backend/output/hohzvwua-5184/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Striving for Active and Healthy Longevity: ASEAN’ “Striving for Active and Healthy Longevity: ASEAN’s Commitment to Successful Ageing” is a comprehensive meeting-summary report detailing ASEAN’s regional strategy to build societies where older adults can live healthier, more active, and more dignified lives. The report captures the key outcomes of a two-day consultative meeting held in February 2025, co-organised by the ASEAN Centre for Active Ageing and Innovation (ACAI) and the Economic Research Institute for ASEAN and East Asia (ERIA).
At the heart of the document is the ACAI 5-Year Strategic Plan (2025–2029)—a blueprint for guiding ASEAN countries through the rapid transition to ageing societies. The plan focuses on four strategic outcome areas:
Advancing health and well-being through integrated care, mental health support, social connectedness, and long-term care systems.
Building an inclusive economy and digital opportunities by promoting lifelong learning, dignified work, financial inclusion, and the “silver economy.”
Creating age-friendly, climate-resilient environments including accessible infrastructure, disaster-prepared communities, and urban planning tailored to older adults.
Ensuring organisational sustainability through multisectoral partnerships, resource mobilisation, knowledge-sharing, and evidence-based policymaking.
The report synthesises insights from ASEAN government officials, UN agencies, WHO, ADB, academic institutions, and civil society. Presentations covered essential themes such as:
The UN Decade of Healthy Ageing
Region-specific ageing indicators and long-term care models
The design and future use of the ASEAN Active Ageing Index (AAAI)
Life-course cohort studies for monitoring ageing trajectories
Innovative retirement, health promotion, and dementia-friendly approaches
The intersection of ageing with climate change and demographic shifts
A central message throughout the meeting is that ASEAN must adapt, collaborate, and innovate to manage its unprecedented demographic change. ACAI positions itself not as an implementer, but as a regional facilitator, connector, and knowledge hub—helping Member States translate research into action, harmonise policies, and share best practices.
The report concludes with governance decisions, next steps, and commitments from ACAI’s Governing Board, reaffirming ASEAN’s regional solidarity in building an active, inclusive, and resilient ageing society by 2029....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/hohzvwua-5184/data/document.pdf", "num_examples": 120, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hohzvwua- /home/sid/tuning/finetune/backend/output/hohzvwua-5184/data/hohzvwua-5184.json...
|
null
|
completed
|
1764867649
|
1764867860
|
NULL
|
/home/sid/tuning/finetune/backend/output/hohzvwua- /home/sid/tuning/finetune/backend/output/hohzvwua-5184/adapter...
|
False
|
Edit
Delete
|
|
aac1cd49-28bb-4f79-92ba-af1dfacecbd6
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hqnggxov-0943
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity education
|
CORE COMPETENCIES FOR
PROFESSION
|
/home/sid/tuning/finetune/backend/output/hqnggxov- /home/sid/tuning/finetune/backend/output/hqnggxov-0943/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“The Essentials: Core Competencies for Professiona “The Essentials: Core Competencies for Professional Nursing Education” is the American Association of Colleges of Nursing’s updated national framework (2021) that defines everything a professional nurse must know and be able to do. It modernizes nursing education by shifting from content-based education to competency-based education, ensuring that graduates are ready to meet today’s complex healthcare demands.
The document sets two levels of nursing education outcomes:
Level 1: Entry-level professional practice (e.g., BSN).
Level 2: Advanced professional practice (e.g., MSN/DNP).
At the heart of the Essentials are the Core Competencies, which every nurse must demonstrate across practice settings. These include:
Knowledge for Nursing Practice – clinical judgment, pathophysiology, pharmacology, social sciences, and population health
Person-Centered Care – respecting individuals' values, needs, and preferences
Population Health – understanding social determinants of health, equity, and prevention strategies
Scholarship for Nursing Practice – evidence-based practice and lifelong learning
Quality and Safety – reducing risk, improving care systems, and fostering safety culture
Interprofessional Partnerships – collaborative team-based care
Systems-Based Practice – navigating healthcare structures and advocating for improvements
Informatics & Healthcare Technologies – using digital tools, data, and technology safely
Professionalism – ethical behavior, accountability, and leadership identity
Personal, Professional, and Leadership Development – resilience, self-care, adaptability, and growth
The Essentials also include conceptual domains, such as diversity, communication, ethics, clinical judgment, and care coordination. These domains guide curriculum design, assessment strategies, and educational outcomes.
Overall, the document transforms nursing education into a competency-driven, adaptable, future-ready system, ensuring nurses are prepared for rapid changes in healthcare, technological advancement, population needs, and interprofessional collaboration.
It serves as the national roadmap for developing competent, ethical, evidence-based nursing professionals who can promote health, deliver safe care, and lead across complex healthcare environments....
|
{"num_examples": 693, "bad_lines": {"num_examples": 693, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hqnggxov- /home/sid/tuning/finetune/backend/output/hqnggxov-0943/data/hqnggxov-0943.json...
|
null
|
completed
|
1764445497
|
1764449308
|
NULL
|
/home/sid/tuning/finetune/backend/output/hqnggxov- /home/sid/tuning/finetune/backend/output/hqnggxov-0943/adapter...
|
False
|
Edit
Delete
|
|
5fb8253a-5683-4d21-bd0f-187139314fe8
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hsqorwgd-3567
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
LONGEVITY PAY
|
LONGEVITY PAY
|
/home/sid/tuning/finetune/backend/output/hsqorwgd- /home/sid/tuning/finetune/backend/output/hsqorwgd-3567/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is a concise, practical proposal out This document is a concise, practical proposal outlining how SCRTD (South Central Regional Transit District) can implement a Longevity Pay Program—a compensation strategy designed to reward long-term employees, reduce turnover, improve recruitment, and enhance organizational stability. It explains why longevity pay is especially important for a young, growing public agency competing for talent with neighboring employers such as the City of Las Cruces and Doña Ana County.
The core message:
Longevity pay motivates employees to stay, rewards loyalty, stabilizes the workforce, and reduces long-term training and hiring costs.
🧩 Key Points & Insights
1. What Longevity Pay Is
Longevity pay is an incentive that rewards employees for staying with the organization for extended periods.
It benefits:
employees (through financial or non-financial rewards)
employers (through stronger retention and lower costs)
Longevity-Pay
2. Why SCRTD Needs It
Since SCRTD is a relatively new transit agency, it struggles to compete with larger, established local employers. Longevity pay would:
increase employee satisfaction
retain skilled workers
stabilize operations
reduce turnover and training costs
Longevity-Pay
3. Start With Modest Early Rewards
Because the agency is young, the proposal recommends offering smaller, earlier rewards (starting at 5 years) to acknowledge employees who joined in SCRTD’s early growth phase.
Longevity-Pay
4. Tiered Longevity Pay Structure
A sample tiered system is provided:
After 5 years: +2% salary or $1,000 bonus
After 7 years: +3% salary or $1,500 bonus
After 10 years: +5% salary or $2,500 bonus
Every 5 years after: additional 2–3% increase or equivalent bonus
This creates clear milestones and long-term motivation.
Longevity-Pay
5. Tailor Pay to Job Roles
Not all roles have the same responsibilities. The proposal suggests:
Frontline staff: flat bonuses
Mid-level staff: percentage-based increases
Executive staff: higher percentage increases + bonuses
This adds fairness and role-appropriate incentives.
Longevity-Pay
6. Add Non-Monetary Recognition
Longevity rewards can include:
extra vacation days
plaques, certificates, or awards
special privileges
These strengthen morale without increasing payroll costs.
Longevity-Pay
7. Offer Flexible Reward Options
Employees could choose between:
cash bonuses
added leave
retirement contributions
This personalization increases satisfaction.
Longevity-Pay
8. Cap Longevity Pay for Sustainability
To prevent budget strain, the plan recommends capping longevity increases after 20–25 years of service.
Longevity-Pay
9. Example Plans
Two sample models show how SCRTD could implement longevity rewards:
Plan 1 — Tiered Milestones
Years 5–7: 2% or $1,000
Years 7–10: 3% or $1,500
Years 10–15: 5% or $2,500
Years 15+: 3% increments or $2,500 every 5 years
Plan 2 — Annual Bonus Formula
A simple formula:
Years of tenure × $100, paid annually (e.g., every November).
Longevity-Pay
🧭 Overall Conclusion
This document provides SCRTD with a clear, flexible framework for establishing a Longevity Pay Program that:
strengthens employee loyalty
supports retention
enhances recruitment competitiveness
rewards dedication fairly and sustainably
It balances financial incentives with non-monetary recognition and offers multiple example structures to fit different budget levels....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/hsqorwgd-3567/data/document.pdf", "num_examples": 4, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hsqorwgd- /home/sid/tuning/finetune/backend/output/hsqorwgd-3567/data/hsqorwgd-3567.json...
|
null
|
completed
|
1764878518
|
1764879107
|
NULL
|
/home/sid/tuning/finetune/backend/output/hsqorwgd- /home/sid/tuning/finetune/backend/output/hsqorwgd-3567/adapter...
|
False
|
Edit
Delete
|
|
b1ab3daa-4004-4428-ad09-17978a0db6a3
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
huecjzgt-7446
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The Value of Health
|
The Value of Health and Longevity
|
/home/sid/tuning/finetune/backend/output/huecjzgt- /home/sid/tuning/finetune/backend/output/huecjzgt-7446/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The Value of Health and Longevity is an in-depth, The Value of Health and Longevity is an in-depth, economics-driven exploration of why improvements in health, life expectancy, and disease prevention create extraordinary social and economic value—far greater than what is reflected in traditional GDP metrics. The paper argues that health is the most important form of human capital, and that longer, healthier lives are among the most powerful drivers of sustained economic prosperity.
Drawing on the work of the Lown Institute and building on the landmark insights of health economists such as David Cutler and Nobel laureate Angus Deaton, the document quantifies the enormous benefits that medical progress has delivered over the past century. It highlights that gains in longevity have contributed more to national well-being than virtually any other economic achievement, and that each additional year of life expectancy yields trillions of dollars in societal value when considering productivity, reduced disease burden, and enhanced quality of life.
The report emphasizes that historical improvements in cardiovascular care, vaccines, infection control, maternal health, and chronic-disease management have delivered some of the greatest returns on public investment in modern history. It demonstrates that even modest future improvements—such as reducing cancer mortality or slowing age-related disease—would generate economic benefits that dwarf typical innovation investments.
A central theme is the need for a more preventive, equitable, and value-conscious healthcare system. The authors warn that U.S. healthcare is simultaneously expensive and inefficient, delivering below-potential health outcomes despite the world’s highest spending. They argue that policies must shift toward reducing waste, expanding access to effective care, and addressing social determinants of health.
In its closing sections, the paper calls for a new national commitment to long-term health innovation, including longevity science, early-stage disease detection, and public-health infrastructure. It asserts that viewing health as an economic engine—not merely an expenditure—can guide better policymaking, shape smarter resource allocation, and unlock vast economic potential for future generations.
If you'd like, I can also prepare:
✅ a one-page executive summary
✅ a bullet-point key insights list
✅ a quiz or study guide
Just let me know!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/huecjzgt-7446/data/document.pdf", "num_examples": 210, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/huecjzgt- /home/sid/tuning/finetune/backend/output/huecjzgt-7446/data/huecjzgt-7446.json...
|
null
|
queued
|
1765054089
|
1765055303
|
NULL
|
/home/sid/tuning/finetune/backend/output/huecjzgt- /home/sid/tuning/finetune/backend/output/huecjzgt-7446/adapter...
|
False
|
Edit
Delete
|
|
b0a28646-1043-4648-a0f9-13b684bfac38
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hunsxdfl-4743
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Economic
|
Economic development
|
/home/sid/tuning/finetune/backend/output/hunsxdfl- /home/sid/tuning/finetune/backend/output/hunsxdfl-4743/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Economic growth health and poverty
|
{"num_examples": 163, "bad_lines": {"num_examples": 163, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hunsxdfl- /home/sid/tuning/finetune/backend/output/hunsxdfl-4743/data/hunsxdfl-4743.json...
|
{"train_runtime": 651.4982, "train_sam {"train_runtime": 651.4982, "train_samples_per_second": 2.456, "train_steps_per_second": 0.307, "total_flos": 7555123985276928.0, "train_loss": 0.516647665053606, "epoch": 9.536585365853659, "step": 200}...
|
completed
|
1764307874
|
1764308985
|
NULL
|
/home/sid/tuning/finetune/backend/output/hunsxdfl- /home/sid/tuning/finetune/backend/output/hunsxdfl-4743/adapter...
|
False
|
Edit
Delete
|
|
808a5390-19b0-40fd-ad65-b2cf8faf5060
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hwxterdf-6513
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Predicting Human Lifespan
|
Predicting Human Lifespan Limits
|
/home/sid/tuning/finetune/backend/output/hwxterdf- /home/sid/tuning/finetune/backend/output/hwxterdf-6513/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
1. Humans have been living longer—but is there a l 1. Humans have been living longer—but is there a limit?
Survival and life expectancy have improved dramatically due to income, nutrition, education, sanitation, and medicine.
But scientists still debate whether human lifespan is capped at 85, 100, 125, or even 150 years.
The paper addresses this debate using a new mathematical method.
2. A New Model of Human Survival Dynamics
The authors use a survival function:
𝑆
(
𝑥
)
=
exp
[
−
(
𝑥
/
𝛼
)
𝛽
(
𝑥
)
]
S(x)=exp[−(x/α)
β(x)
]
where:
α = characteristic life
β(x) = an age-dependent exponent describing how sharply survival declines with age
They show that β(x) becomes more “negatively curved” at extreme ages, which creates the maximum survival tendency—a universal biological effect that pushes death rates down but eventually forces an upper limit.
They model β(x) with a quadratic equation, allowing them to calculate a point called q, the “upper x-intercept,” from which lifespan limits can be predicted.
3. Data Used
They analyze Swedish female survival data (1977–2007)—the most reliable long-term demographic dataset—and verify the method across 31 industrialized countries worldwide.
4. The Key Result: The Lifespan Limit ≈ 125 Years
The model reveals a strong linear relationship between the q parameter and the predicted lifespan limit ω across countries:
𝜔
=
0.458
𝑞
+
54.241
ω=0.458q+54.241
Using this, they find:
In multiple modern countries, maximum lifespan values cluster around 122–130 years.
The predicted global human lifespan limit is ~125 years, matching known records (e.g., Jeanne Calment’s 122.45 years).
For Swedish women, the predicted limit approaches 125 years in the most recent decade.
5. Implications
The study concludes:
Human lifespan is likely approaching a true biological limit.
Survival curves show increasing compression near the limit—more people live close to the maximum age, but very few can surpass it.
Anti-aging technologies might allow more people to reach the limit, but probably cannot exceed it significantly.
The findings support existing biological theories that propose genetic and physiological ceilings to human longevity.
The authors also warn of rising social, medical, and economic challenges as populations age toward this limit.
6. Verification and Strength of the Model
The authors validate the model through:
Mathematical consistency checks
Mortality pattern simulations
High correlation (r² ≥ 0.95–0.99) between model predictions and real demographic data
This shows the model reliably captures the dynamics of human aging....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/hwxterdf-6513/data/document.pdf", "num_examples": 72, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hwxterdf- /home/sid/tuning/finetune/backend/output/hwxterdf-6513/data/hwxterdf-6513.json...
|
null
|
completed
|
1764874844
|
1764876484
|
NULL
|
/home/sid/tuning/finetune/backend/output/hwxterdf- /home/sid/tuning/finetune/backend/output/hwxterdf-6513/adapter...
|
False
|
Edit
Delete
|
|
693f4695-96c4-436d-8896-f78f9bc30cca
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
hzfzpqvz-1137
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity and Hazardous
|
Longevity and Hazardous Duty
|
/home/sid/tuning/finetune/backend/output/hzfzpqvz- /home/sid/tuning/finetune/backend/output/hzfzpqvz-1137/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is an official Operating Policy and This document is an official Operating Policy and Procedure (OP 70.25) from Texas Tech University outlining rules, eligibility, and administrative guidance for Longevity Pay and Hazardous Duty Pay for university employees.
Purpose
To establish and explain the university’s policy for awarding longevity pay and hazardous duty pay in accordance with Texas Government Code.
Key Components of the Policy
1. Longevity Pay
Payment Structure
Eligible employees receive $20 per month for every 2 years of lifetime state service, up to 42 years.
Increases occur every additional 24 months of service.
Eligibility
Employees must:
Be regular full-time, benefits-eligible staff on the first workday of the month.
Not be on leave without pay the first workday of the month.
Have accrued at least 2 years of lifetime state service by the previous month’s end.
Certain administrative academic titles (e.g., deans, vice provosts) are included.
Split appointments within TTU/TTUHSC are combined; split appointments with other Texas agencies are not combined.
Employees paid from faculty salary lines to teach are not eligible.
Student-status positions are not eligible.
Longevity Pay Rules
Not prorated.
Employees who terminate or go on LWOP after the first day of the month still receive the full month's longevity pay.
Paid by the agency employing the individual on the first day of the month.
Longevity pay is not included when calculating:
lump-sum vacation payouts,
vacation/sick leave death benefits.
Eligibility Restrictions Related to Retirement
Retired before June 1, 2005, returned before Sept 1, 2005 → eligible for frozen longevity amount.
Returned after Sept 1, 2005 → not eligible.
Retired on or after June 1, 2005 and receiving an annuity → not eligible.
2. Lifetime Service Credit (Longevity Service Credit)
Employees accrue service credit for:
Any previous Texas state employment (full-time, part-time, temporary, faculty, student, legislative).
Time not accrued for:
Service in public junior colleges or Texas public school systems.
Hazardous duty periods if the employee is receiving hazardous duty pay.
Other rules:
Leave without pay for an entire month → no credit.
LWOP for part of a month → credit allowed if otherwise eligible.
Employees must provide verification of prior state service using inter-agency forms.
3. Longevity Payment Schedule
A structured monthly rate based on total months of state service, starting at:
0–24 months: $0
25–48 months: $20
...increasing in $20 increments every 24 months...
505+ months: $420
(Full table is included in the policy.)
4. Hazardous Duty Pay
Eligibility
Paid to commissioned peace officers performing hazardous duty.
Must have completed 12 months of hazardous-duty service by the previous month’s end.
Payment
$10 per 12-month period of lifetime hazardous duty service.
Part-time employees receive a proportional amount.
If an officer transfers to a non-hazardous-duty role, HDPay stops, and service rolls into longevity credit.
5. Hazardous Duty Service Credit
Based on months served in a hazardous-duty position.
Combined with other state service to determine total service.
Determined as of the last day of the preceding month.
6. Administration
Human Resources is responsible for:
Maintaining service records
Determining eligibility
Processing pay
Correcting administrative errors (retroactive to last legislative change)
Longevity and hazardous duty pay appear separately on earnings statements.
7. Policy Authority & Change Rights
Governed by Texas Government Code:
659.041–659.047 (Longevity Pay)
659.301–659.308 (Hazardous Duty Pay)
Texas Tech reserves the right to amend or rescind the policy at any time.
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/hzfzpqvz-1137/data/document.pdf", "num_examples": 45, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/hzfzpqvz- /home/sid/tuning/finetune/backend/output/hzfzpqvz-1137/data/hzfzpqvz-1137.json...
|
null
|
queued
|
1765048491
|
1765048568
|
NULL
|
/home/sid/tuning/finetune/backend/output/hzfzpqvz- /home/sid/tuning/finetune/backend/output/hzfzpqvz-1137/adapter...
|
False
|
Edit
Delete
|
|
3e73ef7e-46ff-49fa-aa12-b9a92621455a
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
icofglqw-1630
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
How long do patients
|
How long do patients with chronic disease ?
|
/home/sid/tuning/finetune/backend/output/icofglqw- /home/sid/tuning/finetune/backend/output/icofglqw-1630/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The PDF is a clinical research article that invest The PDF is a clinical research article that investigates how long patients with chronic medical conditions live, and how their survival compares with that of the general population. The study focuses on using cohort survival analysis to estimate life expectancy after diagnosis for individuals with chronic diseases.
The document is designed to help clinicians, patients, and caregivers better understand:
the prognosis of chronic illnesses,
the expected years of life after diagnosis, and
variations in survival based on disease type, risk factors, and demographics.
The study includes both model-based projections and observed survival curves from multiple patient populations.
📌 Main Purpose of the PDF
To provide accurate survival estimates for chronic disease patients by analyzing:
life expectancy after diagnosis,
mortality rates over time,
relative survival compared with age-matched individuals,
the effect of disease severity and comorbidities.
The paper aims to offer practical, medically meaningful data for planning long-term patient care.
🏥 Diseases Analyzed
The document examines survival patterns for multiple chronic illnesses (as shown in the extracted table), including:
Diabetes
Hypertension
Chronic Obstructive Pulmonary Disease (COPD)
Coronary artery disease
Cancer (various types)
Heart failure
Chronic kidney disease
Each condition has its own survival profile, reflecting its unique biological and clinical course.
📊 Key Findings
1. Survival varies greatly by disease type.
Some diseases show relatively long survival (e.g., controlled hypertension), while others show rapid decline (e.g., advanced heart failure or late-stage cancer).
2. Life expectancy decreases significantly with disease severity.
Mild and moderate stages allow longer survival.
Severe stages reduce life expectancy sharply.
3. Age at diagnosis has a major effect.
Younger patients typically lose more potential life years, even if they survive longer after diagnosis.
4. Comorbidities worsen survival outcomes.
Patients with multiple chronic conditions have significantly lower life expectancy than those with a single disease.
📈 Data & Tables Provided
The PDF includes a major table that lists:
Years lived after diagnosis
Average age at death
Expected survival window
Comparison with general population life expectancy
Example entries include life expectancy figures such as:
Patients living 5–8 years after diagnosis of certain diseases
Some conditions showing surviving 10–14 years
Severe diseases showing survival 3–6 years
All data illustrate how chronic illness reduces lifespan and initiates a predictable survival pattern.
🧪 Methodology
The study uses:
Cohort survival analysis
Longitudinal patient records over many years
Kaplan–Meier survival curves
Hazard ratio modeling
These methods provide precise, statistically robust estimates of life expectancy.
❤️ Why This Information Matters
The document helps:
Patients
Understand realistic expectations for future health and lifespan.
Clinicians
Plan treatment goals, monitoring frequency, and long-term care.
Caregivers & Families
Make informed decisions about support, lifestyle adjustments, and long-term planning.
🧾 Overall Conclusion
The PDF shows that chronic diseases significantly reduce life expectancy, but the extent varies widely depending on:
disease type,
severity,
patient age,
and comorbid conditions.
It provides clear survival data to guide medical decision-making and patient counseling.
If you want, I can also provide:
✅ a short summary
✅ a very simple explanation
✅ a list of life expectancies by disease
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/icofglqw-1630/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/icofglqw- /home/sid/tuning/finetune/backend/output/icofglqw-1630/data/icofglqw-1630.json...
|
null
|
failed
|
1764891680
|
1764897097
|
NULL
|
/home/sid/tuning/finetune/backend/output/icofglqw- /home/sid/tuning/finetune/backend/output/icofglqw-1630/adapter...
|
False
|
Edit
Delete
|
|
a772017a-4134-4bac-a5c9-ddfcc66f3362
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
igzihgua-6112
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity Economy
|
Longevity Economy Principles
|
/home/sid/tuning/finetune/backend/output/igzihgua- /home/sid/tuning/finetune/backend/output/igzihgua-6112/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a strategic framework document develop This PDF is a strategic framework document developed to guide governments, businesses, and institutions in preparing for a world where people live longer, healthier, and more productive lives. It outlines the core principles, opportunities, and structural shifts needed to build a “Longevity Economy” — an economic system designed not around ageing as a burden, but around longevity as a powerful source of growth, innovation, and social progress.
The core message:
Longevity is not just a demographic challenge — it is a major economic opportunity. To fully benefit from longer lives, societies must redesign policies, markets, workplaces, and institutions around human longevity.
📘 1. Purpose and Vision of the Longevity Economy
The document defines the Longevity Economy as an ecosystem that:
Supports longer lifespans and longer healthspans
Leverages older adults as consumers, workers, creators, and contributors
Encourages investment in healthy ageing innovations
Supports life-long learning and multi-stage careers
Reduces age-related inequalities
The vision is to shift from a cost-based view of ageing to a value-based view of longevity.
Longevity Economy Principles
🌍 2. Core Longevity Economy Principles
The report outlines a set of cross-cutting principles that guide how systems must evolve.
⭐ Principle 1: Longevity is a Societal Asset
Longer lives should be seen as added productive capacity—more talent, skills, experience, and economic contribution.
⭐ Principle 2: Invest Across the Entire Life Course
Health and economic policy must shift from late-life intervention to early, continuous investment in:
Education
Skills
Health
Social infrastructure
⭐ Principle 3: Prevention Over Treatment
The Longevity Economy relies on:
Early prevention of disease
Healthy ageing strategies
Technologies that delay ageing-related decline
⭐ Principle 4: Foster Age-Inclusive Systems
Institutions must eliminate structural ageism in:
Employment
Finance
Healthcare
Innovation ecosystems
⭐ Principle 5: Support Multigenerational Integration
Longevity works best when generations support each other—economically, socially, and technologically.
Longevity Economy Principles
🏛️ 3. Policy and Governance Recommendations
The PDF proposes a governance model for longevity-oriented societies:
A. Cross-government Longevity Councils
Bringing together departments of:
Health
Education
Finance
Labor
Social protection
Innovation
B. Long-term planning models
Governments must integrate longevity into:
Fiscal planning
Workforce strategies
Healthcare investment
Research agendas
C. Regulation that supports innovation
This includes:
Incentivizing longevity tech startups
Reforming medical approval pathways
Encouraging preventive health markets
Longevity Economy Principles
💼 4. Economic and Business Opportunities
The document identifies several rapidly growing longevity-driven industries:
✔️ Healthspan and wellness technologies
Digital biomarkers
AI health diagnostics
Wearables
Precision medicine
Anti-aging biotech
✔️ Lifelong learning and reskilling
Workers will need multiple skill transitions across longer careers.
✔️ Age-inclusive workplaces
Companies benefit from retaining and integrating older workers.
✔️ Financial products for long life
New markets include:
Longevity insurance
Long-term savings tools
Flexible retirement products
✔️ Built environments for longevity
Age-friendly cities
Smart homes
Mobility innovations
The report emphasizes that the Longevity Economy is one of the biggest economic opportunities of the 21st century.
Longevity Economy Principles
🧬 5. Health and Technology Transformations
The PDF highlights the rapidly advancing fields shaping the longevity future:
Geroscience
Senolytics
Regenerative medicine
AI-guided diagnostics
Telehealth and remote care
Personalized health interventions
These technologies will allow people not only to live longer but also to remain healthier and more productive.
Longevity Economy Principles
🧑🤝🧑 6. Social Foundations of a Longevity Economy
Several social structures must be redesigned:
✔️ Social norms
The traditional 3-stage life (education → work → retirement) becomes obsolete.
✔️ Education
Lifelong, modular learning replaces one-time schooling.
✔️ Work
Flexible, multi-stage careers with mid-life transitions become normal.
✔️ Intergenerational cohesion
Policies must avoid generational tension and instead strengthen solidarity.
✔️ Reducing inequality
Longevity benefits must be shared across socioeconomic groups.
Longevity Economy Principles
🔮 7. Vision for the Future
The report concludes with a future in which:
Longer lives lead to sustained economic growth
Workforces are multigenerational
Health systems emphasize prevention
Technology supports independent and healthy ageing
New industries arise around longevity innovation
People enjoy longer, healthier, more meaningful lives
This is the blueprint for a prosperous longevity society and economy.
Longevity Economy Principles
⭐ Overall Summary
This PDF presents a comprehensive framework for designing a Longevity Economy, emphasizing that increased lifespan is an economic and social opportunity—if societies invest wisely. It outlines principles, policies, technological innovations, and social transformations necessary to build a future where longer lives are healthier, more productive, and more fulfilling. The document positions longevity as a central economic driver for the 21st century....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/igzihgua-6112/data/document.pdf", "num_examples": 81, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/igzihgua- /home/sid/tuning/finetune/backend/output/igzihgua-6112/data/igzihgua-6112.json...
|
null
|
completed
|
1764880893
|
1764892231
|
NULL
|
/home/sid/tuning/finetune/backend/output/igzihgua- /home/sid/tuning/finetune/backend/output/igzihgua-6112/adapter...
|
False
|
Edit
Delete
|
|
d5c4c3ec-dc73-43bb-ac19-af5c144ee5c1
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ihuntzqn-1973
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
THE BIOLOGY OF HUMAN LON
|
THE BIOLOGY OF HUMAN LONGEVITY
|
/home/sid/tuning/finetune/backend/output/ihuntzqn- /home/sid/tuning/finetune/backend/output/ihuntzqn-1973/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
⭐ “The Biology of Human Longevity: Inflammation, N ⭐ “The Biology of Human Longevity: Inflammation, Nutrition, and Aging in the Evolution of Life Spans...
|
{"num_examples": 25, "bad_lines": {"num_examples": 25, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ihuntzqn- /home/sid/tuning/finetune/backend/output/ihuntzqn-1973/data/ihuntzqn-1973.json...
|
null
|
completed
|
1764447210
|
1764447642
|
NULL
|
/home/sid/tuning/finetune/backend/output/ihuntzqn- /home/sid/tuning/finetune/backend/output/ihuntzqn-1973/adapter...
|
False
|
Edit
Delete
|
|
e4dffdab-9f24-4368-977c-25eb1a2a48cf
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
iouivtmm-2239
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The Snowman
|
This is the new version of Christmas data
|
/home/sid/tuning/finetune/backend/output/iouivtmm- /home/sid/tuning/finetune/backend/output/iouivtmm-2239/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“The Snowman” is about a snowman who falls in love “The Snowman” is about a snowman who falls in love with a warm stove he sees inside a house. He doesn’t understand that heat will melt him, and when spring comes, he melts away....
|
{"num_examples": 12, "bad_lines": {"num_examples": 12, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/iouivtmm- /home/sid/tuning/finetune/backend/output/iouivtmm-2239/data/iouivtmm-2239.json...
|
{"message": "Training failed: You can& {"message": "Training failed: You can't train a model that has been loaded in 8-bit or 4-bit precision on a different device than the one you're training on. Make sure you loaded the model on the correct device using for example `device_map={'':torch.cuda.current_device()}` or `device_map={'':torch.xpu.current_device()}`"}...
|
failed
|
1764312844
|
1764312993
|
NULL
|
/home/sid/tuning/finetune/backend/output/iouivtmm- /home/sid/tuning/finetune/backend/output/iouivtmm-2239/adapter...
|
False
|
Edit
Delete
|
|
469acf6e-c83b-4fd3-9ec8-f3071056700f
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ipibkpko-4945
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
JAPANESE LONGEVITY DIET
|
JAPANESE LONGEVITY DIET
|
/home/sid/tuning/finetune/backend/output/ipibkpko- /home/sid/tuning/finetune/backend/output/ipibkpko-4945/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a visual infographic-style guide expla This PDF is a visual infographic-style guide explaining the key principles of the Japanese longevity diet, highlighting the foods, nutrients, eating habits, and cultural practices associated with Japan’s famously long life expectancy (84.78 years). It presents a clear overview of the traditional Japanese diet, its health benefits, and how various food groups contribute to longevity through nutrient richness, digestive support, cardiovascular protection, and immune enhancement.
The infographic also includes culturally significant facts, dietary pillars, common dishes, and the role of soy, rice, vegetables, algae, and fermented foods in Japan’s long-lived population.
🍱 1. Pillars of the Japanese Longevity Diet
The document organizes the longevity diet into foundational food groups, each with scientific and nutritional value:
⭐ Rice
Rich in carbohydrates, protein, minerals (especially phosphorus & potassium), vitamin E, B vitamins, and fiber—promotes digestive health and fullness.
infographics-japanese-longgevit…
⭐ Fish & Seafood
High in omega-3 fatty acids, crucial for nervous, immune, and cardiovascular systems; rich in iodine and selenium.
infographics-japanese-longgevit…
⭐ Algae (Wakame, Nori)
Loaded with macro- & micronutrients, vitamin C, beta-carotene, fiber, protein, and omega-3s; noted for anti-cancer, antibacterial, and antiviral effects.
infographics-japanese-longgevit…
⭐ Soy & Beans
Provide protein, lecithin, fiber, vitamins E, K2, and B-group vitamins; recommended for gut health and malabsorption.
infographics-japanese-longgevit…
⭐ Nattō
A fermented soy food containing nattokinase, which helps regulate blood pressure, cholesterol, blood sugar, and coagulation; also has anti-cancer benefits.
infographics-japanese-longgevit…
⭐ Raw or Undercooked Eggs
Source of proteins, lecithin, and fats that support nervous and immune system function.
infographics-japanese-longgevit…
⭐ Tsukemono (Fermented Pickles)
Contain lactic acid bacteria that enhance digestion, immunity, and microbiome health.
infographics-japanese-longgevit…
⭐ Matcha (Powdered Green Tea)
Rich in polyphenols and flavonoids; supports cardiovascular health and reduces cholesterol.
infographics-japanese-longgevit…
⭐ Vegetables & Fresh Spices
Turnip, onions, cabbage, chives—high in fiber, vitamins, and minerals.
infographics-japanese-longgevit…
⭐ Fungi (e.g., Shiitake)
Provide enzymes and beta-D-glucan, a compound that boosts immune defenses, especially against cancer.
infographics-japanese-longgevit…
🍜 2. Japanese Soups and Noodle Dishes
The infographic gives examples of traditional soups:
Miso Ramen – wheat noodles in a meat broth with pork toppings.
Soba – buckwheat noodles in a soy-fish broth with algae.
Mandu-guk – egg noodles and dumplings in soup.
infographics-japanese-longgevit…
These dishes reflect the balance of proteins, fermented foods, and mineral-rich broths in Japanese cuisine.
🫘 3. Soy-Based Foods
The PDF categorizes soy foods by fermentation level:
✔ Natto – fermented, rich in nattokinase
✔ Soy sauce & miso paste – fermented flavoring agents
✔ Tofu – unfermented soy milk product
✔ Edamame – unfermented green soybeans
Each category illustrates soy’s central role in Japanese health and nutrition.
infographics-japanese-longgevit…
🍚 4. Rice-Based Foods
The infographic shows familiar rice dishes:
✔ Sushi – vinegared rice with raw/marinated fish
✔ Onigiri – triangular rice balls wrapped in nori
✔ Boiled rice – a staple side dish
✔ Mochi – rice cakes often filled with beans or tea flavors
infographics-japanese-longgevit…
These highlight rice as the foundation of the Japanese dietary pattern.
💡 5. “Did You Know?” Cultural Longevity Insights
The PDF includes cultural notes explaining why Japanese dietary habits support long life:
Japanese eat little bread or potatoes—they rely on rice.
Genuine wasabi is extremely expensive and potent.
Meals are celebrated (e.g., tea ceremony), and eating while walking is discouraged.
Historically, meat consumption was restricted until the 19th century.
Japanese cooking uses little sugar or salt; flavors come from soy sauce, ginger, and wasabi.
Matcha often replaces coffee and chocolate.
Meals consist of small, colorful seasonal dishes, eaten slowly and mindfully with chopsticks.
infographics-japanese-longgevit…
These cultural behaviors reinforce healthy digestion, slower eating, portion control, and enjoyment of food—all linked to longevity.
⭐ Overall Summary
This infographic presents a complete visual guide to the Japanese longevity diet, highlighting nutrient-dense whole foods such as rice, fish, algae, soy, vegetables, fungi, fermented foods, and matcha. It emphasizes balanced meals, mindful eating, low sugar and low salt intake, and fermented dishes that support gut health. It also connects Japanese cultural customs with remarkable longevity....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/ipibkpko-4945/data/document.pdf", "num_examples": 4, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ipibkpko- /home/sid/tuning/finetune/backend/output/ipibkpko-4945/data/ipibkpko-4945.json...
|
null
|
completed
|
1764888328
|
1764888925
|
NULL
|
/home/sid/tuning/finetune/backend/output/ipibkpko- /home/sid/tuning/finetune/backend/output/ipibkpko-4945/adapter...
|
False
|
Edit
Delete
|
|
febdfaa7-34cb-4402-b17c-3bb3c7527ff9
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
iqkwbrwj-9310
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Genes and Athletic
|
Genes and Athletic Performance
|
/home/sid/tuning/finetune/backend/output/iqkwbrwj- /home/sid/tuning/finetune/backend/output/iqkwbrwj-9310/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
you need to answer with
✔ command points
✔ extr you need to answer with
✔ command points
✔ extract topics
✔ create questions
✔ generate summaries
✔ make presentations
✔ explain concepts simply
⭐ Universal Description for Easy Topic / Point / Question / Presentation
Genes and Athletic Performance explains how genetic differences influence physical abilities related to sport, such as strength, endurance, speed, power, aerobic capacity, muscle composition, and injury risk. The document presents genetics as one of several factors that shape athletic performance, alongside training, environment, nutrition, and psychology.
The paper discusses how specific genes and genetic variants affect muscle fiber type, oxygen delivery, energy metabolism, cardiovascular efficiency, and connective tissue strength. It explains that athletic traits are polygenic, meaning many genes contribute small effects rather than one gene determining success. Examples include genes linked to sprinting ability, endurance performance, and susceptibility to muscle or tendon injuries.
The document highlights the importance of gene–environment interaction, showing that training can amplify or reduce genetic advantages. It explains that even individuals without “favorable” genetic variants can reach high performance levels through appropriate training and conditioning.
Research methods such as candidate gene studies, family studies, and association studies are described to show how scientists identify links between genes and performance traits. The paper also emphasizes the limitations of genetic prediction, noting that genetic testing cannot reliably identify future elite athletes.
Ethical issues are addressed, including genetic testing in sport, misuse of genetic information, discrimination, privacy concerns, and the potential for gene doping. The document concludes that genetics can help improve understanding of performance and injury prevention but should be used responsibly and as a complement to coaching and training—not a replacement.
⭐ Optimized for Any App to Generate
📌 Topics
• Genetics and athletic performance
• Polygenic traits in sport
• Muscle strength and power genes
• Endurance and aerobic capacity genetics
• Gene–environment interaction
• Injury risk and genetics
• Training adaptation and DNA
• Talent identification limits
• Ethics of genetic testing in sport
• Gene doping concerns
📌 Key Points
• Athletic performance is influenced by many genes
• No single gene determines success
• Genetics interacts with training and environment
• Genes affect muscle, metabolism, and endurance
• Genetic testing has limited predictive power
• Ethical safeguards are essential
📌 Quiz / Question Generation (Examples)
• What does polygenic mean in athletic performance?
• How do genes influence endurance and strength?
• Why can’t genetics alone predict elite athletes?
• What is gene–environment interaction?
• What ethical concerns exist in sports genetics?
📌 Easy Explanation (Beginner-Friendly)
Genes affect how strong, fast, or endurance-based a person might be, but they do not decide success on their own. Training, effort, nutrition, and coaching matter just as much. Sports genetics helps explain differences between people, but it must be used carefully and fairly.
📌 Presentation-Ready Summary
This document explains how genetics contributes to athletic performance and physical abilities. It covers how multiple genes influence strength, endurance, and injury risk, and why genetics cannot replace training and coaching. It also highlights ethical concerns and warns against misuse of genetic testing.
in the end ask
If you want next, I can:
✅ generate a full quiz
✅ create a PowerPoint slide outline
✅ extract only topics
✅ extract only key points
✅ simplify it for school-level learning
Just tell me 👍...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/iqkwbrwj-9310/data/document.pdf", "num_examples": 432, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/iqkwbrwj- /home/sid/tuning/finetune/backend/output/iqkwbrwj-9310/data/iqkwbrwj-9310.json...
|
null
|
queued
|
1765652763
|
1765656149
|
NULL
|
/home/sid/tuning/finetune/backend/output/iqkwbrwj- /home/sid/tuning/finetune/backend/output/iqkwbrwj-9310/adapter...
|
False
|
Edit
Delete
|
|
49b24cbd-34ce-4f86-a06d-3f2c2f8f6384
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
iuwkyasg-0219
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Global Roadmap for Health
|
Global Roadmap for Healthy Longevity
|
/home/sid/tuning/finetune/backend/output/iuwkyasg- /home/sid/tuning/finetune/backend/output/iuwkyasg-0219/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Global Roadmap for Healthy Longevity
(Consensus Global Roadmap for Healthy Longevity
(Consensus Study Report, National Academy of Medicine, 2022)
This report presents a global, evidence-based strategy for transforming aging into an opportunity by promoting healthy longevity—a state where people live long lives in good health, with full physical, cognitive, and social functioning, and where societies harness the potential of older adults.
🧠 1. Why This Roadmap Matters
Across the world, populations are aging faster than ever due to:
Longer life expectancy, and
Declining birth rates
The number of people aged 65+ has been growing more rapidly than any other age group, and this trend will continue.
Global Roadmap for Healthy Long…
However, a critical problem exists:
📉 People are living longer, but not healthier.
Between 2000 and 2019, global lifespan increased, especially in low- and middle-income countries,
but years of good health stagnated, meaning more years are spent in poor health.
Global Roadmap for Healthy Long…
🌍 2. Purpose of the Roadmap
To address this challenge, the National Academy of Medicine convened a global, multidisciplinary commission to create a roadmap for achieving healthy longevity worldwide.
Global Roadmap for Healthy Long…
The aim is to help countries develop data-driven, all-of-society strategies that promote health, equity, productivity, and human flourishing across the lifespan.
❤️ 3. What Healthy Longevity Means
According to the commission, healthy longevity is:
Living long with health, function, meaning, purpose, dignity, and social well-being, where years in good health approach the biological lifespan.
Global Roadmap for Healthy Long…
This reflects the WHO definition of health as a state of complete:
physical
mental
social well-being
—not merely the absence of disease.
🎯 4. Vision for the Future
The report emphasizes that aging societies can thrive, not decline, if healthy longevity is embraced as a societal goal.
With the right policies, older adults can:
Contribute meaningfully to families and communities
Participate in the workforce or volunteer roles
Live with dignity, purpose, and independence
Support strong economies and intergenerational cohesion
Global Roadmap for Healthy Long…
⭐ The future can be optimistic—if we act now.
⚠️ 5. The Cost of Inaction
If societies fail to respond, consequences include:
More years lived in poor health
Higher suffering and dependency
Increased financial burden on families
Lost productivity and fewer opportunities for younger and older people
Lower GDP
Larger fiscal pressures on governments
Global Roadmap for Healthy Long…
In short:
Ignoring healthy longevity is expensive—socially and economically.
🧩 6. Principles for Achieving Healthy Longevity
The commission identifies five core principles:
Global Roadmap for Healthy Long…
1. People of all ages should reach their full health potential
With dignity, meaning, purpose, and functioning.
2. Societies must enable optimal health at every age
Creating conditions where individuals can flourish physically, mentally, and socially.
3. Reduce disparities and advance equity
So that people of all countries and social groups benefit.
4. Recognize older adults as valuable human, social, and financial capital
Their contributions strengthen families, communities, and economies.
5. Use data and meaningful metrics
To measure progress, guide policy, and ensure accountability.
🏛️ 7. How Countries Should Act
Every nation must create its own pathway based on its unique demographics, infrastructure, and culture.
However, the roadmap emphasizes:
✔ Government-led calls to action
✔ Evidence-based planning
✔ Multisector collaboration (healthcare, urban design, technology, finance, education)
✔ Building supportive social and community infrastructure
Global Roadmap for Healthy Long…
These are essential for transforming aging from a crisis into an opportunity.
🌟 Perfect One-Sentence Summary
The Global Roadmap for Healthy Longevity outlines how aging societies can ensure that people live longer, healthier, more meaningful lives—and emphasizes that now is the time for coordinated global action to achieve this future.
If you'd like, I can also create:
📌 A diagram / infographic
📌 A short summary
📌 A comparison with your other longevity PDFs
📌 A PowerPoint-style slide set
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/iuwkyasg-0219/data/document.pdf", "num_examples": 4, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/iuwkyasg- /home/sid/tuning/finetune/backend/output/iuwkyasg-0219/data/iuwkyasg-0219.json...
|
null
|
completed
|
1764894928
|
1764895530
|
NULL
|
/home/sid/tuning/finetune/backend/output/iuwkyasg- /home/sid/tuning/finetune/backend/output/iuwkyasg-0219/adapter...
|
False
|
Edit
Delete
|
|
00541185-8b25-4378-a383-7cb519d812c4
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ivfkzfhy-5246
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The Debate over Falling
|
The Debate over Falling Fertility
|
/home/sid/tuning/finetune/backend/output/ivfkzfhy- /home/sid/tuning/finetune/backend/output/ivfkzfhy-5246/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“The Debate over Falling Fertility” is a clear, ba “The Debate over Falling Fertility” is a clear, balanced, and deeply analytical review of the world’s rapidly declining fertility rates and the profound demographic, economic, social, and geopolitical consequences this shift will produce throughout the 21st century. Written by David E. Bloom, Michael Kuhn, and Klaus Prettner, the article explains why global fertility has fallen to historic lows, how population growth is slowing or reversing across most regions, and what this means for the future of human societies.
The Debate over fertility longe…
The piece frames declining fertility as a double-edged demographic transformation: one that may either hinder economic dynamism or unlock new forms of prosperity, depending on how governments respond.
Core Themes
1. Global Fertility Is Falling to Record Lows
The article highlights dramatic worldwide declines:
Global fertility fell from 5 children per woman in 1950 to 2.24 today.
It is projected to drop below the replacement rate (2.1) around 2050.
The Debate over fertility longe…
This decline is now universal across every region and income group except parts of Africa and a handful of low-income nations.
As a result:
Global population growth is slowing sharply.
Population size is projected to peak around 10.3 billion in 2084.
Long-term global depopulation is now a realistic scenario.
The Debate over fertility longe…
2. Many Countries Will Experience Major Population Declines
The authors note that between 2025 and 2050:
38 countries (with populations over 1 million) will shrink.
Declines will be largest in:
China (−155.8 million)
Japan (−18 million)
Russia (−7.9 million)
Italy (−7.3 million)
Ukraine (−7 million)
South Korea (−6.5 million)
The Debate over fertility longe…
In some nations, immigration is the only force preventing even steeper declines.
3. Low Fertility Accelerates Population Aging
As fertility drops:
The proportion of older adults expands rapidly.
By 2050, countries with declining populations will see
65+ adults grow from 17.3% to 30.9% of the population.
The Debate over fertility longe…
This puts immense pressure on:
Labor markets
Pension systems
Health systems
Long-term care infrastructure
Challenges of Falling Fertility
The article outlines several risks:
1. Economic Slowdown
Fewer births mean:
Fewer workers
Fewer savers
Fewer consumers
This could reduce growth and shrink national economies.
The Debate over fertility longe…
2. Declining Innovation
With fewer young people:
Idea creation slows
Scientific research may stagnate
The Debate over fertility longe…
The authors cite evidence that a diminishing population could reduce the number of new ideas generated each year.
3. Rising Aging Burdens
Older populations increase:
Healthcare costs
Long-term care needs
Effects on intergenerational support
Younger workers may face mounting financial and caregiving responsibilities.
The Debate over fertility longe…
4. Loss of Geopolitical Influence
Countries with shrinking populations may lose:
Military strength
Global influence
Strategic leverage
Historical examples (e.g., France in the 19th century) illustrate these risks.
The Debate over fertility longe…
Opportunities From Falling Fertility
The authors emphasize that fertility decline brings potential benefits, too:
1. Economic Reallocation
With fewer children:
Less spending on housing and childcare
More resources for:
Innovation
Education
R&D
Advanced technology adoption
The Debate over fertility longe…
2. Higher Labor Force Participation
Lower fertility can boost:
Women’s participation in paid work
Workforce productivity
Savings and capital accumulation
The Debate over fertility longe…
3. Environmental Gains
Smaller populations reduce pressure on:
Climate
Natural resources
Biodiversity
The Debate over fertility longe…
4. More Human Capital
The authors cite research showing that as fertility falls:
Education levels rise
Societies become more innovative
Long-term prosperity increases
The Debate over fertility longe…
Policy Responses and Strategic Choices
The article discusses several avenues for governments:
1. Encourage Fertility
Through:
Family-friendly tax policies
Parental leave
Affordable childcare
Flexible work arrangements
Infertility treatment subsidies
The Debate over fertility longe…
2. Boost Labor Supply
Via:
Raising retirement ages
Improving adult health
Encouraging lifelong education
Increasing female participation
The Debate over fertility longe…
3. Leverage Technology
Automation, AI, robotics, and digitalization can help compensate for smaller workforces.
The Debate over fertility longe…
4. Manage Migration Strategically
Immigration can counteract depopulation in many countries.
The Debate over fertility longe…
Conclusion
“The Debate over Falling Fertility” presents a nuanced and forward-looking analysis of a world transitioning from rapid population growth to a future defined by low fertility, aging, and potential depopulation. The authors argue that declining fertility is neither wholly a crisis nor a blessing—it is a transformative force whose ultimate impact depends on policy, innovation, and society’s adaptability.
The article’s central message is:
Falling fertility is reshaping the world.
Whether the future is defined by stagnation or renewal depends on the choices policymakers make today....
|
{"num_examples": 58, "bad_lines": {"num_examples": 58, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ivfkzfhy- /home/sid/tuning/finetune/backend/output/ivfkzfhy-5246/data/ivfkzfhy-5246.json...
|
null
|
completed
|
1764446864
|
1764447135
|
NULL
|
/home/sid/tuning/finetune/backend/output/ivfkzfhy- /home/sid/tuning/finetune/backend/output/ivfkzfhy-5246/adapter...
|
False
|
Edit
Delete
|
|
ee3a8559-8a91-4dc5-8dd1-38d5cba8bfdc
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
izyokdgc-1266
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity Economy Princip
|
This is the new version of economics
|
/home/sid/tuning/finetune/backend/output/izyokdgc- /home/sid/tuning/finetune/backend/output/izyokdgc-1266/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The Longevity Economy Principles: The Foundation f The Longevity Economy Principles: The Foundation for a Financially Resilient Future (World Economic Forum, 2024) is an in-depth report that outlines how societies, governments, and industries must adapt to the rapidly ageing global population. With life expectancy rising and birth rates falling, the report stresses that traditional economic, social, and retirement systems are no longer sufficient. It presents six core principles designed to guide global action toward a financially resilient, healthy, inclusive, and purpose-driven future for people living longer lives.
The document begins with a foreword explaining the urgent demographic transformation and the challenges it creates—such as inadequate retirement funding, widespread ageism, unequal health outcomes, and shrinking workforces. The executive summary highlights that although people are living longer, many cannot afford extended lifespans, and societies must drastically rethink education, work, financial systems, and social care.
It then presents six key Longevity Principles, each supported by case studies, data, and collaboration strategies:
Ensure financial resilience across key life events
The report notes that nearly 40% of individuals face financial instability after unexpected events such as illness, job loss, or caregiving duties. It explains how public-private collaboration, protective social policies, and innovative savings tools (like the UK Premium Bonds) can help prevent people from falling into poverty.
Longevity_Economy_Principles_20…
Provide universal access to impartial financial education
With only 33% of adults worldwide being financially literate, the report stresses how poor financial knowledge contributes to inequality and shorter life expectancy. It showcases successful national programmes from Singapore, New Zealand, and Denmark that integrate financial literacy into schools, workplaces, and communities.
Longevity_Economy_Principles_20…
Prioritize healthy ageing
Since one-fifth of life is now spent in poor health, the report argues that prevention, equitable healthcare access, and strong health systems are essential to achieving longer, healthier, more productive lives. It connects chronic disease, medical costs, and inequality to financial insecurity in older age.
Longevity_Economy_Principles_20…
Evolve jobs and lifelong skill-building for a multigenerational workforce
As birth rates decline and older workers become essential to economies, the report calls for redesigned jobs, flexible work models, anti-ageism efforts, and continuous upskilling. It stresses that by 2050, retirement ages would need to rise by 8.4 years to maintain current workforce ratios.
Longevity_Economy_Principles_20…
Design systems and environments for social connection and purpose
Social connection is identified as a pillar of healthy longevity. Loneliness increases healthcare costs, workplace absenteeism, and mortality risk. The report recommends community-based solutions, age-friendly environments, and intergenerational programmes to reduce isolation and increase purpose in older age.
Longevity_Economy_Principles_20…
Intentionally address longevity inequalities
Gender, race, socioeconomic status, geography, and caregiving burdens all shape who benefits from longevity. The report urges governments and organizations to design inclusive financial systems, caregiving support, and equitable access to health and career opportunities. It highlights examples from Germany, the UK, and AXA’s anti-ageism initiatives.
Longevity_Economy_Principles_20…
The report concludes by emphasizing that a successful longevity economy requires coordinated global action—uniting policymakers, businesses, communities, and financial institutions—to create systems where longer lives can be lived with financial security, health, dignity, and purpose....
|
{"num_examples": 347, "bad_lines": {"num_examples": 347, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/izyokdgc- /home/sid/tuning/finetune/backend/output/izyokdgc-1266/data/izyokdgc-1266.json...
|
null
|
completed
|
1764356031
|
1764356981
|
NULL
|
/home/sid/tuning/finetune/backend/output/izyokdgc- /home/sid/tuning/finetune/backend/output/izyokdgc-1266/adapter...
|
False
|
Edit
Delete
|
|
f670a141-a6c7-4eea-bb7e-c1e9c370a932
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jbzddgkz-1697
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Socioeconomic Implication
|
Socioeconomic Implications of Increased life
|
/home/sid/tuning/finetune/backend/output/jbzddgkz- /home/sid/tuning/finetune/backend/output/jbzddgkz-1697/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is a comprehensive analysis authored This document is a comprehensive analysis authored by Rick Gorvett and presented at the Living to 100 Symposium (2014). It examines the far-reaching socioeconomic, cultural, financial, and ethical consequences of significant increases in human longevity—an emerging reality driven by rapid scientific and medical progress.
Purpose of the Paper
While actuarial science traditionally focuses on the financial effects of longevity (health care costs, retirement systems, Social Security), this paper expands the discussion to explore the broader societal shifts that could occur as people routinely live far longer lives.
Scientific and Medical Context
The paper reviews:
The 30-year rise in life expectancy over the last century.
Advances in medicine, biotechnology, and aging science (e.g., insulin/IGF-1 pathway inhibition, caloric restriction research).
Cultural and historical reflections on the human desire for extended life.
Radical projections from futurists (Kurzweil, de Grey) versus more conservative demographic forecasts.
Main Implications of Increased Longevity
1. Economic & Financial Impacts
Pensions & retirement systems: Longer lifespans strain traditional retirement models; retirement ages and structures may need major redesign.
Workforce dynamics: Older workers may remain employed longer; effects on younger workers are uncertain but may not be negative.
Human capital: Longer lives encourage greater education, retraining, and skill acquisition throughout life.
Saving & investment behavior: With multiple careers and life stages, traditional financial planning may be replaced by more flexible, cyclical patterns.
2. Family & Personal Changes
Marriage & relationships: Longer life may normalize serial marriages, term contracts, or extended cohabitation; family structures may become more complex.
Family composition: Wider age gaps between siblings, blended families, and overlapping generations (parent and grandparent roles).
Education: Learning becomes lifelong, with repeated periods of study and retraining.
Health & fertility: Increased longevity requires parallel gains in healthy lifespan; fertility windows may expand.
3. Ethical and Social Considerations
Medical ethics: Some may reject life-extension technologies on moral or religious grounds, creating divergent longevity groups.
Value systems: A longer, healthier life may alter cultural norms, risk perception, and even legal penalties.
Potential downsides: Longevity may increase psychological strain; more years of life do not guarantee more years of satisfaction.
Overall Conclusion
The paper emphasizes the complexity and unpredictability inherent in a future of greatly extended lifespans. The interconnectedness of economic, social, family, health, and ethical factors makes actuarial modeling extremely challenging.
To adapt, society may need to reinvent the traditional three-phase life cycle—education, work, retirement—into a more fluid structure with:
>multiple careers,
>repeated education periods,
>flexible work patterns,
and a diminished emphasis on traditional retirement.
The author ultimately argues that actuaries and policymakers must prepare for a profound and multidimensional transformation of societal systems as longevity rises....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jbzddgkz-1697/data/document.pdf", "num_examples": 157, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jbzddgkz- /home/sid/tuning/finetune/backend/output/jbzddgkz-1697/data/jbzddgkz-1697.json...
|
null
|
completed
|
1764868151
|
1764868537
|
NULL
|
/home/sid/tuning/finetune/backend/output/jbzddgkz- /home/sid/tuning/finetune/backend/output/jbzddgkz-1697/adapter...
|
False
|
Edit
Delete
|
|
f0d792ca-c8f4-4cea-9e5a-f838a0d96e47
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jcskuiyn-2380
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Drivers of your health
|
Drivers of your health and longevity
|
/home/sid/tuning/finetune/backend/output/jcskuiyn- /home/sid/tuning/finetune/backend/output/jcskuiyn-2380/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Drivers of Your Health and Longevity” is a compre “Drivers of Your Health and Longevity” is a comprehensive report outlining the 23 key modifiable factors that significantly influence a person’s health, lifespan, and overall well-being. It emphasizes that 19 out of these 23 drivers lie outside the traditional healthcare system, meaning most of what determines longevity comes from everyday habits and environmental conditions.
These drivers are grouped into major categories:
1. Physical Inputs
Covers diet, supplements, substance use, hydration, and their direct effects on disease risk, cognitive health, and mortality. Examples include fasting improving metabolic health, omega-3 protecting the brain and heart, and sleep duration affecting mortality.
2. Movement
Includes mobility and exercise. The report highlights that regular physical activity can extend life by 3–5 years, reduce mortality risk, and improve overall physical and mental function.
3. Daily Living
Encompasses social interaction, productive activities, content consumption, and hygiene. Strong social relationships, volunteering, and balanced media usage are linked to better physical and mental health.
4. Exposure
Focuses on nature, atmospheric conditions, light, noise, and environmental materials. Evidence shows that nature exposure, reduced pollution, sunlight, and safe environments contribute to better mental health, reduced stress, and lower mortality.
5. Stress
Explains how both positive (eustress) and chronic stress affects disease risk, cognitive function, and life expectancy.
6. State of Being
Includes mindsets, beliefs, body composition, physical security, and economic security. Optimism, gratitude, financial stability, and safety are shown to have strong physiological and psychological benefits.
7. Healthcare
Covers vaccination, early detection, treatment, and medication adherence. Effective healthcare interventions (e.g., vaccines, screening, treatments) significantly reduce mortality and improve survival rates.
📌 Overall Purpose of the Report
The document emphasizes that longevity is not determined primarily by genetics or medical care, but by daily choices, behaviors, and environmental exposures. By optimizing these 23 modifiable drivers, individuals can dramatically improve their health span and lifespan.
If you want, I can also provide:
✅ A short summary
✅ A quiz based on this file
✅ Key insights
✅ A table of the 23 drivers
Just tell me!
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jcskuiyn-2380/data/document.pdf", "num_examples": 141, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jcskuiyn- /home/sid/tuning/finetune/backend/output/jcskuiyn-2380/data/jcskuiyn-2380.json...
|
null
|
queued
|
1765224167
|
1765224806
|
NULL
|
/home/sid/tuning/finetune/backend/output/jcskuiyn- /home/sid/tuning/finetune/backend/output/jcskuiyn-2380/adapter...
|
False
|
Edit
Delete
|
|
d295b561-a54e-42b9-b518-757cf4cba0c8
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jhaurcfl-8765
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Innovative approaches
|
Innovative approaches to managing longevity risk
|
/home/sid/tuning/finetune/backend/output/jhaurcfl- /home/sid/tuning/finetune/backend/output/jhaurcfl-8765/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a professional actuarial and financial This PDF is a professional actuarial and financial analysis report focused on how Asian countries can manage, mitigate, and transfer longevity risk—the financial risk that people live longer than expected. As populations across Asia age rapidly, pension systems, insurers, governments, and employers face rising strain due to longer lifespans, shrinking workforces, and escalating retirement costs. The report highlights global best practices, limitations of existing pension frameworks, and emerging models designed to stabilize retirement systems under demographic pressure.
The document is both analytical and policy-oriented, offering insights for regulators, insurers, asset managers, and policymakers.
🔶 1. Purpose of the Report
The report aims to:
Explain why longevity risk is increasing in Asia
Assess current pension and retirement structures
Present innovative financial and insurance solutions to manage the growing risk
Provide case studies and global examples
Guide Asian markets in adapting to demographic challenges
Innovative approaches to managi…
🔶 2. The Longevity Risk Challenge in Asia
Asia is aging at an unprecedented speed—faster than Europe and North America did. This creates several structural problems:
✔ Rapid increases in life expectancy
People are living longer than financial systems were designed for.
✔ Declining fertility rates
Shrinking worker-to-retiree ratios threaten the sustainability of pay-as-you-go pension systems.
✔ High savings culture but insufficient retirement readiness
Many households lack formal retirement coverage or under-save.
✔ Growing fiscal pressure on governments
Public pension liabilities expand as longevity rises.
✔ Rising health and long-term care costs
Aging populations require more medical and care services.
Innovative approaches to managi…
🔶 3. Gaps in Current Pension Systems
The report identifies weaknesses across Asian retirement systems:
Heavy reliance on state pension programs that face insolvency risks
Underdeveloped private pension markets
Limited annuity markets
Dependence on lump-sum withdrawals rather than lifetime income
Poor financial literacy regarding longevity risk
Innovative approaches to managi…
These gaps expose both individuals and institutions to substantial long-term financial risk.
🔶 4. Innovative Approaches to Managing Longevity Risk
The report outlines several advanced solutions that Asian markets can adopt:
⭐ A. Longevity Insurance Products
Life annuities
Provide guaranteed income for life
Transfer longevity risk from individuals to insurers
Deferred annuities / longevity insurance
Begin payouts later in life (e.g., at age 80 or 85)
Cost-efficient way to manage tail longevity risk
Enhanced annuities
Adjust payments for poorer-health individuals
Variable annuities and hybrid products
Combine investment and insurance elements
Innovative approaches to managi…
⭐ B. Longevity Risk Transfer Markets
Longevity swaps
Pension funds swap uncertain liabilities for fixed payments
Used widely in the UK; emerging interest in Asia
Longevity bonds
Government- or insurer-issued bonds tied to survival rates
Help investors hedge longevity exposure
Reinsurance solutions
Global reinsurers absorb longevity risk from domestic insurers and pension plans
Innovative approaches to managi…
⭐ C. Institutional Strategies
Better asset–liability matching
Increased allocation to long-duration bonds
Use of inflation-protected assets
Leveraging mortality data analytics and predictive modeling
Innovative approaches to managi…
⭐ D. Public Policy Innovations
Raising retirement ages
Automatic enrollment in pension plans
Financial education to improve individual decision-making
Incentivizing annuitization
Innovative approaches to managi…
🔶 5. Country Examples
The report includes cases from markets such as:
Japan, facing the world’s highest old-age dependency ratio
Singapore, strong mandatory savings but low annuitization
Hong Kong, improving Mandatory Provident Fund design
China, transitioning from family-based to system-based retirement security
Innovative approaches to managi…
Each market faces distinct challenges but shares a common need for innovative longevity solutions.
🔶 6. The Way Forward
The report concludes that Asia must:
Strengthen public and private pension systems
Develop deeper longevity risk transfer markets
Encourage lifelong income solutions
Build regulatory frameworks supporting innovation
Promote digital tools and data-driven longevity analytics
Innovative approaches to managi…
Without intervention, rising life expectancy will create major financial stresses across the region.
⭐ Perfect One-Sentence Summary
This PDF presents a comprehensive analysis of how Asian governments, insurers, and pension systems can manage growing longevity risk by adopting innovative insurance products, risk-transfer instruments, and policy reforms to secure sustainable retirement outcomes....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jhaurcfl-8765/data/document.pdf", "num_examples": 15, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jhaurcfl- /home/sid/tuning/finetune/backend/output/jhaurcfl-8765/data/jhaurcfl-8765.json...
|
null
|
completed
|
1764888208
|
1764895122
|
NULL
|
/home/sid/tuning/finetune/backend/output/jhaurcfl- /home/sid/tuning/finetune/backend/output/jhaurcfl-8765/adapter...
|
False
|
Edit
Delete
|
|
dcb17d41-e193-4c98-b275-b10297b614c0
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jihupolu-2798
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity Risk
|
Longevity Risk and Private Pensions
|
/home/sid/tuning/finetune/backend/output/jihupolu- /home/sid/tuning/finetune/backend/output/jihupolu-2798/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is an analytical report examining ho This document is an analytical report examining how longevity risk affects both the public pension system and the private insurance/annuity market in Italy, with a focus on modeling, forecasting, and evaluating policy and market-based solutions.
Purpose of the Report
To analyze:
The impact of increasing life expectancy on future pension liabilities
How longevity risk is shared between the state and private financial institutions
Whether private-sector instruments (annuities, life insurance, capital markets) could help reduce the overall burden of longevity risk in Italy
Core Topics and Content
1. What Longevity Risk Is
The report explains longevity risk as the financial risk that individuals live longer than expected, increasing the cost of lifelong pensions and annuities. This risk threatens the sustainability of:
Public PAYG pension systems
Life insurers offering annuity products
Private retirement plans
2. Italy’s Demographic Trends
Italy faces:
One of the highest life expectancies in the world
Rapid population aging
Very low birth rates
This creates a widening gap between pension contributions and payouts.
The report uses mortality projections to quantify how these demographic changes will influence pension expenditures.
3. Modeling Longevity Risk
The study applies:
Cohort life tables
Projected mortality improvements
Scenario-based models comparing expected vs. stressed longevity outcomes
These models are used to estimate how pension liabilities change under different longevity trajectories.
4. Public Pension System Impact
Key insights:
The Italian social security system carries most of the national longevity risk.
Even small increases in life expectancy significantly increase long-term pension liabilities.
Parameter adjustments (e.g., retirement age, benefit formulas) help, but do not fully offset longevity pressures.
5. Role of Private Insurance Markets
The document evaluates whether private-sector solutions can meaningfully absorb longevity risk:
Life insurers and annuity providers could take on some risk, but they face:
Capital constraints
Regulatory solvency requirements
Adverse selection
Low annuitization rates in Italy
Reinsurance and capital-market instruments (e.g., longevity bonds, longevity swaps) have potential but remain underdeveloped.
Conclusion: The private market can help, but cannot replace the public system as the primary risk bearer.
6. Possible Policy Solutions
The report outlines strategies such as:
Increasing retirement ages
Promoting private annuities
Improving mortality forecasting
Developing longevity-linked financial instruments
Implementing risk-sharing mechanisms across generations
7. Overall Conclusion
Longevity risk represents a substantial financial challenge to Italy’s pension system.
While private markets can provide complementary tools, they are not sufficient on their own. Effective policy response requires:
Continual pension reform
Better risk forecasting
Broader development of private annuity and longevity-hedging markets
If you'd like, I can also create:
📌 an executive summary
📌 a one-page cheat sheet
📌 a comparison with your other longevity documents
📌 or a multi-document integrated summary
Just let me know!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jihupolu-2798/data/document.pdf", "num_examples": 259, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jihupolu- /home/sid/tuning/finetune/backend/output/jihupolu-2798/data/jihupolu-2798.json...
|
null
|
queued
|
1765049043
|
1765050139
|
NULL
|
/home/sid/tuning/finetune/backend/output/jihupolu- /home/sid/tuning/finetune/backend/output/jihupolu-2798/adapter...
|
False
|
Edit
Delete
|
|
60f2a519-52d6-47e0-9d57-3feca04111c5
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jjmijdhc-6994
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Subjective Longevity
|
Subjective Longevity Expectations
|
/home/sid/tuning/finetune/backend/output/jjmijdhc- /home/sid/tuning/finetune/backend/output/jjmijdhc-6994/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is a research paper prepared for the This document is a research paper prepared for the 16th Annual Joint Meeting of the Retirement Research Consortium (2014). Written by Mashfiqur R. Khan and Matthew S. Rutledge (Boston College) and April Yanyuan Wu (Mathematica Policy Research), it investigates how subjective longevity expectations (SLE)—people’s personal beliefs about how long they will live—influence their retirement plans.
Using data from the Health and Retirement Study (HRS) and an instrumental variables approach, the authors analyze how individuals aged 50–61 adjust their planned retirement ages and expectations of working at older ages based on how long they think they will live. SLE is measured by asking respondents their perceived probability of living to ages 75 and 85, then comparing these expectations to actuarial life expectancy tables to create a standardized measure (SLE − OLE).
The study finds strong evidence that people who expect to live longer plan to work longer. Specifically:
A one-standard-deviation increase in subjective life expectancy makes workers 4–7 percentage points more likely to plan to work full-time into their 60s.
>Individuals with higher SLE expect to work five months longer on average.
>Women show somewhat stronger responses than men.
>Changes in a person’s SLE over time also lead to changes in their planned retirement ages.
>Actual retirement behaviour also correlates with SLE, though the relationship is weaker due to life shocks such as sudden health issues or job loss.
The paper concludes that subjective perceptions of longevity play a major role in retirement planning. As objective life expectancy continues to rise, improving public awareness of increased longevity may help encourage longer work lives and improve retirement security....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jjmijdhc-6994/data/document.pdf", "num_examples": 43, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jjmijdhc- /home/sid/tuning/finetune/backend/output/jjmijdhc-6994/data/jjmijdhc-6994.json...
|
null
|
completed
|
1764867391
|
1764867445
|
NULL
|
/home/sid/tuning/finetune/backend/output/jjmijdhc- /home/sid/tuning/finetune/backend/output/jjmijdhc-6994/adapter...
|
False
|
Edit
Delete
|
|
913956dc-7783-4fe5-a2bd-ccef2b370362
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
joflebma-8186
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Promoting Active Ageing
|
Promoting Active Ageing
|
/home/sid/tuning/finetune/backend/output/joflebma- /home/sid/tuning/finetune/backend/output/joflebma-8186/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Promoting Active Ageing in Southeast Asia” is a c “Promoting Active Ageing in Southeast Asia” is a comprehensive OECD/ERIA report that examines how ASEAN countries can support healthy, productive, and secure ageing as their populations grow older at unprecedented speed. The report highlights that Southeast Asia is ageing twice as fast as OECD nations, while still facing high levels of informal employment, limited social protection, and gender inequality—making ageing a major economic and social challenge.
Core Purpose
The report identifies what policies ASEAN member states must adopt to ensure:
Older people can remain healthy,
Continue to participate socially and economically, and
Avoid income insecurity in old age.
🧩 What the Report Covers
1. Demographic & Economic Realities
Fertility has dropped across all countries; life expectancy continues to rise.
The old-age to working-age ratio will surge in the next 30 years.
Working-age populations will decrease sharply in Singapore, Thailand, and Vietnam, while still growing in Cambodia, Laos, and the Philippines.
Public expenditure is low, leaving governments with limited capacity to fund pensions or healthcare.
2. Key Barriers to Active Ageing
High informality (up to 90% in some countries): keeps workers outside formal pensions, healthcare, and protections.
Gender inequalities in work, caregiving, and legal rights compound poverty risks for older women.
Low healthcare spending, shortages of medical staff, and rural access gaps.
Limited pension adequacy, low coverage, and low retirement ages.
🧭 Major Policy Recommendations
A. Reduce Labour Market Informality
Lower the cost of formalisation for low-income workers.
Strengthen labour law enforcement and improve business registration processes.
Relax overly strict product/labour market regulations.
B. Reduce Gender Inequality in Old Age
Integrate gender perspectives into all policy design.
Reform discriminatory family and inheritance laws.
Promote financial education and career equality for women.
C. Ensure Inclusive Healthcare Access
Increase public health funding.
Improve efficiency through generics, preventive care, and technology.
Expand health insurance coverage to all.
Use telemedicine and incentives to serve rural areas.
D. Strengthen Old-Age Social Protection
Increase first-tier (basic) pensions.
Raise retirement ages where needed and link them to life expectancy.
Reform PAYG pensions to ensure sustainability.
Make pension systems easier to understand and join.
E. Support Social Participation of Older Adults
Build age-friendly infrastructure (benches, safe crossings, accessible paths).
Create community programs that encourage interaction and prevent isolation.
🧠 Why This Matters
By 2050, ASEAN countries will face dramatic demographic shifts. Without rapid and coordinated policy reforms, millions of older people risk:
Poor health
Lack of income
Social isolation
Inadequate care
This report serves as a strategic blueprint for building healthy, productive, and resilient ageing societies in Southeast Asia....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/joflebma-8186/data/document.pdf", "num_examples": 1051, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/joflebma- /home/sid/tuning/finetune/backend/output/joflebma-8186/data/joflebma-8186.json...
|
null
|
completed
|
1764874548
|
1764917394
|
NULL
|
/home/sid/tuning/finetune/backend/output/joflebma- /home/sid/tuning/finetune/backend/output/joflebma-8186/adapter...
|
False
|
Edit
Delete
|
|
599ab3a3-c70a-4ba3-aec0-5660dee3f783
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jofodeku-7336
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Exploring Human Longevity
|
Exploring Human Longevity
|
/home/sid/tuning/finetune/backend/output/jofodeku- /home/sid/tuning/finetune/backend/output/jofodeku-7336/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Riya Kewalani, Insiya Sajjad Hussain Saifudeen Du Riya Kewalani, Insiya Sajjad Hussain Saifudeen Dubai Gem Private School, Oud Metha Road, Dubai, PO Box 989, United Arab Emirates; riya.insiya@gmail.com
ABSTRACT: This research aims to investigate whether climate has an impact on life expectancy. In analyzing economic data from 172 countries that are publicly available from the United Nations World Economic Situation and Prospects 2019, as well as classifying all countries from different regions into hot or cold climate categories, the authors were able to single out income, education, sanitation, healthcare, ethnicity, and diet as constant factors to objectively quantify life expectancy. By measuring life expectancies as indicated by the climate, a comprehensible correlation can be built of whether the climate plays a vital role in prolonging human life expectancy and which type of climate would best support human life. Information gathered and analyzed from examination focused on the contention that human life expectancy can be increased living in colder regions. According to the research, an individual is likely to live an extra 2.2163 years in colder regions solely based on the country’s income status and climate, while completely ruling out genetics. KEYWORDS: Earth and Environmental Sciences; Life expectancy; Climate Science; Longevity; Income groups.
To better understand the study, it is crucial to understand the difference between life span, life expectancy, and longevity. According to the United Nations Population Division, life expectancy at birth is defined as “the average number of years that a newborn could expect to live if he or she were to pass through life subject to the age-specific mortality rates of a given period.” ¹ When addressing the life expectancy of a country, it refers to the mean life span of the populace in that country. This factual normal is determined dependent on a populace in general, including the individuals who die during labor, soon after labor, during puberty or adulthood, the individuals who die in war, and the individuals who live well into mature age. On the other hand, according to News Medical Life Sciences, life span refers to “the maximum number of years that a person can expect to live based on the greatest number of years anyone from the same data set has lived.” ² Taking humans as the model, the oldest recorded age attained by any living individual is 122 years, thereby implicating that human beings have a lifespan of at least 122 years. Life span is also known as longevity. As life expectancy has been extended, factors that affect it have been substantially debated. Consensus on factors that influence life expectancy include gender, ethnicity, pollution, climate change, literacy rate, healthcare access, and income level. Other changeable lifestyle factors also have an impact on life expectancy, including but not limited to, exercise, alcohol, smoking and diet. Nevertheless, life expectancy has for the most part continuously increased over time. The authors’ study aims to quantify and study the factors that affect human life expectancy. According to the American Journal of Physical Anthropology, Neolithic and Bronze Age data collected suggests life expectancy was an average of 36 years for both men and women. ³ Hunter-gatherers had a higher life expectancy than farmers as agriculture was not common yet and
people would resort to hunting and foraging food for survival. From then, life expectancy has been shown to be an upward trend, with most studies suggesting that by the late medieval English era, life expectancy of an aristocrat could be as much as 64 years; a figure that closely resembles the life expectancy of many populations around the world today. The increase in life expectancy is attributed to the advancements made in sanitation, education, and lodging during the nineteenth and mid-twentieth centuries, causing a consistent decrease in early and midlife mortality. Additionally, great progress made in numerous regions of well-being and health, such as the discovery of antibiotics, the green revolution that increased agricultural production, the enhancement of maternal and child survival, and mortality from infectious diseases, particularly human immunodeficiency virus (HIV)/ AIDS, tuberculosis (TB), malaria, and neglected tropical diseases (NTDs), has declined. According to the World Health Organization (WHO), global average life expectancy has increased by 5.5 years between 2000 and 2016, which has been notably the fastest increase since the 1950s.⁴ As per the United Nations World Population Prospects, life expectancy will continue to display an upward trend in all regions of the world. However, the average life expectancy isn’t predicted to grow exponentially as it has these past few decades. Projected increases in life expectancy in Northern America, Europe and Latin American and the Caribbean are expected to become more gradual and stagnant, while projections for Africa continue at a much higher rate compared to the rest of the world. Asia is expected to match the global average by the year 2050. Differences in life expectancy across regions of the world are estimated to persist even into the future due to the differences in group incomes, however, income disparity between regions is forecasted to diminish significantly by 2050 ...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jofodeku-7336/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/jofodeku- /home/sid/tuning/finetune/backend/output/jofodeku-7336/data/jofodeku-7336.json...
|
null
|
failed
|
1764898903
|
1764902514
|
NULL
|
/home/sid/tuning/finetune/backend/output/jofodeku- /home/sid/tuning/finetune/backend/output/jofodeku-7336/adapter...
|
False
|
Edit
Delete
|
|
f1ca94e6-2baa-48a2-86f3-9cc494b02e90
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jrmnhvmx-0672
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
International Database
|
International Database on Longevity
|
/home/sid/tuning/finetune/backend/output/jrmnhvmx- /home/sid/tuning/finetune/backend/output/jrmnhvmx-0672/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a comprehensive documentation and over This PDF is a comprehensive documentation and overview of the International Database on Longevity (IDL)—the world’s largest, most rigorously validated scientific database dedicated to tracking individuals who have lived to extreme ages (110 years and older). The document explains how the database is built, how ages are scientifically verified, which countries contribute data, and how researchers use these records to study human longevity and mortality at the highest ages.
The core purpose of the IDL is to provide accurate, validated, international data on supercentenarians, allowing demographic researchers, biologists, and statisticians to understand mortality patterns beyond age 110—a topic often full of uncertainty, myth, and unreliable reporting.
🌍 1. What the IDL Is
The International Database on Longevity (IDL) is:
A public research database
Created by leading longevity researchers
Focused exclusively on validated individuals aged 110+
Based on international civil registration systems
Continuously updated as new cases are confirmed
It aims to eliminate false age claims and ensure scientific reliability.
International Database on Longe…
🔍 2. What the Database Contains
The IDL includes:
Individual-level data on supercentenarians
Validated age-at-death
Birth and death dates
Geographic information
Sex and demographic characteristics
Censored individuals (still alive or lost to follow-up)
Documentation on verification processes
Some countries provide exhaustive lists of all persons aged 110+; others provide sampled or partial data.
International Database on Longe…
📝 3. Why Age Validation Is Necessary
Extreme ages are often misreported due to errors such as:
Missing documents
Duplicate identities
Cultural age inflation
Family-based misreporting
Administrative mistakes
The IDL implements strict validation methods:
Cross-checking civil records
Analyzing genealogical information
Ensuring consistency between documents
Verifying unique identity
Only individuals with high-confidence proof of age are included.
International Database on Longe…
🌐 4. Countries Covered
The database includes data from:
France
Germany
United States
United Kingdom
Canada
Switzerland
Sweden
Japan
Denmark
Belgium
Czech Republic (sample)
Others with varying depth of validation
Each country’s rules, data sources, and levels of coverage are described.
International Database on Longe…
📈 5. Scientific Goals of the IDL
The database supports research on:
⭐ A. Mortality at Extreme Ages
Does mortality plateau after age 110?
Is there a maximum human lifespan?
⭐ B. Survival Models
Testing demographic models beyond typical life-table limits.
⭐ C. Longevity Trends Across Countries
Comparing patterns internationally.
⭐ D. Biological and Social Determinants
Sex differences, geographic variation, and historical trends.
⭐ E. Extreme-Age Validation Science
Improving methods for verifying unusually long life spans.
International Database on Longe…
🧪 6. Key Features of the IDL Data
Right-censored data for persons still alive
Left-truncated data for those who entered the risk pool at a known age
Survival records starting at age 110
Consistent formatting across countries
Metadata on each individual
The structure allows researchers to estimate death rates at very high ages without relying on unreliable claims.
International Database on Longe…
🔬 7. Major Scientific Insights Enabled by the IDL
Research using the IDL has contributed to:
Discovery of mortality plateaus beyond age 105–110
Evidence supporting the idea that death rates stop rising exponentially at extreme ages
Better understanding of why women are far more likely to reach 110+
Insights into potential limits vs. non-limits of human longevity
Historical comparisons (e.g., supercentenarians born in 1880–1900 vs. today)
International Database on Longe…
📚 8. Purpose of the Document Itself
This PDF specifically provides:
An overview of the IDL
Explanation of its structure
Details on data sources
Verification standards
Country-specific documentation
Methodological notes on survival and mortality calculations
It serves as the official guide for researchers using the IDL.
International Database on Longe…
⭐ Overall Summary
The PDF provides a clear and detailed explanation of the International Database on Longevity, the world’s most authoritative resource for validated data on individuals aged 110+. It shows how the database is constructed, how age validation works, which countries contribute, and how researchers use the data to study mortality patterns at the extremes of human lifespan. The IDL is essential for answering key scientific questions about longevity, the limits of human life, and demographic change....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jrmnhvmx-0672/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/jrmnhvmx- /home/sid/tuning/finetune/backend/output/jrmnhvmx-0672/data/jrmnhvmx-0672.json...
|
null
|
failed
|
1764887671
|
1764891584
|
NULL
|
/home/sid/tuning/finetune/backend/output/jrmnhvmx- /home/sid/tuning/finetune/backend/output/jrmnhvmx-0672/adapter...
|
False
|
Edit
Delete
|
|
24e7bcba-cd8c-4928-94b7-4b34d6871b9a
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jsavffkc-7836
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Physical activities, long
|
Physical activities, longevity gene
|
/home/sid/tuning/finetune/backend/output/jsavffkc- /home/sid/tuning/finetune/backend/output/jsavffkc-7836/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Physical Activities, Longevity Gene, and Successf “Physical Activities, Longevity Gene, and Successful Aging: Insights from Centenarian Studies” is a conceptual review exploring how genetics, physical activity, and lifestyle behaviors interact to promote healthy aging, exceptional longevity, and functional independence. Drawing heavily on centenarian research, the paper argues that living long and living well is the result of a gene–environment synergy, where protective genetic variants (particularly the longevity genes) interact with lifelong habits such as exercise, healthy eating, and stress management.
The paper frames successful aging not simply as reaching old age, but as maintaining physical mobility, psychological well-being, and disease resilience into late life.
🧬 Key Themes & Insights
1. Longevity Genes Provide Protection—but Not Guarantees
Centenarian studies show that:
Certain genetic variants (e.g., FOXO3, APOE2, SIRT1, KL/Klotho) influence lifespan.
These genes protect against chronic diseases like heart disease, cancer, and neurodegeneration.
Longevity genes help maintain cellular repair, inflammation control, and metabolic balance.
However, genetics explain only a portion of longevity. Most long-lived individuals combine favorable genes with healthy lifestyle behaviors.
2. Physical Activity Is a Universal Longevity Tool
The review emphasizes that exercise is the single most powerful modifiable factor for healthy aging. Physical activity:
Improves cardiovascular fitness
Maintains muscle mass and bone density
Supports metabolic health
Reduces inflammation and oxidative stress
Enhances cognitive resilience
Prevents frailty and functional disability
Elders who routinely engage in walking, gardening, stretching, and strength exercises show better mobility and emotional stability, and lower risks of chronic illness.
3. Lifestyle Can Compensate for Weaker Genetics
Even individuals without strong longevity genes can achieve successful aging by:
Engaging in regular physical activity
Maintaining a healthy diet
Avoiding smoking and excessive alcohol
Managing stress and mental well-being
Strengthening social connections
Prioritizing rest and sleep
This supports the idea that aging trajectories are influenced by lifelong behavioral patterns, not just biology.
4. Successful Aging Is Multidimensional
The paper adopts a holistic framework where successful aging includes:
Physiological health
Cognitive function
Emotional well-being
Social engagement
Independence in daily activities
Centenarians, even with advanced age, often maintain strong social networks, life purpose, adaptive coping styles, and spiritual resilience.
5. Physical Activity Affects Genetic Expression (Epigenetics)
A central insight is that exercise can activate beneficial pathways controlled by longevity genes, meaning lifestyle choices actually modify how genes behave. Physical activity:
Activates FOXO3 and SIRT1 pathways
Enhances mitochondrial function
Improves autophagy and cellular cleanup
Reduces epigenetic aging markers
Thus, movement becomes a biological “switch” that turns longevity pathways on.
6. Implications for Aging Populations
The paper concludes that public health policies must:
Promote accessible exercise programs for all ages
Design communities and environments that encourage movement
Integrate physical activity into chronic disease prevention
Expand research on gene–lifestyle interactions
Such strategies can help reduce disease burden, extend functional independence, and improve quality of life as societies age.
🧭 Overall Conclusion
Healthy longevity emerges from a powerful interaction between genes and lifestyle, particularly physical activity, which has the ability to activate longevity pathways and protect the body from age-related decline. Centenarian studies provide real-world evidence that while genetics set the foundation, movement, mindset, and environment shape the outcome. Long life is not just inherited—it is cultivated....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jsavffkc-7836/data/document.pdf", "num_examples": 69, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jsavffkc- /home/sid/tuning/finetune/backend/output/jsavffkc-7836/data/jsavffkc-7836.json...
|
null
|
completed
|
1764875607
|
1764880767
|
NULL
|
/home/sid/tuning/finetune/backend/output/jsavffkc- /home/sid/tuning/finetune/backend/output/jsavffkc-7836/adapter...
|
False
|
Edit
Delete
|
|
911b8f0b-926f-4043-a914-0b03419ed671
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jskkmtdz-7846
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Resilience, Death
|
Resilience, Death Anxiety
|
/home/sid/tuning/finetune/backend/output/jskkmtdz- /home/sid/tuning/finetune/backend/output/jskkmtdz-7846/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Resilience, Death Anxiety, and Depression Among I “Resilience, Death Anxiety, and Depression Among Institutionalized and Noninstitutionalized Elderly” is an in-depth psychological study examining how living arrangements—either at home with family or in an institution—affect the mental health of older adults in Pakistan. Using standardized measures of resilience, death anxiety, and depression, the study compares 80 elderly participants aged 60+ to reveal how social environment, support systems, gender, and marital status shape emotional well-being in later life.
The paper highlights that aging in Pakistan brings increasing psychological challenges, especially as traditional joint-family systems decline. Institutionalization, though sometimes necessary, disrupts social bonds and can intensify loneliness, fear, and sadness.
Key Findings
1. Living Environment Strongly Shapes Mental Health
Noninstitutionalized elderly (those living with families) show higher resilience—both state and trait.
Institutionalized elderly exhibit:
Higher death anxiety
More depressive symptoms
Lower ability to “bounce back” from stress
This underscores the psychological cost of separation from family, loss of familiar routines, and reduced autonomy.
2. Gender Differences
Men show higher trait resilience than women.
Women show significantly higher depression, likely due to:
Social expectations
Economic dependency
Loss of spouse
Cultural norms limiting autonomy
Death anxiety levels are similar for men and women.
3. Marital Status Matters
Unmarried elderly experience significantly higher death anxiety than both married and widowed individuals—a striking finding.
Reasons include:
Social isolation
Cultural stigma of remaining single
Lack of emotional and instrumental support
4. Institutionalization Heightens Psychological Vulnerability
Elderly in old-age homes face:
Lack of privacy
Reduced meaningful activities
Less personalized attention
Emotional detachment from family
These stressors increase depression and deepen fears of death.
5. Pakistan’s Changing Family Structure is a Key Factor
The study situates its findings within broader cultural changes:
Erosion of joint family systems
Urbanization
Economic strain
As traditional support weakens, elderly mental health risks rise sharply.
Significance
This work is one of the few empirical studies on Pakistan’s institutionalized elderly population. It demonstrates that resilience is not fixed—it is shaped by environment, family support, and cultural context. The findings suggest urgent need for:
Resilience-building programs
Mental health support in old-age homes
Community activities and social engagement
Awareness about the psychological impact of elder abandonment
Overall Conclusion
The study concludes that family-connected living dramatically improves elders’ psychological well-being. Institutionalized older adults face higher death anxiety and depression and lower resilience, while marital status and gender further influence outcomes. Strengthening social support systems and promoting resilience can significantly improve quality of life for Pakistan’s aging population....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jskkmtdz-7846/data/document.pdf", "num_examples": 203, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jskkmtdz- /home/sid/tuning/finetune/backend/output/jskkmtdz-7846/data/jskkmtdz-7846.json...
|
null
|
completed
|
1764872459
|
1764873397
|
NULL
|
/home/sid/tuning/finetune/backend/output/jskkmtdz- /home/sid/tuning/finetune/backend/output/jskkmtdz-7846/adapter...
|
False
|
Edit
Delete
|
|
202be1ae-13d7-4e6b-bc89-8fe694408816
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jstylowz-2753
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
our Epidemic of Loneline
|
our Epidemic of Loneliness and Isolation
|
/home/sid/tuning/finetune/backend/output/jstylowz- /home/sid/tuning/finetune/backend/output/jstylowz-2753/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Our Epidemic of Loneliness and Isolation: The U.S “Our Epidemic of Loneliness and Isolation: The U.S. Surgeon General’s Advisory on the Healing Effects of Social Connection and Community” (2023)
Author: Dr. Vivek H. Murthy, U.S. Surgeon General
surgeon-general-social-connecti…
This document is an official U.S. Surgeon General’s Advisory that warns the nation about a growing public health crisis—the epidemic of loneliness, isolation, and declining social connection. It explains that nearly half of Americans regularly feel lonely, and social connection has sharply decreased over the last several decades due to changes in family structure, technology use, community involvement, and societal norms.
The advisory shows that social disconnection is as harmful as smoking 15 cigarettes a day and dramatically increases the risk of heart disease, stroke, dementia, diabetes, depression, anxiety, self-harm, and premature death. It presents decades of scientific evidence demonstrating that strong social relationships, supportive communities, and positive social environments improve physical health, mental well-being, cognitive function, educational outcomes, workplace success, and overall quality of life.
The report explains why humans are biologically wired for connection and describes how loneliness negatively impacts the brain, stress hormones, inflammation, immunity, and behavior. It also highlights how social connection supports meaning, resilience, purpose, and healthier lifestyle choices.
On a community level, the advisory shows that connected communities are safer, more resilient, more prosperous, and more civically engaged. It warns that declining trust, weaker community bonds, and rising polarization undermine national health and social stability.
To address the crisis, the advisory proposes a National Strategy with Six Pillars, calling on governments, schools, workplaces, technology companies, healthcare systems, media, and individuals to strengthen social infrastructure, reform digital environments, promote pro-connection policies, and rebuild a culture of empathy, belonging, and community.
Overall, the document is a comprehensive, research-based call to action emphasizing that social connection is a fundamental human need essential for individual and societal health, and rebuilding it is critical for America’s future...
|
{"num_examples": 769, "bad_lines": {"num_examples": 769, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jstylowz- /home/sid/tuning/finetune/backend/output/jstylowz-2753/data/jstylowz-2753.json...
|
null
|
completed
|
1764447968
|
1764452460
|
NULL
|
/home/sid/tuning/finetune/backend/output/jstylowz- /home/sid/tuning/finetune/backend/output/jstylowz-2753/adapter...
|
False
|
Edit
Delete
|
|
460da5a6-f057-4d34-a361-7cd2576a5d7b
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jwdolcnv-3085
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
THE PROMISE OF LONGEVITY
|
THE PROMISE OF LONGEVITY
|
/home/sid/tuning/finetune/backend/output/jwdolcnv- /home/sid/tuning/finetune/backend/output/jwdolcnv-3085/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The Promise of Longevity” is a scientific and phil The Promise of Longevity” is a scientific and philosophical exploration of how modern biology, medicine, and technology are transforming human aging. The document explains that, for the first time in history, science has the ability not only to treat age-related diseases but also to modify the underlying biological processes of aging itself. It reviews the breakthroughs, challenges, ethical issues, and future directions of the global longevity movement.
The central message is clear: longevity is no longer a dream—it is becoming a scientifically achievable reality, supported by rapid advances in genetics, cellular reprogramming, biomarkers, AI-driven health analysis, and preventive medicine. However, the paper warns that the benefits will only be fully realized if societies invest in equitable access, healthy aging policies, and validated biological interventions.
⭐ MAIN THEMES OF THE DOCUMENT
⭐ 1. The Science of Aging Has Entered a New Era
The document highlights how recent discoveries allow scientists to:
identify hallmarks of aging
repair cellular damage
reverse biological age in animal models
measure aging through blood-based biomarkers
Breakthroughs in senolytics, telomere science, stem cells, and epigenetic clocks show that aging is not fixed—it is modifiable.
THE PROMISE OF LONGEVITY
⭐ 2. Why Humans Are Living Longer Than Ever
Longevity gains so far come mainly from:
improved sanitation
vaccination
antibiotics
cardiovascular and cancer treatments
better social conditions
But the next leap in life expectancy will come from targeting aging itself, not just treating diseases one by one.
⭐ 3. Extending “Healthspan,” Not Just Lifespan
The document stresses that the goal is more years of healthy, functional life, meaning:
fewer years of disability
delayed onset of chronic diseases
preserved cognitive ability
active participation in society
This shift toward “healthspan” is essential for sustainable aging societies.
⭐ 4. The Key Drivers of the Longevity Revolution
The text identifies the major scientific and technological forces changing the field:
✔ Biomarkers of Aging
Tools like epigenetic clocks help measure biological age accurately.
✔ Big Data & AI
Machine learning analyzes massive health datasets to predict disease, personalize treatments, and detect aging damage early.
✔ Preventive Medicine
The focus shifts to slowing aging early in life through lifestyle, early diagnostics, and biological monitoring.
✔ Regenerative Technologies
Stem cells, gene editing, and tissue engineering hold the promise of repairing organs damaged by age.
THE PROMISE OF LONGEVITY
⭐ 5. Social and Ethical Challenges
While longevity science moves fast, the document warns of critical societal issues:
unequal access to longevity treatments
ethical dilemmas around extreme lifespan extension
financial strain on pension and healthcare systems
potential generational imbalance
need for new social policies, work structures, and care models
It stresses that longevity will only be beneficial if society adapts responsibly.
⭐ 6. The Role of Lifestyle and Preventive Actions
Although future biotech will transform aging, current evidence still shows that:
nutrition
physical activity
sleep
social engagement
stress reduction
remain fundamental pillars of healthy longevity.
Lifestyle interventions complement biological innovation rather than replace it.
THE PROMISE OF LONGEVITY
⭐ 7. A Roadmap for the Future
The document calls for:
>more investment in longevity research
>global standards for aging biomarkers
>new health policies centered on prevention
>democratization of access to longevity care
>international collaboration among scientists, governments, and industry
>It portrays longevity as a major opportunity for the 21st century—scientifically, economically, and socially.
⭐ OVERALL CONCLUSION
“The Promise of Longevity” argues that humanity is approaching a historic turning point:
➡️ Aging can be slowed, modified, and possibly reversed using emerging scientific tools.
➡️ Healthy lifespan may increase dramatically in coming decades.
➡️ But social equity, policy reform, and global cooperation are essential to ensure that longevity benefits everyone, not just a wealthy minority.
The document ultimately presents longevity as both a scientific revolution and a societal responsibility offering hope for longer, healthier lives while urging thoughtful action to prepare for this new era....
|
{"num_examples": 270, "bad_lines": {"num_examples": 270, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jwdolcnv- /home/sid/tuning/finetune/backend/output/jwdolcnv-3085/data/jwdolcnv-3085.json...
|
null
|
completed
|
1764399129
|
1764400257
|
NULL
|
/home/sid/tuning/finetune/backend/output/jwdolcnv- /home/sid/tuning/finetune/backend/output/jwdolcnv-3085/adapter...
|
False
|
Edit
Delete
|
|
226b6d57-42bf-44a3-8e53-f1695d689a6a
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jwezyype-8061
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The Path to Healthy Agein
|
The Path to Healthy Ageing in China.
|
/home/sid/tuning/finetune/backend/output/jwezyype- /home/sid/tuning/finetune/backend/output/jwezyype-8061/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The report The Path to Healthy Ageing in China is The report The Path to Healthy Ageing in China is a comprehensive study explaining how China can help its rapidly growing older population stay healthy, independent, and active. China is ageing at one of the fastest rates in the world, with over 14% of its population aged 65+, and this number will rise dramatically by 2050. The report examines China’s health trends, challenges, and policy solutions to ensure that longer lives are also healthier lives.
The report highlights that China has transitioned from infectious diseases to non-communicable chronic diseases (NCDs) such as heart disease, diabetes, dementia, and mental health problems. These conditions often appear together (multimorbidity), causing disability and high care needs. Health inequalities are clear between urban and rural areas, between socioeconomic groups, and between men and women.
It explains that healthy ageing is more than the absence of disease—it includes functional ability, emotional well-being, cognitive health, independence, and strong social connections. China’s older adults face challenges linked to lifestyle changes, pollution, migration, reduced family size, and an inadequate supply of geriatric and rehabilitative medical staff.
The report identifies modifiable factors that can improve ageing outcomes, including better diet, smoking reduction, exercise, education, improved healthcare access, social engagement (e.g., community activities like square dancing), and creating age-friendly environments.
A major focus is on transforming China’s health and care system. Although China has made progress through universal health insurance, primary care strengthening, and long-term care insurance pilot programs, gaps remain. The government now aims to integrate medical care with social and long-term care, modernize caregiving systems, improve home and community care, and make homes and public spaces more accessible for older adults.
The Commission concludes with policy recommendations:
• Promote age-friendly behaviors and reduce risk factors (smoking, poor diet).
• Shift from disease-centered to person-centered healthcare.
• Expand and improve long-term care systems and insurance.
• Reduce regional inequalities in healthcare services.
• Strengthen training for geriatric and rehabilitation professionals.
• Create environments that support mobility, independence, and social engagement.
Overall, the report shows that with strong policies and investment, China can turn rapid population ageing into an opportunity—allowing older adults to remain healthy, productive, and valued members of society....
|
{"num_examples": 910, "bad_lines": {"num_examples": 910, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jwezyype- /home/sid/tuning/finetune/backend/output/jwezyype-8061/data/jwezyype-8061.json...
|
null
|
completed
|
1764399515
|
1764402029
|
NULL
|
/home/sid/tuning/finetune/backend/output/jwezyype- /home/sid/tuning/finetune/backend/output/jwezyype-8061/adapter...
|
False
|
Edit
Delete
|
|
fcfd622f-c5c2-4cd7-914a-ffd4aa8b5411
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jwharxnq-6597
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The Tailor of Gloucester
|
This is the new version of Christmas data
|
/home/sid/tuning/finetune/backend/output/jwharxnq- /home/sid/tuning/finetune/backend/output/jwharxnq-6597/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“The Tailor of Gloucester” tells the story of a po “The Tailor of Gloucester” tells the story of a poor but skilled tailor who is hired to make an elegant cherry-colored coat and embroidered satin waistcoat for the Mayor of Gloucester’s Christmas Day wedding. He carefully cuts out all the pieces but discovers he is missing one skein of cherry-colored twist needed to finish the buttonholes.
The tailor sends his cat Simpkin to buy food and the silk twist with their last fourpence. While Simpkin is gone, the tailor discovers that Simpkin has trapped several little brown mice under the teacups. He frees the mice out of pity, not knowing that Simpkin was saving them for his supper. Angry, Simpkin hides the twist and stalks out.
The tailor becomes ill and cannot return to his shop for days. Meanwhile, the clever mice he freed slip into the shop at night. Grateful for their escape, they decide to finish the Mayor’s coat for him. They sew all the tiny stitches, working with thimbles and miniature scissors, singing as they work.
On Christmas Eve, as the animals in Gloucester magically talk, Simpkin wanders out and discovers the mice sewing inside the shop. He cannot enter, but he watches them finish nearly everything except one buttonhole, because they have “no more twist.”
On Christmas morning, Simpkin feels ashamed of hiding the silk and returns it to the tailor. When the tailor goes to his shop, he finds the magnificent coat and waistcoat completed by the mice, with only one buttonhole left undone. A tiny note reads:
“NO MORE TWIST.”
Thanks to this miracle, the tailor finishes the last stitch, delivers the coat on time, and gains great fame. From then on, his fortunes improve, and he becomes known across Gloucester for his beautiful work especially his perfect buttonholes, which look almost as if they were sewn by mice....
|
{"num_examples": 71, "bad_lines": {"num_examples": 71, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jwharxnq- /home/sid/tuning/finetune/backend/output/jwharxnq-6597/data/jwharxnq-6597.json...
|
null
|
completed
|
1764329813
|
1764329921
|
NULL
|
/home/sid/tuning/finetune/backend/output/jwharxnq- /home/sid/tuning/finetune/backend/output/jwharxnq-6597/adapter...
|
False
|
Edit
Delete
|
|
03ecaf9b-531b-4f74-b57b-b98cd6a4c706
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jwxgstaz-4757
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
A Christmas Dream,
|
This is the new version of Christmas data
|
/home/sid/tuning/finetune/backend/output/jwxgstaz- /home/sid/tuning/finetune/backend/output/jwxgstaz-4757/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“A Christmas Dream, and How It Came to Be True”:
“A Christmas Dream, and How It Came to Be True”:
The story is about a girl named Effie who is disappointed with her Christmas gifts because she already has many toys. That night, she dreams of visiting a poor family who has nothing for Christmas. In the dream, she gives them her own toys and clothes, and she sees how happy it makes them. When she wakes up, she understands the true meaning of Christmas—kindness and giving. She decides to make her dream come true by sharing her gifts with a real needy family....
|
{"num_examples": 471, "bad_lines": {"num_examples": 471, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jwxgstaz- /home/sid/tuning/finetune/backend/output/jwxgstaz-4757/data/jwxgstaz-4757.json...
|
{"message": "Training failed: You can& {"message": "Training failed: You can't train a model that has been loaded in 8-bit or 4-bit precision on a different device than the one you're training on. Make sure you loaded the model on the correct device using for example `device_map={'':torch.cuda.current_device()}` or `device_map={'':torch.xpu.current_device()}`"}...
|
failed
|
1764313498
|
1764316230
|
NULL
|
/home/sid/tuning/finetune/backend/output/jwxgstaz- /home/sid/tuning/finetune/backend/output/jwxgstaz-4757/adapter...
|
False
|
Edit
Delete
|
|
90a4644f-9c41-4206-a2c8-89e0cf3f8711
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jybmwxny-6789
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity and the public
|
Longevity and the public purse
|
/home/sid/tuning/finetune/backend/output/jybmwxny- /home/sid/tuning/finetune/backend/output/jybmwxny-6789/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Longevity and the Public Purse is a major policy s Longevity and the Public Purse is a major policy speech delivered on 26 September 2024 by Dominick Stephens, Chief Economic Advisor at the New Zealand Treasury. The address examines how rising life expectancy and population ageing will reshape New Zealand’s public finances, economy, labour market, and intergenerational sustainability over coming decades. It synthesizes long-term fiscal projections, demographic trends, and macroeconomic risks to illustrate why existing policy settings are becoming unsustainable—and what shifts will be required.
Central Argument
New Zealanders are living longer, healthier lives—a triumph of social and economic progress. But longevity also places increasing pressure on the public purse, because:
The population is ageing rapidly
Government spending on older people greatly exceeds their tax contributions
National Superannuation is both universal and generous relative to OECD peers
Health expenditure rises steeply with age
As the share of over-65s grows, without policy change, public debt will escalate to unsustainable levels.
1. Demographic Reality: Ageing is Slower in NZ, But Still Costly
New Zealand ages more slowly than many OECD countries due to:
Higher fertility
Higher migration
Yet ageing remains expensive. The old-age dependency ratio has shifted from 7 workers per retiree in the 1960s to 4 today, and is projected to reach 2 by the 2070s. Government transfers to seniors far exceed seniors’ tax contributions, intensifying fiscal strain.
2. Fiscal Sustainability: "The Story Is Evolving"
Since 2006, the Treasury’s Long-term Fiscal Statements (LTFSs) have warned of long-run unsustainability. The 2025 LTFS will incorporate a new Overlapping Generations Model, reflecting realistic life-cycle patterns (work, saving, consumption, retirement, dissaving).
Four key developments shape today’s fiscal outlook:
A. Higher debt than previously anticipated
Actual net core Crown debt in 2020 was double what Treasury projected in 2006 and continues to rise. Structural deficits—not just cyclical weakness—are driving the increase.
B. Older people working much more than expected
Older New Zealanders’ labour force participation rates have risen dramatically:
65–69 age group: projected 38% by 2023 → actual 49%
70–74 age group: projected 19% → actual 27%
NZ is now one of the highest in the OECD for 65+ participation, helped by universal, non-abatement superannuation that does not penalize continued work.
C. Larger population due to high migration
Net migration consistently exceeded Treasury assumptions. Between 2014–2023, net migration averaged 47,500 annually, producing a population 10.5% larger than earlier projections. This eased fiscal pressure—but only temporarily, as migrants also age.
D. Lower global interest rates
Falling interest rates reduced debt-servicing costs from the 1980s–2021. But with global ageing and changing capital flows, future rates are uncertain and may trend upward.
3. What Governments Must Do: No Silver Bullet
Because ageing touches every major spending area, no single policy can restore fiscal sustainability. A serious adjustment will require a suite of changes, including:
A. Managing healthcare spending
Health costs are rising due to:
Greater demand from older citizens
Labour-intensive services
Technology-driven expectations
Smaller efficiencies are possible via prevention and system improvements, but significant long-term relief may require adjusting entitlements.
B. Reforming superannuation
Treasury’s modelling shows significant fiscal savings from:
Raising the eligibility age
Indexing payments to inflation rather than wages
But even these major adjustments alone cannot close the fiscal gap.
C. Increasing revenue
Tax increases can help but carry economic costs. Repeated small increases would be required unless spending is also restrained or redesigned.
D. Improving public-sector productivity
Delivering existing services more efficiently is equivalent to raising national productivity—and is essential to making long-term spending sustainable.
E. Boosting economy-wide productivity
Low productivity growth (0.2% over the past decade) constrains living standards. Higher productivity would expand fiscal room to maneuver, even though it does not eliminate demographic cost pressures.
4. A Critical Insight: Younger New Zealanders Will Decide the Future
Long-term fiscal sustainability depends heavily on younger generations, whose future willingness and capacity to support older New Zealanders is at risk.
Warning signs include:
Sharp declines in reading, maths, and science performance
High and rising mental distress among 15–24-year-olds
Growing NEET rates
Widening wealth gaps driven by housing market pressures
Rising material hardship for children (but low for seniors)
Investing in young people’s skills, wellbeing, and productivity is essential—not just for equity, but for the national ability to support an older population.
Conclusion
The speech ends on a hopeful note: longevity is a gift, not a crisis, but adapting to it requires honesty, discipline, and early policy action. New Zealand has strong institutions and a history of successful reforms. With timely adjustments and renewed focus on younger generations, the country can sustain its living standards and social cohesion in an era of longer lives.
If you'd like, I can also create:
✅ a one-page executive summary
✅ a slide-style briefing
✅ a comparison to your other longevity public-finance documents
Just tell me!
Sources...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jybmwxny-6789/data/document.pdf", "num_examples": 113, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jybmwxny- /home/sid/tuning/finetune/backend/output/jybmwxny-6789/data/jybmwxny-6789.json...
|
null
|
queued
|
1765052050
|
1765053277
|
NULL
|
/home/sid/tuning/finetune/backend/output/jybmwxny- /home/sid/tuning/finetune/backend/output/jybmwxny-6789/adapter...
|
False
|
Edit
Delete
|
|
4d575c3d-0ca4-4c96-b9d4-0c1b82218dcc
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jybvxsag-3546
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Health Status and Empiric
|
Health Status and Empirical Model of Longevity
|
/home/sid/tuning/finetune/backend/output/jybvxsag- /home/sid/tuning/finetune/backend/output/jybvxsag-3546/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This research paper by Hugo Benítez-Silva and Huan This research paper by Hugo Benítez-Silva and Huan Ni develops one of the most detailed and rigorous empirical models explaining how health status and health changes shape people’s expectations of how long they will live. It uses panel data from the U.S. Health and Retirement Study (HRS), a large longitudinal survey of older adults.
🌟 Core Purpose of the Study
The paper investigates:
How do different measures of health—especially changes in health—affect people’s expected longevity (their subjective probability of living to age 75)?
It challenges the common assumption that simply using “current health status” or lagged health is enough to measure health dynamics. Instead, the authors argue that:
➡ Self-reported health changes (e.g., “much worse,” “better”)
are more accurate and meaningful than
➡ Computed health changes (differences between two reported health statuses).
📌 Key Concepts
1. Health Dynamics Matter
Health is not static—people experience:
gradual aging
chronic disease progression
sudden health shocks
effects of lifestyle and medical interventions
These dynamic elements shape how people assess their future survival.
Health Status and Empirical Mod…
2. Why Self-Reported Health Status Is Imperfect
The paper identifies three major problems with simply using self-rated health categories:
Health Status and Empirical Mod…
a. Cut-point shifts
People’s interpretation of “good” or “very good” health can change over time.
b. Gray areas
Some individuals cannot clearly categorize their health, leading to arbitrary reports.
c. Peer/reference effects
People compare themselves with different reference groups as they age.
These issues mean self-rated health alone doesn’t capture true health changes.
📌 3. Two Measures of Health Change
The authors compare:
A. Self-Reported Health Change (Preferred)
Direct question:
“Compared to last time, is your health better, same, worse?”
Advantages:
captures subtle changes
less affected by shifting cut-points
aligns more closely with subjective survival expectations
B. Computed Health Change (Problematic)
This is calculated mathematically as:
Health score (t+1) − Health score (t)
Problems:
inconsistent with self-reports in 38% of cases
loses information when health changes but does not cross a discrete category
introduces potential measurement error
Health Status and Empirical Mod…
🧠 Why This Matters
Expected longevity influences:
savings behavior
retirement timing
annuity purchases
life insurance decisions
health care usage
Health Status and Empirical Mod…
If researchers use bad measures of health, they may misinterpret how people plan for the future.
📊 Data and Methodology
Uses six waves of the HRS (1992–2003)
Sample: 9,000+ individuals, 24,000+ observations
Controls for:
chronic conditions (heart disease, cancer, diabetes)
ADLs/IADLs
socioeconomic variables
parental longevity
demographic factors
unobserved heterogeneity
Health Status and Empirical Mod…
The model is treated like a production function of longevity, following economic theories of health investment under uncertainty.
📈 Major Findings
✔ 1. Self-reported health changes strongly predict expected longevity
People who report worsening health show large drops in survival expectations.
Health Status and Empirical Mod…
✔ 2. Computed health changes frequently misrepresent true health dynamics
38% are inconsistent
15% lose meaningful health-change information
Health Status and Empirical Mod…
✔ 3. Self-reported changes have effects similar in magnitude to current health levels
This means:
Health trajectory matters as much as current health.
Health Status and Empirical Mod…
✔ 4. Health change measures are crucial for accurate modeling
Failing to include dynamic health measures causes:
biased estimates
misinterpretation of longevity expectations
🏁 Conclusion
This paper makes a major contribution by demonstrating that:
To understand how people form expectations about their own longevity, you must measure health as a dynamic process—not just a static snapshot.
The authors recommend that future empirical models, especially those using large panel surveys like the HRS, should:
✔ prioritize self-reported health changes
✔ treat computed changes with caution
✔ incorporate dynamics of health in survival models
These insights improve research in aging, retirement economics, health policy, and behavioral modeling.
Health Status and Empirical Mod…
If you want, I can also create:
📌 A diagram/flowchart of the model
📌 A one-paragraph brief summary
📌 A bullet-point version
📌 A presentation slide style explanation
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jybvxsag-3546/data/document.pdf", "num_examples": 23, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jybvxsag- /home/sid/tuning/finetune/backend/output/jybvxsag-3546/data/jybvxsag-3546.json...
|
null
|
completed
|
1764894108
|
1764904905
|
NULL
|
/home/sid/tuning/finetune/backend/output/jybvxsag- /home/sid/tuning/finetune/backend/output/jybvxsag-3546/adapter...
|
False
|
Edit
Delete
|
|
e79ebb98-ee16-4b4e-bad1-f67528a16b3c
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jzoubfzk-5182
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Superior proteome
|
Superior proteome stability in the longest lived
|
/home/sid/tuning/finetune/backend/output/jzoubfzk- /home/sid/tuning/finetune/backend/output/jzoubfzk-5182/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Superior proteome stability in the longest-lived a Superior proteome stability in the longest-lived animal” investigates why the ocean quahog (Arctica islandica)—a clam that can live over 500 years, the longest-lived animal known—ages extraordinarily slowly. The study reveals that its exceptional lifespan is strongly linked to remarkable stability of its proteome (the full set of proteins in its cells).
The paper explains that aging in most organisms is driven by the gradual accumulation of damaged, misfolded, or aggregated proteins, which disrupt cellular function. Arctica islandica, however, shows:
Key Findings
Extremely low levels of protein oxidation even in very old individuals
Highly efficient protein repair and recycling mechanisms
Exceptional resistance to stress, including oxidative and metabolic stress
Slower protein turnover, meaning proteins remain functional longer without degradation
Stable cellular environment that prevents the buildup of toxic protein aggregates
Together, these mechanisms preserve protein quality for centuries, protecting cells from age-related decline.
Implications
The study suggests that proteome stability is a core determinant of maximum lifespan in animals. It also offers insight into how improving protein maintenance systems in humans could potentially reduce age-related diseases such as neurodegeneration, cardiovascular decline, and metabolic dysfunction.
In essence, Arctica Islandica’s longevity is not a mystery of size or environment—it is a triumph of biochemical housekeeping, where proteins stay “young” far longer than in any other species studied....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jzoubfzk-5182/data/document.pdf", "num_examples": 105, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jzoubfzk- /home/sid/tuning/finetune/backend/output/jzoubfzk-5182/data/jzoubfzk-5182.json...
|
null
|
completed
|
1764867070
|
1764867287
|
NULL
|
/home/sid/tuning/finetune/backend/output/jzoubfzk- /home/sid/tuning/finetune/backend/output/jzoubfzk-5182/adapter...
|
False
|
Edit
Delete
|
|
3770b1f5-7678-4e82-8759-dce971159e9d
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jztokeky-4259
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Evidence for a limit
|
Evidence for a limit to human lifespan
|
/home/sid/tuning/finetune/backend/output/jztokeky- /home/sid/tuning/finetune/backend/output/jztokeky-4259/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Driven by technological progress, human life expec Driven by technological progress, human life expectancy has increased greatly since the nineteenth century. Demographic evidence has revealed an ongoing reduction in old-age mortality and a rise of the maximum age at death, which may gradually extend human longevity1,2. Together with observations that lifespan in various animal species is flexible and can be increased by genetic or pharmaceutical intervention, these results have led to suggestions that longevity may not be subject to strict, species-specific genetic constraints. Here, by analysing global demographic data, we show that improvements in survival with age tend to decline after age 100, and that the age at death of the world’s oldest person has not increased since the 1990s. Our results strongly suggest that the maximum lifespan of humans is fixed and subject to natural constraints. Maximum lifespan is, in contrast to average lifespan, generally assumed to be a stable characteristic of a species3. For humans, the
maximum reported age at death is generally set at 122 years, the age at death of Jeanne Calment, still the oldest documented human
individual who ever lived4. However, some evidence suggests that
maximum lifespan is not fixed. Studies in model organisms have shown that maximum lifespan is flexible and can be affected by genetic and pharmacological interventions5. In Sweden, based on a long series of reliable information on the upper limits of human lifespan, the
maximum reported age at death was found to have risen from about
101 years during the 1860s to about 108 years during the 1990s6. According to the authors, this finding refutes the common assertion that human lifespan is fixed and unchanging over time6. Indeed, the most convincing argument that the maximum lifespan of humans is not fixed is the ongoing increase in life expectancy in most countries over the course of the last century1,2. Figure 1a shows this increase for France, a country with high-quality mortality data, but very similar patterns were found for most other developed nations (Extended Data Fig. 1). Hence, the possibility has been considered that mortality may decline further, breaking any pre-conceived boundaries of human lifespan1,7. As shown by data from the Human Mortality Database8, many of the historical gains in life expectancy have been attributed to a
reduction in early-life mortality. More recent data, however, show
evidence for a decline in late-life mortality, with the fraction of each birth cohort reaching old age increasing with calendar year. In France, the number of individuals per 100,000 surviving to old age (70 and up) has increased since 1900 (Fig. 1b), which points towards a continuing increase in human life expectancy. This pattern is very similar across the other 40 countries and territories included in the database (Extended Data Figs 2, 3). However, the rate of improvement in survival peaks and then declines for very old age levels (Fig. 1c), which points
1Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA. 2Department of Ophthalmology & Visual Sciences, Albert Einstein College of Medicine, Bronx, New York 10461, USA. *These authors contributed equally to this work.
1900 1950 2000 1
100
10,000
Female
Survivors per 100,000
1900 1950 2000
Male
Age (years) 70 80 90 100 105 110
1920 1940 1960 1980 2000
80
85
90
95
100
Year
Age with greatest gain (years)
1900 1920 1940 1960 1980 2000
30 40 50 60 70 80
Year
Life expectancy at birth (years)
Female Male
0204060801 00
0.02
0
0.04
0.06
Age (years)
Rate of change since 1900
Female Male
ab
cd
Figure 1 | Trends in life expectancy and late-life survival. a, Life expectancy at birth for the population in each given year. Life expectancy in France has increased over the course of the 20th and early 21st centuries. b, Regressions of the fraction of people surviving to old age demonstrate that survival has increased since 1900, but the rate of increase appears to be slower for ages over 100. c, Plotting the rate of
change (coefficients resulting from regression of log-transformed data) reveals that gains in survival peak around 100 years of age and then rapidly decline. d, Relationship between calendar year and the age that experiences the most rapid gains in survival over the past 100 years. The age with most rapid gains has increased over the century, but its rise has been slowing and it appears to have reached a plateau...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jztokeky-4259/data/document.pdf", "num_examples": 16, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jztokeky- /home/sid/tuning/finetune/backend/output/jztokeky-4259/data/jztokeky-4259.json...
|
null
|
completed
|
1764899149
|
1764901242
|
NULL
|
/home/sid/tuning/finetune/backend/output/jztokeky- /home/sid/tuning/finetune/backend/output/jztokeky-4259/adapter...
|
False
|
Edit
Delete
|
|
37efdda7-60d9-4c60-8de0-cba093e3e669
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
katkfbve-9427
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The Debate over Falling
|
The Debate over
Falling Fertility
|
/home/sid/tuning/finetune/backend/output/katkfbve- /home/sid/tuning/finetune/backend/output/katkfbve-9427/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“The Debate over Falling Fertility” is a clear, ba “The Debate over Falling Fertility” is a clear, balanced, and deeply analytical review of the world’s rapidly declining fertility rates and the profound demographic, economic, social, and geopolitical consequences this shift will produce throughout the 21st century. Written by David E. Bloom, Michael Kuhn, and Klaus Prettner, the article explains why global fertility has fallen to historic lows, how population growth is slowing or reversing across most regions, and what this means for the future of human societies.
The Debate over fertility longe…
The piece frames declining fertility as a double-edged demographic transformation: one that may either hinder economic dynamism or unlock new forms of prosperity, depending on how governments respond.
Core Theme
1. Global Fertility Is Falling to Record Lows
The article highlights dramatic worldwide declines:
Global fertility fell from 5 children per woman in 1950 to 2.24 today.
It is projected to drop below the replacement rate (2.1) around 2050.
The Debate over fertility longevity
This decline is now universal across very region and income group except parts of Africa and a handful of low-income nations.
As a result:
Global population growth is slowing sharply.
Population size is projected to peak around 10.3 billion in 2084.
Long-term global depopulation is now a realistic scenario.
The Debate over fertility longevity
2. Many Countries Will Experience Major Population Declines
The authors note that between 2025 and 2050:
38 countries (with populations over 1 million) will shrink.
Declines will be largest in:
China (−155.8 million)
Japan (−18 million)
Russia (−7.9 million)
Italy (−7.3 million)
Ukraine (−7 million)
South Korea (−6.5 million)
The Debate over fertility longevity
In some nations, immigration is the only force preventing even steeper declines.
3. Low Fertility Accelerates Population Aging
As fertility drops:
The proportion of older adults expands rapidly.
By 2050, countries with declining populations will see
65+ adults grow from 17.3% to 30.9% of the population.
The Debate over fertility longevity
This puts immense pressure on:
Labor markets
Pension systems
Health systems
Long-term care infrastructure
Challenges of Falling Fertility
The article outlines several risks:
1. Economic Slowdown
Fewer births mean:
Fewer workers
Fewer savers
Fewer consumers
This could reduce growth and shrink national economies.
The Debate over fertility longevity
2. Declining Innovation
With fewer young people:
Idea creation slows
Scientific research may stagnate
The Debate over fertility longevity
The authors cite evidence that a diminishing population could reduce the number of new ideas generated each year.
3. Rising Aging Burdens
Older populations increase:
Healthcare costs
Long-term care needs
Effects on intergenerational support
Younger workers may face mounting financial and caregiving responsibilities.
The Debate over fertility longevity
4. Loss of Geopolitical Influence
Countries with shrinking populations may lose:
Military strength
Global influence
Strategic leverage
Historical examples (e.g., France in the 19th century) illustrate these risks.
The Debate over fertility longevity
Opportunities From Falling Fertility
The authors emphasize that fertility decline brings potential benefits, too:
1. Economic Reallocation
With fewer children:
Less spending on housing and childcare
More resources for:
Innovation
Education
R&D
Advanced technology adoption
The Debate over fertility longevity
2. Higher Labor Force Participation
Lower fertility can boost:
Women’s participation in paid work
Workforce productivity
Savings and capital accumulation
The Debate over fertility longevity
3. Environmental Gains
Smaller populations reduce pressure on:
Climate
Natural resources
Biodiversity
The Debate over fertility longevity
4. More Human Capital
The authors cite research showing that as fertility falls:
Education levels rise
Societies become more innovative
Long-term prosperity increases
The Debate over fertility longevity
Policy Responses and Strategic Choices
The article discusses several avenues for governments:
1. Encourage Fertility
Through:
Family-friendly tax policies
Parental leave
Affordable childcare
Flexible work arrangements
Infertility treatment subsidies
The Debate over fertility longevity
2. Boost Labor Supply
Via:
Raising retirement ages
Improving adult health
Encouraging lifelong education
Increasing female participation
The Debate over fertility longevity
3. Leverage Technology
Automation, AI, robotics, and digitalization can help compensate for smaller workforces.
The Debate over fertility longevity
4. Manage Migration Strategically
Immigration can counteract depopulation in many countries.
The Debate over fertility longevity
Conclusion
“The Debate over Falling Fertility” presents a nuanced and forward-looking analysis of a world transitioning from rapid population growth to a future defined by low fertility, aging, and potential depopulation. The authors argue that declining fertility is neither wholly a crisis nor a blessing—it is a transformative force whose ultimate impact depends on policy, innovation, and society’s adaptability.
The article’s central message is:
Falling fertility is reshaping the world.
Whether the future is defined by stagnation or renewal depends on the choices policymakers make today....
|
{"num_examples": 53, "bad_lines": {"num_examples": 53, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/katkfbve- /home/sid/tuning/finetune/backend/output/katkfbve-9427/data/katkfbve-9427.json...
|
null
|
completed
|
1764446064
|
1764446258
|
NULL
|
/home/sid/tuning/finetune/backend/output/katkfbve- /home/sid/tuning/finetune/backend/output/katkfbve-9427/adapter...
|
False
|
Edit
Delete
|
|
cfc82824-51e1-4f28-94bd-5d2a146aff50
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
kbpgbviq-7258
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Genetics of extreme human
|
Genetics of extreme human longevity to guide drug
|
/home/sid/tuning/finetune/backend/output/kbpgbviq- /home/sid/tuning/finetune/backend/output/kbpgbviq-7258/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Zhengdong D. Zhang 1 ✉, Sofiya Milman1,2, Jhih-R Zhengdong D. Zhang 1 ✉, Sofiya Milman1,2, Jhih-Rong Lin1, Shayne Wierbowski3, Haiyuan Yu3, Nir Barzilai1,2, Vera Gorbunova4, Warren C. Ladiges5, Laura J. Niedernhofer6, Yousin Suh 1,7, Paul D. Robbins 6 and Jan Vijg1,8
Ageing is the greatest risk factor for most common chronic human diseases, and it therefore is a logical target for developing interventions to prevent, mitigate or reverse multiple age-related morbidities. Over the past two decades, genetic and pharmacologic interventions targeting conserved pathways of growth and metabolism have consistently led to substantial extension of the lifespan and healthspan in model organisms as diverse as nematodes, flies and mice. Recent genetic analysis of long-lived individuals is revealing common and rare variants enriched in these same conserved pathways that significantly correlate with longevity. In this Perspective, we summarize recent insights into the genetics of extreme human longevity and propose the use of this rare phenotype to identify genetic variants as molecular targets for gaining insight into the physiology of healthy ageing and the development of new therapies to extend the human healthspan...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/kbpgbviq-7258/data/document.pdf", "num_examples": 21, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/kbpgbviq- /home/sid/tuning/finetune/backend/output/kbpgbviq-7258/data/kbpgbviq-7258.json...
|
null
|
completed
|
1764896137
|
1764903055
|
NULL
|
/home/sid/tuning/finetune/backend/output/kbpgbviq- /home/sid/tuning/finetune/backend/output/kbpgbviq-7258/adapter...
|
False
|
Edit
Delete
|
|
7e7b85ff-d84b-4262-aa6f-4f3c9aa1ca03
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
kfmgkcwc-4841
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The risk of live longer
|
The risk of long life
|
/home/sid/tuning/finetune/backend/output/kfmgkcwc- /home/sid/tuning/finetune/backend/output/kfmgkcwc-4841/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“The Risk of Living Longer – Longevity Science: Ad “The Risk of Living Longer – Longevity Science: Advancing from Cure to Prevention” is a comprehensive webinar presentation that introduces longevity science as an emerging, interdisciplinary field aimed at extending not just lifespan, but healthspan, through prevention-focused, technology-driven, and biologically informed approaches. The session reframes aging itself—not individual diseases—as the central risk factor driving morbidity, mortality, and economic strain in modern societies.
Core Ideas & Insights
1. What Is Longevity Science?
Longevity science views aging as the ultimate cause of most major diseases—cardiovascular disease, cancer, diabetes, dementia—arguing that preventing or slowing biological aging produces far greater health benefits than curing individual diseases. As life expectancy rises globally, interest in the field has surged due to advances in biotechnology, genetics, personalized medicine, AI, and public awareness.
The field integrates:
Biology, genetics, biochemistry
Public health, epidemiology, nutrition
AI, biotechnology, regenerative medicine
Psychology, sociology, demography
Economics, actuarial science, public policy
It positions longevity science as distinct from medicine and gerontology, with a proactive, integrated, and prevention-first mission.
2. Longevity Beyond “Living Longer”
The presentation explains longevity as a three-part concept:
Lifespan extension – more years alive
Healthspan extension – more years in good health
Quality of life – maintaining physical, mental, and social well-being
The societal benefits of healthy longevity include stronger family bonds, extended careers, economic productivity, innovation, intergenerational knowledge exchange, and more sustainable welfare systems.
3. Prevention vs. Cure
A major theme is the shift from treating diseases (reactive) to preventing them (proactive).
Medicine 1.0: Traditional, treats illness after onset
Medicine 2.0: Evidence-based but still reactive
Medicine 3.0: Personalized, data-driven, and prevention-focused
Longevity Medicine: Builds on Medicine 3.0 but targets aging biology itself
The presentation shows that prevention saves money and lives:
$1 spent on prevention may save up to $6 in healthcare costs
Preventing cardiovascular disease is exponentially cheaper than treating it
It demonstrates how age massively outweighs lifestyle risk factors:
Age increases cancer risk 100–1000× more than smoking
Age increases cardiovascular risk hundreds of times more than cholesterol
Age increases dementia risk 300× more than diet alone
Thus, biological aging is the master risk factor.
4. Why Longevity Science Is Needed
Aging affects every system in the body
Aging drives most chronic diseases simultaneously
Treating diseases one-by-one produces limited gains (e.g., curing all cancer adds only ~3 years of life expectancy)
Interventions targeting aging biology could address multiple diseases at once
Historical parallels to public health show how a new interdisciplinary field can reshape society.
5. Creating Systemic Change
The presentation outlines barriers to prevention-first healthcare:
Financial incentives reward treatment, not prevention
Cultural resistance
Upfront investments
Limited infrastructure
Proposed solutions include:
Value-based healthcare payment models
Policy reforms that incentivize prevention
Technology and data analytics integration
Educating both professionals and the public
Corporate and societal culture shifts
6. Making Longevity Medicine Accessible
Recommendations include:
Funding research
Encouraging global collaboration
Public–private partnerships
Faster translation of research to clinics
Insurance coverage for longevity interventions
Lowering costs via generics, scaling production, and technology-driven efficiencies
Overall Conclusion
This presentation reframes longevity science as a new discipline poised to transform health, healthcare systems, and society by shifting from disease treatment to lifespan and healthspan extension through biological age reduction, prevention, technology, and interdisciplinary innovation. It argues that the future of medicine, economics, policy, and global health will be increasingly shaped by our ability to manage the risk of living longer....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/kfmgkcwc-4841/data/document.pdf", "num_examples": 84, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/kfmgkcwc- /home/sid/tuning/finetune/backend/output/kfmgkcwc-4841/data/kfmgkcwc-4841.json...
|
null
|
completed
|
1764872218
|
1764872578
|
NULL
|
/home/sid/tuning/finetune/backend/output/kfmgkcwc- /home/sid/tuning/finetune/backend/output/kfmgkcwc-4841/adapter...
|
False
|
Edit
Delete
|
|
b6d228dd-ade6-4633-8c10-5e3634d6af22
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
khkigpxa-4779
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Population Ageing in East
|
Population Ageing in East and North-East Asi
|
/home/sid/tuning/finetune/backend/output/khkigpxa- /home/sid/tuning/finetune/backend/output/khkigpxa-4779/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is an ESCAP Policy Brief (Issue No. V) th This PDF is an ESCAP Policy Brief (Issue No. V) that analyzes the rapid and unprecedented ageing of populations in East and North-East Asia (ENEA)—including China, Japan, the Republic of Korea, Mongolia, and the DPRK—and explains how this demographic change will affect the region’s ability to achieve the Sustainable Development Goals (SDGs).
It highlights that East and North-East Asia is the fastest-ageing region in the world, already home to 56% of all older persons in Asia-Pacific and 32% of the world’s elderly. The brief warns that ageing in this region is happening much faster than it did in Western countries, giving governments less time to adjust policies.
Population Ageing in East and N…
📌 Key Points of the Document
1. Unprecedented Speed of Ageing
France took 150 years for its population aged 65+ to rise from 7% to 20%.
Japan took only 40 years.
China and Korea will take 35 and 30 years, respectively.
Older persons in ENEA will increase from 190 million (2015) to 300+ million (2030).
Population Ageing in East and N…
🌍 2. Impacts on Sustainable Development Goals
The brief connects population ageing to several SDGs:
A. Rising Inequality & Elderly Poverty (SDGs 1, 5, 10)
Despite economic growth, elderly poverty is high.
Relative poverty among people aged 65+:
Japan: 19.4%
Republic of Korea: 49.6%
OECD average: 12.4%
Women suffer more: “feminization of old-age poverty.”
Population Ageing in East and N…
B. Pressure on Public Expenditure (SDGs 1, 10)
Age-related spending (pensions, healthcare, long-term care, unemployment benefits) will dramatically increase:
Country 2010 2050 (forecast)
China 5.4% 15.1%
Japan 18.2% 21.3%
Korea 6.6% 27.4%
Governments face major challenges in:
Pension reform
Tax increases
Intergenerational fairness
Population Ageing in East and N…
C. Vulnerability of Older Persons in Disasters (SDGs 1, 11)
Asia-Pacific is disaster-prone.
During the 2011 Japan tsunami:
90% of disaster-related deaths were people aged 70+.
Older adults must be included in DRR policies, drills, and evacuation planning.
Population Ageing in East and N…
D. Unmet Need for Long-Term Care (SDG 3)
More elderly-only households
Adult children living far from aging parents
Workers quitting jobs to provide care
Cases of older persons dying alone (Japan, Korea)
China has a law requiring adult children to visit aging parents
Population Ageing in East and N…
Governments must define shared responsibility between:
Family
Community
Government services
E. Gender Inequality in Old Age (SDG 5)
ENEA overall performs poorly on gender equality:
Global Gender Gap Index rankings:
Mongolia (56th)
Russia (75th)
China (91st)
Japan (101st)
Korea (115th)
Gender inequality translates into:
Lower pensions for women
Higher poverty
Poorer social protection
Population Ageing in East and N…
F. Shrinking Labour Force (SDG 8)
Working-age populations are declining sharply, except Mongolia.
Countries like Japan are trying to fix this by:
Increasing women’s workforce participation
Encouraging older persons to stay in the labor market
But:
Many older people want to work
Jobs suitable for them are limited
Population Ageing in East and N…
G. Lack of Age-Friendly Environments (SDGs 11, 16)
Older adults need:
Accessible transport
Inclusive housing
Assistive technology
Safe public spaces
Social participation opportunities
The brief stresses the need to combat ageism and create environments where older persons are active contributors, not passive dependents.
Population Ageing in East and N…
⭐ Overall Conclusion
Population ageing in East and North-East Asia will heavily influence progress on all major SDGs. The region must adopt innovative, inclusive, and urgent policies addressing pensions, healthcare, long-term care, labor markets, gender equality, and age-friendly environments.
ENEA countries are the first in human history to experience ageing at such speed—and their response will serve as a model for the rest of the world as other countries follow the same demographic path....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/khkigpxa-4779/data/document.pdf", "num_examples": 24, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/khkigpxa- /home/sid/tuning/finetune/backend/output/khkigpxa-4779/data/khkigpxa-4779.json...
|
null
|
completed
|
1764875250
|
1764876372
|
NULL
|
/home/sid/tuning/finetune/backend/output/khkigpxa- /home/sid/tuning/finetune/backend/output/khkigpxa-4779/adapter...
|
False
|
Edit
Delete
|
|
2ee08720-b4a3-4a23-8cee-4ebc89d21e8b
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
khncetrn-9998
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
SOURCES OF U.S. LONGEVITY
|
SOURCES OF U.S. LONGEVITY INCREASE
|
/home/sid/tuning/finetune/backend/output/khncetrn- /home/sid/tuning/finetune/backend/output/khncetrn-9998/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Sources of U.S. Longevity Increase, 1960–1997” by “Sources of U.S. Longevity Increase, 1960–1997” by Frank R. Lichtenberg is a landmark economic analysis that explains why Americans lived nearly seven years longer in 1997 than in 1960. The study investigates the year-to-year changes in life expectancy and identifies which factors—medical innovation, health spending, or economic conditions—actually drove longevity gains.
Using a detailed health production function, Lichtenberg treats life expectancy as the “output” of inputs such as medical expenditure and technological innovation (especially pharmaceuticals). By combining annual U.S. data on mortality, health spending, GDP, and new drug approvals, he isolates the true drivers of increased lifespan.
Core Findings
Medical innovation—particularly new drugs—was a major contributor to increased longevity.
New molecular entities (NMEs) approved by the FDA had strong, measurable impacts on life expectancy.
Public health expenditure significantly raised longevity, while private expenditure showed weaker and less consistent effects.
Economic growth (higher GDP) did not explain life expectancy increases—longevity rose even when economic performance was stagnant or negative.
Causality runs from medical innovation to longevity, not the reverse. Life expectancy increases did not trigger more drug approvals.
The findings hold for both Black and White Americans, though the long-run effect of drug innovation on Black longevity was nearly three times larger.
Cost-Effectiveness Results
The study quantifies how much society spends to add one year of life:
Cost per life-year gained through medical care: ~$11,000
Cost per life-year gained through pharmaceutical R&D: ~$1,345
Since the estimated societal value of one life-year is ~$150,000, both types of spending deliver extremely high returns—but drug innovation is vastly more cost-effective.
Overall Conclusion
Longevity gains in the U.S. from 1960 to 1997 were driven primarily by medical progress—especially pharmaceutical innovation—and increased public investment in health. These factors explain the uneven yearly fluctuations in life expectancy far better than income growth or demographic shifts. The study positions drug development as one of the most powerful and efficient tools for increasing human lifespan....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/khncetrn-9998/data/document.pdf", "num_examples": 178, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/khncetrn- /home/sid/tuning/finetune/backend/output/khncetrn-9998/data/khncetrn-9998.json...
|
null
|
completed
|
1764868192
|
1764868627
|
NULL
|
/home/sid/tuning/finetune/backend/output/khncetrn- /home/sid/tuning/finetune/backend/output/khncetrn-9998/adapter...
|
False
|
Edit
Delete
|
|
2c097a57-b4db-452b-8ebb-995eb711d0c5
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
kkcvpjca-8920
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Genetics and athletics
|
Genetics and athletics
|
/home/sid/tuning/finetune/backend/output/kkcvpjca- /home/sid/tuning/finetune/backend/output/kkcvpjca-8920/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Athletic performance is influenced by both genetic Athletic performance is influenced by both genetics and environment. Research shows genetics may explain about 50% of performance differences, but this field has strengths, weaknesses, opportunities, and threats that must be carefully managed
9 Genetic and athletic performance
.
Key Concepts Explained Simply
1. Genetics and Performance
Genes affect traits like strength, endurance, speed, recovery, and injury risk
Athletic performance is not controlled by one gene, but by many genes together
Environment (training, diet, lifestyle) also plays a major role
Gene expression can change due to environment (epigenetics)
2. Example: ACTN3 Gene
ACTN3 helps produce powerful muscle contractions
People with the R allele tend to perform better in power/strength sports
People without the protein (XX genotype) tend to perform better in endurance sports
This does not guarantee success, only increases likelihood
3. Precision Exercise (Personalized Training)
Uses genetic information to tailor training programs
Avoids “one-size-fits-all” training
Can help with:
Training response
Recovery planning
Injury prevention
Talent identification using genes alone is not reliable
SWOT STRUCTURE (Main Framework)
Strengths
Advanced genetic technologies (sequencing, AI, machine learning)
Strong scientific evidence that genetics influences performance
Rapid growth of sports genetics research
International research collaborations and guidelines
Genetic testing is becoming more accepted and accessible
Weaknesses
Many studies have small sample sizes
Athletic traits are very complex and polygenic
Results often lack consistency and generalizability
High cost of genetic research
Genotype scores currently have weak predictive power
Bias in published research
Genetic association does not prove causation
Opportunities
Precision exercise and personalized training
Multi-omics research (genomics, proteomics, metabolomics)
Large multicenter studies with better data
Health screening and injury prevention
Anti-doping detection methods
Commercial applications (with regulation)
Threats
Ethical concerns (privacy, consent, discrimination)
Misleading direct-to-consumer genetic testing companies
Gene doping and genetic manipulation
Lack of regulation and global guidelines
Ethical Issues (Very Important Topic)
Athletes must give informed consent
Privacy and data protection risks
Genetic data may affect insurance, jobs, or mental health
Testing children raises serious ethical concerns
Gene editing for performance is banned
Final Takeaway (One-Line Summary)
Genetics can support athletic performance and health through personalized training, but current scientific, ethical, and practical limitations mean it must be used carefully and responsibly
9 Genetic and athletic performa…
.in the end you have to ask
If you want, I can now:
Create a quiz (MCQs / short answers)
Convert this into presentation slides
Make topic-wise notes
Generate exam questions
Rewrite it in very basic student language
Just tell me what you want next....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/kkcvpjca-8920/data/document.pdf", "num_examples": 278, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/kkcvpjca- /home/sid/tuning/finetune/backend/output/kkcvpjca-8920/data/kkcvpjca-8920.json...
|
null
|
queued
|
1765653120
|
1765655827
|
NULL
|
/home/sid/tuning/finetune/backend/output/kkcvpjca- /home/sid/tuning/finetune/backend/output/kkcvpjca-8920/adapter...
|
False
|
Edit
Delete
|
|
9ac0a086-fa6e-4cda-a2e4-7b607cf12bf6
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
kmwexlrk-6759
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity and Genetic
|
Longevity and Genetic
|
/home/sid/tuning/finetune/backend/output/kmwexlrk- /home/sid/tuning/finetune/backend/output/kmwexlrk-6759/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a scientific mini-review exploring how This PDF is a scientific mini-review exploring how genetics, molecular biology, and cellular mechanisms influence human ageing and lifespan. It summarizes the key genetic pathways, longevity-associated genes, cellular aging processes, and experimental findings that explain why some individuals live significantly longer than others. The paper blends insights from centenarian studies, genomic analyses, model organism research, and molecular aging theories to present a clear, up-to-date overview of longevity science.
The core message:
Ageing is shaped by a complex interaction of genes, cellular processes, and environmental influences — and understanding these mechanisms opens the door to targeted therapies that may slow aging and extend healthy lifespan.
🧬 1. Major Biological Theories of Ageing
The article introduces several foundational ageing theories:
Telomere-shortening theory – telomeres shrink with cell division, driving senescence.
Mitochondrial dysfunction theory – accumulated mitochondrial damage impairs energy production.
DNA-damage accumulation theory – ongoing genomic damage overwhelms repair systems.
These theories highlight ageing as a multifactorial, genetically regulated biological process.
longevity-and-genetics-unraveli…
👨👩👧 2. Genetic Influence on Lifespan
Studies of families and twins show that longevity runs in families — individuals with long-lived parents have a higher chance of living longer themselves. Researchers therefore investigate specific genes that contribute to exceptional lifespan.
longevity-and-genetics-unraveli…
🧬 3. Key Longevity-Associated Genes
FOXO3A
One of the most consistently identified “longevity genes.”
Functions include:
DNA repair
Antioxidant defense
Cellular stress resistance
Its variants strongly correlate with longevity in many populations.
longevity-and-genetics-unraveli…
APOE
Widely studied due to its link with Alzheimer’s disease.
APOE2 and APOE3 variants → associated with longer life and lower cognitive-decline risk.
longevity-and-genetics-unraveli…
KLOTHO
Regulates multiple ageing-related pathways and promotes:
Cognitive health
Cellular repair
Longer lifespan in animal models
longevity-and-genetics-unraveli…
🧬 4. Longevity Pathways: IGF-1 and Insulin Signaling
Studies in worms, flies, and mice show that reducing insulin/IGF-1 pathway activity can significantly extend lifespan.
This pathway is considered one of the central regulators of aging, influencing:
Growth
Metabolism
Stress resistance
Cellular repair
longevity-and-genetics-unraveli…
🍽️ 5. Caloric Restriction & Sirtuins
Caloric restriction (CR) — reduced calories without malnutrition — is one of the most powerful known ways to extend lifespan in animals.
CR activates sirtuins, especially SIRT1, which regulate:
DNA repair
Mitochondrial function
Inflammation control
Sirtuin activators like resveratrol show promising results in animal studies for lifespan extension.
longevity-and-genetics-unraveli…
🧬 6. Telomeres & Telomerase
Telomeres protect chromosomes but shorten with every cell division. Short telomeres → aging and cellular senescence.
Telomerase can rebuild telomeres.
Longer telomeres are associated with greater longevity.
Genetic variations in telomerase-related genes may extend or limit lifespan.
longevity-and-genetics-unraveli…
This pathway is a major target in emerging anti-aging research.
🧬 7. DNA Sequence Properties and Chromatin Organization
The paper includes a unique section analyzing how dinucleotide patterns influence DNA structure and chromatin behavior.
It discusses:
Correlations and anti-correlations between DNA dinucleotide pairs
Their effects on chromatin rigidity and bending
Their potential influence on gene regulation and aging
This part shows how deeply genome architecture itself may affect ageing.
longevity-and-genetics-unraveli…
💊 8. Future Interventions: Senolytics & Targeted Therapies
The review highlights promising future anti-aging strategies:
Senolytics
Drugs that selectively eliminate senescent (“aged”) cells.
CR mimetics
Compounds that reproduce caloric restriction benefits.
Sirtuin activators
Boost cellular repair and stress resistance.
These therapies aim to delay age-related diseases and extend healthy lifespan.
longevity-and-genetics-unraveli…
⚖️ 9. Ethical Implications
Potential lifespan-extending technologies raise ethical concerns:
Resource distribution
Social inequality
Population structure changes
The article stresses that longevity advances must be equitable and socially responsible.
longevity-and-genetics-unraveli…
⭐ Overall Summary
This PDF provides a clear, thorough scientific overview of how genetics influences aging and longevity. It explains the most important genes, pathways, biological mechanisms, and interventions related to lifespan extension. The review shows that while genetics strongly shapes aging, lifestyle and environment also play crucial roles. Advancements in genomics, personalized medicine, and molecular therapeutics offer exciting and promising avenues for extending healthy human life — provided they are pursued ethically and responsibly....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/kmwexlrk-6759/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/kmwexlrk- /home/sid/tuning/finetune/backend/output/kmwexlrk-6759/data/kmwexlrk-6759.json...
|
null
|
failed
|
1764878954
|
1764880158
|
NULL
|
/home/sid/tuning/finetune/backend/output/kmwexlrk- /home/sid/tuning/finetune/backend/output/kmwexlrk-6759/adapter...
|
False
|
Edit
Delete
|
|
cd96d80d-f1be-4c71-8265-658973eaea1a
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
kncglybm-7575
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
A Letter From Santa Claus
|
This is the new version of Christmas data
|
/home/sid/tuning/finetune/backend/output/kncglybm- /home/sid/tuning/finetune/backend/output/kncglybm-7575/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“A Letter From Santa Claus” is a charming and imag “A Letter From Santa Claus” is a charming and imaginative letter written by Mark Twain to his young daughter, Susy Clemens, pretending to be Santa Claus. In the letter, Santa explains that he has received and read all the letters written by Susy and her little sister about what they want for Christmas. He assures her that he delivered the gifts she asked for personally when the girls were asleep and even kissed them both.
Santa then gives Susy detailed, playful instructions for speaking with him through the house’s speaking tube. He tells her that he will stop by the kitchen door around nine in the morning to confirm a confusing detail from her mother’s letter—whether Susy ordered “a trunk full of doll’s clothes.”
Santa says:
George the servant must answer the door blindfolded
No one must speak or he will “die someday” (said humorously, in Santa’s dramatic style)
Susy must listen at the speaking tube
When Santa whistles, she must say “Welcome, Santa Claus!”
He then promises to fly back to the moon to fetch the trunk and reurn down the hall chimney so he can deliver it properly. He gives more instructions: if snow falls in the hall or if his boot leaves a stain, they must leave it as a reminder for Susy to always be a good little girl.
The letter ends with Santa affectionately signing himself as
“Your loving Santa Claus, whom people sometimes call ‘The Man in the Moon.’”
The piece is warm, magical, and filled with Mark Twain’s gentle humor. It captures the innocence of childhood and the loving playfulness of a father writing to his child during Christmas....
|
{"num_examples": 9, "bad_lines": 0 {"num_examples": 9, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/kncglybm- /home/sid/tuning/finetune/backend/output/kncglybm-7575/data/kncglybm-7575.json...
|
null
|
completed
|
1764330590
|
1764330624
|
NULL
|
/home/sid/tuning/finetune/backend/output/kncglybm- /home/sid/tuning/finetune/backend/output/kncglybm-7575/adapter...
|
False
|
Edit
Delete
|
|
58e49716-c1ca-4370-b752-565a6ecd4429
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
kpqzjunv-7424
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity
|
Longevity
|
/home/sid/tuning/finetune/backend/output/kpqzjunv- /home/sid/tuning/finetune/backend/output/kpqzjunv-7424/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is an official section of the State This document is an official section of the State Human Resources Manual detailing the statewide policy, rules, eligibility, and payment procedures for Longevity Pay, which rewards long-term service by state employees.
Purpose
To outline how longevity pay is administered as recognition for long-term state service.
Who Is Covered
Eligible employees include:
Full-time and part-time (20+ hours/week) permanent, probationary, and time-limited employees.
Employees on workers’ compensation leave remain eligible.
Not eligible:
Part-time employees working less than 20 hours
Temporary employees
Key Policy Rules
Eligibility
Employees become eligible after 10 years of total State service. Payment is made annually.
Longevity Pay Amount
Calculated as a percentage of the employee’s annual base pay, depending on total years of service:
Years of State Service Longevity Pay Rate
10–14 years 1.50%
15–19 years 2.25%
20–24 years 3.25%
25+ years 4.50%
The employee’s salary on the eligibility date is used in the calculation.
Total State Service (TSS) Definition
Credit is given for:
Prior state employment (full-time or qualifying part-time)
Authorized military leave
Workers’ compensation leave
Employment with:
NC public schools
Community colleges
NC Agricultural Extension Service
Certain local health/social service agencies
NC judicial system
NC General Assembly (with some exclusions)
Special cases:
Employees working less than 12-month schedules (e.g., school-year employees) receive full-year credit if all scheduled months are worked.
Separation & Prorated Payments
If an eligible employee:
Retires, resigns, or separates early → receives a prorated payment based on months worked since the last eligibility date.
Dies → payment goes to the estate.
Proration example: Each month equals 1/12 of the annual amount.
Special Situations
Transfers between agencies: Receiving agency pays longevity.
Reemployment from another system: Agency verifies previous partial payments.
Appointment changes: May require prorated payments unless temporary.
Leave Without Pay (LWOP): Longevity is delayed until the employee returns and completes a full year.
Military Leave: Prorated payment upon departure; remainder paid upon return.
Short-term disability: Prorated payment allowed.
Workers’ compensation: Employee continues to receive longevity pay as scheduled.
Agency Responsibilities
Agencies must:
Verify and track qualifying service
Process payment forms
Certify service data to the Office of State Human Resources
Effect of Longevity Pay
It is not part of annual base pay
It is not recorded as base salary in personnel records
If you’d like, I can also create:
📌 a simplified summary
📌 a side-by-side comparison with your other longevity pay documents
📌 a presentation-ready overview
📌 or a quick-reference cheat sheet
Just let me know!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/kpqzjunv-7424/data/document.pdf", "num_examples": 32, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/kpqzjunv- /home/sid/tuning/finetune/backend/output/kpqzjunv-7424/data/kpqzjunv-7424.json...
|
null
|
queued
|
1765048008
|
1765048073
|
NULL
|
/home/sid/tuning/finetune/backend/output/kpqzjunv- /home/sid/tuning/finetune/backend/output/kpqzjunv-7424/adapter...
|
False
|
Edit
Delete
|
|
4d143cd1-e2ed-486e-9e2c-05dcd99aae3f
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
kqpdxnql-8909
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
How old id human ?
|
How old is human ?
|
/home/sid/tuning/finetune/backend/output/kqpdxnql- /home/sid/tuning/finetune/backend/output/kqpdxnql-8909/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a scholarly critique and clarification This PDF is a scholarly critique and clarification published in the Journal of Human Evolution (2005), written by anthropologists Kristen Hawkes and James F. O’Connell. It examines and challenges a high-profile claim that human longevity is a recent evolutionary development, supposedly emerging only in the Upper Paleolithic. The document argues that the method used in the original study is flawed and does not accurately measure longevity in fossil populations.
Through comparative primate data, demographic theory, and paleodemographic evidence, the authors demonstrate that fossil death assemblages do not reliably reflect actual population age structures, and therefore cannot be used to claim that modern humans only recently evolved long life.
🔶 1. Purpose of the Article
This paper responds to Caspari & Lee (2004), who argued:
Older adults were rare in earlier hominins (Australopiths, Homo erectus, Neanderthals).
Long-lived older adults first became common with Upper Paleolithic modern humans.
This increase in longevity contributed to modern human evolutionary success.
Hawkes and O’Connell show that these conclusions are unsupported, because the age ratio Caspari & Lee used is not a valid measure of longevity.
🔶 2. Background: The Original Claim
Caspari & Lee analyzed fossil teeth using:
Third molar (M3) eruption to mark adulthood.
Tooth wear to classify “young adults” vs. “old adults.”
Calculated a ratio of old-to-young adult dentitions (OY ratio).
Their findings:
Fossil Group O/Y Ratio
Australopiths 0.12
Homo erectus 0.25
Neanderthals 0.39
Upper Paleolithic modern humans 2.08
They interpreted the dramatic jump in the OY ratio for modern humans as evidence of a major increase in longevity late in human evolution.
🔶 3. Main Argument of the Authors
Hawkes and O’Connell argue that:
⭐ The OY ratio does NOT measure longevity.
Even if ages are correctly estimated, the ratio is strongly influenced by:
Preservation bias (older bones deteriorate more)
Estimation errors (tooth wear ages are imprecise)
Non-random sampling of deaths
Archaeological context (burial practices, living conditions)
Thus, high or low representation of older adults in a fossil assemblage may reflect postmortem processes, not real lifespan differences.
🔶 4. Key Evidence Provided
⭐ A. Cross-primate comparison
The authors calculate OY ratios for:
Japanese macaques
Chimpanzees
Modern human hunter-gatherers
Despite huge differences in their real lifespans:
Macaques live ≈ 30 years
Chimpanzees ≈ 40–50 years
Humans ≈ 70+ years
Their O/Y ratios are nearly identical:
Species O/Y Ratio
Macaques 0.97
Chimpanzees 1.09
Humans 1.12
This proves that if the metric worked, there would be very little variation in OY ratios—even between species with very different longevity.
Therefore, the extreme fossil ratios (e.g., 0.12 to 2.08) cannot reflect real lifespan differences.
How old is human longevity
⭐ B. Paleodemographic Problems
The paper explains why skeletal assemblages almost never reflect real population age structures:
Age estimation errors (especially for adults)
Poor preservation of older individuals’ bones
Non-random sampling of deaths (cultural, ecological, and taphonomic factors)
Even large skeletal samples cannot be assumed to represent living populations.
How old is human longevity
🔶 5. Theoretical Implications
If Caspari & Lee’s OY ratios were valid, they would contradict:
Stable population theory
Known mammalian life-history invariants
Primate patterns linking maturity age with lifespan
Since all primates show a fixed proportional relationship between age at maturity and adult lifespan, drastic jumps in the OY ratio are biologically implausible.
Instead, the variation seen in fossil OY ratios most likely reflects sample bias, not evolutionary change.
🔶 6. Final Conclusion
Hawkes and O’Connell conclude:
❌ The claim that human longevity suddenly increased in the Upper Paleolithic is unsupported.
❌ Fossil age ratios do not measure longevity.
✔ Differences in OY ratios across fossil assemblages reflect archaeological and preservation biases, not biological evolution.
They emphasize that interpreting fossil age structures requires extreme caution, and that modern demographic and primate comparative data provide essential context for understanding ancient life histories.
⭐ Perfect One-Sentence Summary
This PDF demonstrates that the fossil tooth-wear ratio used to claim a late emergence of human longevity is not a valid measure of lifespan, and that differences across fossil assemblages reflect sampling and preservation biases—not real evolutionary changes in human longevity....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/kqpdxnql-8909/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/kqpdxnql- /home/sid/tuning/finetune/backend/output/kqpdxnql-8909/data/kqpdxnql-8909.json...
|
null
|
failed
|
1764891610
|
1764893416
|
NULL
|
/home/sid/tuning/finetune/backend/output/kqpdxnql- /home/sid/tuning/finetune/backend/output/kqpdxnql-8909/adapter...
|
False
|
Edit
Delete
|
|
df23fec6-92d6-4bbd-acf5-cea980c69838
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
kvrwnerg-5889
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Business Case for life
|
The Business Case for
Healthy Longevity
|
/home/sid/tuning/finetune/backend/output/kvrwnerg- /home/sid/tuning/finetune/backend/output/kvrwnerg-5889/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“The Business Case for Healthy Longevity” is a pol “The Business Case for Healthy Longevity” is a policy and economic analysis explaining why investing in healthy longer lives is not just a social necessity but also a powerful economic opportunity. The document argues that as populations age globally, the goal should not be merely extending lifespan but expanding healthspan—the number of years people live in good health, remain productive, and stay engaged with society.
The report shows that healthy longevity strengthens economies, reduces healthcare costs, creates new markets, and reshapes the workforce. To achieve this, societies must encourage prevention, innovation, better public health systems, and age-inclusive policies that unlock the potential of older adults.
⭐ MAIN INSIGHTS
⭐ 1. Healthy Longevity Is an Economic Growth Engine
The document demonstrates that improving health at older ages leads to:
higher workforce participation
greater productivity
increased consumer spending
reduced medical and long-term care costs
Older adults who remain healthy contribute significantly to national economies and the private sector.
The Business Case for healthy l…
⭐ 2. Global Population Ageing Creates Massive Market Opportunities
As people live longer, demand grows for:
digital health
preventive medicine
healthy lifestyle services
elder-friendly housing
assistive technologies
financial products tailored to longer lives
Healthy longevity becomes a multi-trillion-dollar global market.
⭐ 3. Prevention and Early Intervention Provide the Highest Returns
The report emphasizes that delaying the onset of chronic diseases—even by a few years—creates:
large savings for health systems
fewer years lived with disability
higher quality of life
Investments in prevention, screening, physical activity, and healthy environments offer some of the best ROI in public policy.
⭐ 4. Health Systems Must Shift From Treatment to Prevention
Traditional healthcare systems are designed for acute illness, not chronic ageing-related conditions.
The document calls for:
integrated care
community-based health support
personalized and preventive medicine
use of data and digital technologies
long-term health planning
The Business Case for healthy l…
Healthy longevity requires redesigning health systems to focus on lifelong wellbeing.
⭐ 5. Employers Benefit From Healthy, Longer-Working Employees
The paper explains that businesses gain when older employees stay healthy enough to continue working:
lower turnover
preservation of skills and experience
multi-generational teams
reduced disability and absenteeism
Companies that invest in employee wellness and age-inclusive workplaces will outperform those that don’t.
⭐ 6. Innovation Will Drive the Future of Healthy Longevity
Key areas of innovation highlighted include:
AI-driven health tools
wearable sensors
remote monitoring
robotics
precision medicine
nutrition and fitness tech
These tools help older adults maintain independence and manage chronic conditions.
⭐ OVERALL CONCLUSION
“The Business Case for Healthy Longevity” argues that longer lives are only beneficial if they are healthy lives. Healthy longevity is not a cost it is a major economic and social opportunity. By promoting prevention, supporting innovation, and redesigning health and workplace systems, societies can unlock enormous gains in productivity, wellbeing, and economic growth.
The report ultimately positions healthy ageing as one of the most important investments of the 21st century—essential for governments, businesses, and communities....
|
{"num_examples": 609, "bad_lines": {"num_examples": 609, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/kvrwnerg- /home/sid/tuning/finetune/backend/output/kvrwnerg-5889/data/kvrwnerg-5889.json...
|
null
|
completed
|
1764446948
|
1764452511
|
NULL
|
/home/sid/tuning/finetune/backend/output/kvrwnerg- /home/sid/tuning/finetune/backend/output/kvrwnerg-5889/adapter...
|
False
|
Edit
Delete
|
|
610d43ac-65f6-47e5-a69a-f1a32f2f983d
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
kvtjlwpn-8118
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Extension of longevity
|
Extension of longevity in Drosophila mojavensis by
|
/home/sid/tuning/finetune/backend/output/kvtjlwpn- /home/sid/tuning/finetune/backend/output/kvtjlwpn-8118/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Summary
The study by Starmer, Heed, and Rockwood- Summary
The study by Starmer, Heed, and Rockwood-Slusser (1977) investigates the extension of longevity in Drosophila mojavensis when exposed to environmental ethanol and explores the genetic and ecological factors underlying this phenomenon. The authors focus on differences between subraces of D. mojavensis, emphasizing the role of alcohol dehydrogenase (ADH) isozyme polymorphisms, environmental heterogeneity of host plants, and related genetic elements.
Core Findings
Longevity Increase by Ethanol Exposure: Adult D. mojavensis flies, which breed and feed on necrotic cacti, show a significant increase in longevity when exposed to atmospheric ethanol. This longevity extension is:
Diet-independent (i.e., does not depend on yeast ingestion).
Accompanied by retention of mature ovarioles and eggs in females, indicating not just longer life but maintained reproductive potential.
Subrace Differences: Longevity increases differ among strains from different geographic regions:
Flies from Arizona and Sonora, Mexico (subrace BI) exhibit the greatest increase in longevity.
Flies from Baja California, Mexico (subrace BII) show the least increase.
Genetic Correlations:
The longevity response correlates with the frequency of alleles at the alcohol dehydrogenase locus (Adh).
Adh-S allele (slow electrophoretic form) is prevalent in Arizona and Sonora populations; its enzyme product is more heat- and pH-tolerant.
Adh-F allele (fast electrophoretic form) predominates in Baja California populations; its enzyme product is heat- and pH-sensitive but shows higher activity with isopropanol as substrate.
Modifier genes, including those associated with chromosomal inversions on the second chromosome (housing the octanol dehydrogenase locus), may also influence longevity response.
Environmental Heterogeneity: Differences in longevity and allele frequencies correspond to the distinct physical and chemical environments of the host cacti:
Arizona-Sonora flies breed on organpipe cactus (Lemaireocereus thurberi), which exhibits extreme temperature and pH variability.
Baja California flies breed on agria cactus (Machaerocereus gummosus), which shows moderate temperature and pH but contains relatively high concentrations of isopropanol.
The interaction between substrate alcohol content, temperature, and pH likely maintains the polymorphism at the ADH locus and influences evolutionary adaptations.
Experimental Design and Key Results
Experimental Setup
Flies were exposed to various concentrations of atmospheric ethanol (0.0% to 8.0% vol/vol) in sealed vials containing cotton soaked with ethanol solutions.
Longevity was measured as the lifespan of adult flies exposed to ethanol vapors, and data were log-transformed (ln[hr]) for statistical analysis.
Different strains from Baja California, Sonora, and Arizona were tested, alongside analysis of ADH allele frequencies and chromosomal inversions.
Axenic (microbe-free) strains were used to test the effect of yeast ingestion on longevity.
Summary of Key Experiments
Experiment Purpose Main Result
1 (Ethanol dose response) Test longevity response of D. mojavensis adults to ethanol vapors at different concentrations Longevity increased significantly at 1.0%, 2.0%, and 4.0% ethanol; highest female longevity observed in 4.0% ethanol group, with retention of mature eggs
2 (Yeast dependence) Assess whether longevity increase depends on live yeast ingestion Longevity increase occurred regardless of yeast treatment; live yeasts (Candida krusei or Kloeckera apiculata) not essential for enhanced longevity
3 (Subrace and sex differences) Compare longevity response among strains from different regions and sexes Females from Arizona-Sonora (subrace BI) showed significantly greater relative longevity increase than Baja California (subrace BII); males showed less pronounced differences
4 (Isozyme stability tests) Measure heat and pH stability of ADH-F and ADH-S isozymes ADH-F enzyme less stable at high temperature (45°C) and acidic pH compared to ADH-S; ADH-F activity reduced after 7-11 minutes heat exposure
Quantitative Data Highlights
Longevity Response to Ethanol Concentrations (Experiment 1)
Ethanol Concentration (%) Effect on Longevity
0.0 (Control) Baseline
0.5 No significant increase
1.0 Significant increase
2.0 Significant increase (highest relative longevity)
4.0 Significant increase
8.0 No increase (toxicity likely)
Analysis of Variance (Table 1 and Table 3)
Source of Variation Significance (p-value) Effect Description
Ethanol treatment p < 0.001 Strong effect on longevity
Yeast treatment Not significant No strong effect on longevity
Interaction (Ethanol x Yeast) p < 0.05 Minor effects, but overall yeast not required
Subrace p < 0.001 Significant effect on relative longevity
Sex Not significant Sex alone not significant, but sex x subrace interaction significant
Subrace x Sex interaction p < 0.001 Males and females respond differently across subraces
Ethanol treatment (dose) p < 0.01 Different doses produce varying longevity effects
Correlation Coefficients (Longevity Response vs. Genetic Factors)
Genetic Factor Correlation with Longevity Response at 2.0% Ethanol Correlation at 4.0% Ethanol
Frequency of Adh-F allele -0.633 (negative correlation) -0.554 (negative correlation)
Frequency of ST chromosomal arrangement (3rd chromosome) -0.131 (non-significant) 0.004 (non-significant)
Frequency of LP chromosomal arrangement (2nd chromosome) -0.694 (negative correlation) -0.713 (negative correlation)
Ecological and Genetic Interpretations
The Adh-S allele product is more heat- and pH-tolerant, which suits the variable, extreme environment of the organpipe cactus in Arizona and Sonora.
The Adh-F allele product is less stable under heat and acidic conditions but metabolizes isopropanol effectively, aligning with the chemical environment of Baja California’s agria cactus.
The distribution of Adh alleles matches the physical and chemical characteristics of the host cactus substrates, suggesting natural selection shapes the genetic polymorphism at the ADH locus.
The presence of isopropanol in agria cactus tissues may favor the Adh-F allele, as its enzyme shows higher activity with isopropanol.
The second chromosome inversion frequency correlates with longevity response, implicating the octanol dehydrogenase locus and potential modifier genes in ethanol tolerance.
Biological Significance and Implications
The study supports the hypothesis that environmental ethanol serves as a selective agent influencing longevity and allele frequencies in desert-adapted Drosophila.
The increased longevity and maintained reproductive capacity in ethanol vapor suggest a fitness advantage and physiological adaptation.
Findings align with broader research on **genetic polymorphisms in Dros
Smart Summary
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/kvtjlwpn-8118/data/document.pdf", "num_examples": 16, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/kvtjlwpn- /home/sid/tuning/finetune/backend/output/kvtjlwpn-8118/data/kvtjlwpn-8118.json...
|
null
|
completed
|
1764952884
|
1764953213
|
NULL
|
/home/sid/tuning/finetune/backend/output/kvtjlwpn- /home/sid/tuning/finetune/backend/output/kvtjlwpn-8118/adapter...
|
False
|
Edit
Delete
|