|
9de7d2a5-252b-4a53-87c1-f7222877ac4c
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
tdijspez-8905
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Impacts of Poverty
|
Impacts of Poverty and Lifestyles on Mortality
|
/home/sid/tuning/finetune/backend/output/tdijspez- /home/sid/tuning/finetune/backend/output/tdijspez-8905/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This study investigates how poverty and unhealthy This study investigates how poverty and unhealthy lifestyles influence the risk of death in the United Kingdom, using three large, nationally representative cohort studies. Its central conclusion is striking and policy-relevant: poverty is the strongest predictor of mortality, more powerful than any individual lifestyle factor such as smoking, inactivity, obesity, or poor diet.
The study examines five key variables:
Housing tenure (proxy for lifetime poverty)
Poverty
Smoking status
Lack of physical exercise
Unhealthy diet
Across every cohort analyzed, poverty emerges as the single most important determinant of death risk. People living in poverty were twice as likely to die early compared to those who were not. Housing tenure — especially renting rather than owning — similarly predicted higher mortality, reflecting deeper socioeconomic deprivation accumulated over the life course.
Lifestyle factors do matter, but far less so. Smoking increased mortality risk by 94%, lack of exercise by 44%, and unhealthy diet by 33%, while obesity raised the risk by 27%. But even combined, these lifestyle risks did not outweigh the impact of poverty.
The study also demonstrates a powerful cumulative effect: individuals exposed to multiple lifestyle risks + poverty experience the highest mortality hazards of all. However, the data show that eliminating poverty alone would produce larger population-level mortality reductions than eliminating any single lifestyle factor — challenging the common assumption that public health should focus primarily on personal behaviors.
🔍 Key Findings
1. Poverty dominates mortality risk
Poverty had the strongest hazard ratio across all models.
Reducing poverty would therefore generate the largest reduction in premature deaths.
2. Lifestyle risks matter but are secondary
Smoking, inactivity, and diet each contribute to mortality —
but their impact is smaller than poverty’s.
3. Housing tenure is a powerful long-term socioeconomic marker
Renters had significantly higher mortality risk than homeowners,
indicating that lifelong deprivation drives long-term health outcomes.
4. Combined risk exposure worsens mortality dramatically
People who were poor and had multiple unhealthy lifestyle behaviors
experienced the highest mortality hazards.
5. Policy implication: Social determinants must take priority
The study argues that public health must not focus solely on individual lifestyles.
Structural socioeconomic inequalities — income, housing, access, opportunity —
shape the distribution of unhealthy behaviors in the first place.
🧭 Overall Conclusion
This research provides compelling evidence that poverty reduction is the most effective mortality-reduction strategy available, outweighing even the combined effect of major lifestyle changes. While promoting healthy behavior remains important, the paper demonstrates that addressing socioeconomic deprivation is essential for improving national life expectancy and reducing health inequalities....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/tdijspez-8905/data/document.pdf", "num_examples": 84, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/tdijspez- /home/sid/tuning/finetune/backend/output/tdijspez-8905/data/tdijspez-8905.json...
|
null
|
completed
|
1764889556
|
1764893752
|
NULL
|
/home/sid/tuning/finetune/backend/output/tdijspez- /home/sid/tuning/finetune/backend/output/tdijspez-8905/adapter...
|
False
|
Edit
Delete
|
|
421dcfa5-091c-4a6c-99f0-c02be6e82ccc
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
nplhswyv-5794
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Human longevity: Genetics
|
Human longevity: Genetics or Lifestyle
|
/home/sid/tuning/finetune/backend/output/nplhswyv- /home/sid/tuning/finetune/backend/output/nplhswyv-5794/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This review explains that human longevity is shape This review explains that human longevity is shaped by a dynamic interaction between genetics and lifestyle, where neither factor alone is sufficient. About 25% of lifespan variation is due to genetics, while the remainder is influenced by lifestyle, environment, medical care, and epigenetic changes across life.
The paper traces the scientific journey behind understanding longevity, beginning with early experiments in C. elegans showing that mutations in key genes can dramatically extend lifespan. These findings led to the discovery of conserved genetic pathways — such as IGF-1/insulin signaling, FOXO transcription factors, TOR, DNA repair genes, telomere maintenance, and mitochondrial function — that influence cellular maintenance, metabolism, and aging in humans.
Human studies, including twin studies, family studies, and genome-wide association research, confirm a modest but real genetic influence. Siblings of centenarians consistently show higher survival rates, especially men, indicating inherited resilience. However, no single gene determines longevity; instead, many small-effect variants combine, and their cumulative action shapes aging and survival.
The review shows that while genetics provides a foundational capacity for longer life, lifestyle and environment have historically produced the greatest gains in life expectancy. Improvements in sanitation, nutrition, public health, and medical care significantly lengthened lifespan worldwide. Yet these gains have not equally extended healthy life expectancy, prompting research into interventions that target the biological mechanisms of aging.
One key insight is that calorie restriction and nutrient-sensing pathways (IGF-1, FOXO, TOR) are strongly linked to longer life in animals. These discoveries explain why certain traditional diets — like the Mediterranean diet and the Okinawan low-calorie, nutrient-dense diet — are associated with exceptional human longevity. They also motivate the development of drugs that mimic the effects of dietary restriction without requiring major lifestyle changes.
A major emerging field discussed is epigenetics. Epigenetic modifications, such as DNA methylation, reflect both genetic background and lifestyle exposure. They change predictably with age and have become powerful biomarkers through the “epigenetic clock.” These methylation patterns can predict biological age, disease risk, and even all-cause mortality more accurately than telomere length. Epigenetic aging is accelerated in conditions like Down syndrome and slowed in long-lived individuals.
🔍 Key Takeaways
1. Genetics explains ~25% of lifespan variation
Twin and family studies show strong but limited heritability, more pronounced in men and at older ages.
2. Longevity genes maintain cellular integrity
Genes involved in:
DNA repair
Telomere protection
Stress response
Mitochondrial efficiency
Nutrient sensing (IGF-1, FOXO, TOR)
play essential roles in determining aging pace.
3. Lifestyle and environment have the largest historical impact
Modern sanitation, medical advances, nutrition, and lower infection rates dramatically increased human lifespan in the 20th century.
4. Exceptional longevity comes from a “lucky” combination
Some individuals inherit optimal metabolic and stress-response variants; others can mimic these genetic advantages through diet, exercise, and targeted interventions.
5. Epigenetics links genes and lifestyle
DNA methylation patterns:
reflect biological aging
predict mortality
respond to lifestyle factors
may soon serve as targets for anti-aging interventions
6. The future of longevity research targets interactions
Extending healthspan requires approaches that modulate both genetic pathways and lifestyle behaviors, emphasizing that genetics and lifestyle “dance together.”
🧭 Overall Conclusion
Human longevity is not simply written in DNA nor solely determined by lifestyle. Instead, it emerges from the interplay between inherited biological systems and environmental influences across the life course. Small genetic advantages make some individuals naturally more resilient, but lifestyle — particularly nutrition, activity, and stress exposure — can harness or hinder these genetic potentials. Epigenetic processes act as the bridge between the two, shaping how genes express and how fast the body ages.
Longevity, therefore, “takes two to tango”:
genes set the stage, but lifestyle leads the dance....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/nplhswyv-5794/data/document.pdf", "num_examples": 15, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/nplhswyv- /home/sid/tuning/finetune/backend/output/nplhswyv-5794/data/nplhswyv-5794.json...
|
null
|
completed
|
1764890260
|
1764893850
|
NULL
|
/home/sid/tuning/finetune/backend/output/nplhswyv- /home/sid/tuning/finetune/backend/output/nplhswyv-5794/adapter...
|
False
|
Edit
Delete
|
|
c8fe3ce3-f7f5-4b17-8201-998127d7cb80
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
dcrzdwhm-3097
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Life expectancy can
|
Life expectancy can increase
|
/home/sid/tuning/finetune/backend/output/dcrzdwhm- /home/sid/tuning/finetune/backend/output/dcrzdwhm-3097/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a clear, visual, infographic-style gui This PDF is a clear, visual, infographic-style guide that explains the most important, evidence-based strategies for increasing human longevity. It presents a simple but comprehensive overview of how lifestyle, diet, physical activity, sleep, mental health, environment, and harmful habits influence lifespan. Each section highlights practical actions that promote healthy aging and protect the body from premature decline.
The document is divided into eight pillars of longevity, summarizing what science has repeatedly confirmed:
Long life is shaped far more by daily habits than by genetics.
Increase Longevity
🧠 1. Healthy Diet
The PDF emphasizes a balanced eating pattern rich in:
Fruits & vegetables
Lean protein
Whole grains
Low-fat dairy
Such diets reduce chronic disease risk, support immune function, and slow aging.
Increase Longevity
🏃 2. Exercise
Regular physical activity—especially aerobic exercise like walking—helps:
Strengthen the heart
Maintain healthy weight
Lower chronic disease risk
Improve overall fitness
Walking is highlighted as the simplest and most effective activity.
Increase Longevity
💧 3. Hydration
The infographic stresses drinking adequate water every day to:
Support metabolic processes
Aid circulation
Maintain cellular function
Improve cognitive health
Proper hydration is essential for longevity.
Increase Longevity
😴 4. Sleep
Good-quality sleep is described as a longevity multiplier, helping:
Repair and restore tissues
Stabilize hormones
Regulate metabolism
Support long-term brain health
Increase Longevity
😌 5. Stress Management
The PDF highlights stress as a major lifespan reducer.
Effective tools include:
Relaxation activities
Mindfulness
Self-care
Social connection
Increase Longevity
Managing stress lowers inflammation and improves resilience.
🚬 6. Avoid Smoking
Smoking is identified as one of the strongest predictors of early death.
Quitting dramatically improves:
Lung health
Heart health
Vascular function
Increase Longevity
🍺 7. Limit Alcohol
Moderation is key.
Excessive alcohol harms multiple organs and accelerates aging, while controlled consumption avoids long-term damage.
Increase Longevity
🩺 8. Regular Health Checkups
Preventive screenings and routine medical check-ups help catch diseases early—especially heart disease, cancer, and diabetes.
Early detection increases lifespan and improves quality of life.
Increase Longevity
⭐ Overall Summary
This PDF provides a clean and accessible overview of the eight essential lifestyle factors that increase longevity: healthy diet, exercise, hydration, sleep, stress management, avoiding smoking, limiting alcohol, and regular health checkups. It reinforces a simple but powerful truth:
Longevity is built through consistent, everyday healthy habits....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/dcrzdwhm-3097/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/dcrzdwhm- /home/sid/tuning/finetune/backend/output/dcrzdwhm-3097/data/dcrzdwhm-3097.json...
|
null
|
failed
|
1764888801
|
1764893917
|
NULL
|
/home/sid/tuning/finetune/backend/output/dcrzdwhm- /home/sid/tuning/finetune/backend/output/dcrzdwhm-3097/adapter...
|
False
|
Edit
Delete
|
|
2fffd40f-60de-41b8-9d19-0b8a7f3ed1c5
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
pgsfrslr-9904
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Implausibility of radical
|
Implausibility of radical life extension
|
/home/sid/tuning/finetune/backend/output/pgsfrslr- /home/sid/tuning/finetune/backend/output/pgsfrslr-9904/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a scholarly article analyzing whether This PDF is a scholarly article analyzing whether humans can achieve radical life extension—such as living far beyond current maximum lifespans—within the 21st century. Using demographic, biological, and scientific evidence, the authors conclude that such extreme increases in human longevity are highly implausible, if not impossible, within this time frame.
The paper evaluates claims from futurists, technologists, and some biomedical researchers who argue that breakthroughs in biotechnology, genetic engineering, regenerative medicine, or anti-aging science will soon allow humans to live 150, 200, or even indefinitely long lives.
The authors compare these claims with historical mortality trends, scientific constraints, and biological limits of human aging.
📌 Main Themes of the Article
1. Historical Evidence Shows Slow and Steady Gains
Over the past 100+ years, human life expectancy has increased gradually.
These gains are due mostly to:
reductions in infectious disease,
improved public health,
better nutrition,
improved medical care.
Maximum human lifespan has barely changed, even though average life expectancy has risen.
The authors argue that radical jumps (e.g., doubling human lifespan) contradict all known demographic patterns.
2. Biological Limits to Human Longevity
The paper reviews scientific constraints such as:
Cellular senescence, which accumulates with age
DNA damage and mutation load
Protein misfolding and aggregation
Mitochondrial dysfunction
Limits of regeneration in human tissues
Immune system decline
Stochastic biological processes that cannot be fully prevented
These fundamental biological processes suggest that pushing lifespan far beyond ~120 years faces severe biological barriers.
3. Implausibility of “Longevity Escape Velocity”
Some futurists claim that if we slow aging slightly each decade, we can eventually reach a point where people live long enough for science to develop the next anti-aging breakthrough, creating “escape velocity.”
The article argues this is not realistic, because:
Rates of scientific discovery are unpredictable, uneven, and slow.
Aging involves thousands of interconnected biological pathways.
Slowing one pathway often accelerates another.
No current therapy has shown the ability to dramatically extend human lifespan.
4. Exaggerated Claims in Biotechnology
The paper critiques overly optimistic expectations from:
stem cell therapies
genetic engineering
nanotechnology
anti-aging drugs
organ regeneration
cryonics
It explains that many of these technologies:
are in early stages,
work in model organisms but not humans,
target only small aspects of aging,
cannot overcome fundamental biological constraints.
5. Reliable Projections Suggest Only Modest Gains
Using demographic models, the paper concludes:
Life expectancy will likely continue to rise slowly, due to improvements in chronic disease treatment.
But the odds of extending maximum lifespan far beyond ~120 years in this century are extremely low.
Even optimistic projections suggest only small increases—not radical extension.
6. Ethical and Social Considerations
Although not the primary focus, the article acknowledges that extreme longevity raises concerns about:
resource distribution
intergenerational equity
social system sustainability
These issues cannot be adequately addressed given the scientific implausibility of radical extension.
🧾 Overall Conclusion
The PDF concludes that radical life extension for humans in the 21st century is scientifically implausible.
The combination of:
✔ biological limits,
✔ slow historical trends,
✔ lack of evidence for transformative therapies, and
✔ unrealistic predictions from futurists
makes extreme longevity an unlikely outcome before 2100.
The most realistic future involves incremental improvements in healthspan, allowing people to live healthier—not massively longer—lives....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/pgsfrslr-9904/data/document.pdf", "num_examples": 53, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/pgsfrslr- /home/sid/tuning/finetune/backend/output/pgsfrslr-9904/data/pgsfrslr-9904.json...
|
null
|
completed
|
1764888922
|
1764894026
|
NULL
|
/home/sid/tuning/finetune/backend/output/pgsfrslr- /home/sid/tuning/finetune/backend/output/pgsfrslr-9904/adapter...
|
False
|
Edit
Delete
|
|
13dfdef5-914a-45ac-ac60-ab31ec1f8049
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
xjilkgkb-7882
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Investigating causal
|
Investigating causal relationships between
|
/home/sid/tuning/finetune/backend/output/xjilkgkb- /home/sid/tuning/finetune/backend/output/xjilkgkb-7882/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This research article presents one of the largest This research article presents one of the largest and most comprehensive Mendelian Randomization (MR) analyses ever conducted to uncover which environmental exposures (the exposome) have a causal impact on human longevity. Using 461,000+ UK Biobank participants and genetic instruments from 4,587 environmental exposures, the study integrates exposome science with MR methods to identify which factors genuinely cause longer or shorter lifespans, instead of merely being associated.
The study uses genetic variants as unbiased proxies for exposures, allowing the researchers to overcome typical problems in observational studies such as confounding and reverse causation. Longevity is defined by survival to the 90th or 99th percentile of lifespan in large European-ancestry cohorts.
🔶 1. Purpose of the Study
The article aims to:
Identify which components of the exposome causally affect longevity.
Distinguish between real causes of longer life and simple correlations.
Highlight actionable targets for public health and aging research.
It is the first study to systematically test thousands of environmental exposures for causal effects on human lifespan.
🔶 2. Methods
A. Exposures
4,587 environmental exposures were initially screened.
704 exposures met strict quality criteria for MR.
Exposures were grouped into:
Endogenous factors (internal biology)
Exogenous individual-level factors (behaviors, lifestyle)
Exogenous macro-level factors (socioeconomic, environmental)
B. Outcomes
Longevity was defined as survival to:
90th percentile age (≈97 years)
99th percentile age (≈101 years)
C. Analysis
Two-sample Mendelian Randomization
Sensitivity analyses: MR-Egger, weighted median, MR-PRESSO
False discovery rate (FDR) correction applied
Investigating causal relationsh…
🔶 3. Key Results
After rigorous analysis, 53 exposures showed evidence of causal relationships with longevity. These fall into several categories:
⭐ A. Diseases That Causally Reduce Longevity
Several age-related medical conditions strongly decreased the odds of surviving to very old age:
Coronary atherosclerosis
Ischemic heart disease
Angina (diagnosed or self-reported)
Hypertension
Type 2 diabetes
High cholesterol
Alzheimer’s disease
Venous thromboembolism (VTE)
For example:
Ischemic heart disease → 34% lower odds of longevity
Hypertension → 30–32% lower odds of longevity
Investigating causal relationsh…
These findings confirm cardiovascular and metabolic conditions as major causal barriers to long life.
⭐ B. Body Fat and Anthropometric Traits
Higher body fat mass, especially centralized fat, had significant causal negative effects on longevity:
Trunk fat mass
Whole-body fat mass
Arm fat mass
Leg fat mass
Higher BMI
Lean mass, height, and fat-free mass did not causally influence longevity.
Investigating causal relationsh…
This underscores fat accumulation—particularly visceral fat—as a biologically damaging factor for lifespan.
⭐ C. Diet-Related Findings
Unexpectedly, the trait “never eating sugar or sugary foods/drinks” was linked to lower odds of longevity.
This does not mean sugar prolongs life; instead, it likely reflects:
Illness-driven dietary restriction
Reverse causation captured genetically
Investigating causal relationsh…
This finding needs further investigation.
⭐ D. Socioeconomic and Behavioral Factors
One of the strongest protective factors was:
Higher educational attainment
College/university degree → causally increased longevity
Investigating causal relationsh…
This supports the idea that education improves health literacy, income, lifestyle choices, and access to medical care, all contributing to longer life.
⭐ E. Early-Life Factors
Greater height at age 10 was causally associated with lower longevity.
High childhood growth velocity has been linked to metabolic stress later in life.
⭐ F. Family History & Medications
Genetically proxied traits like:
Having parents with heart disease or Alzheimer’s disease
Use of medications like blood pressure drugs, metformin, statins, aspirin
showed causal relationships that mostly mirror their disease categories.
Medication use was negatively associated with longevity, likely reflecting underlying disease burden rather than drug harm.
🔶 4. Validation
Independent datasets confirmed causal effects for:
Myocardial infarction
Coronary artery disease
VTE
Alzheimer’s disease
Body fat mass
Education
Lipids (LDL, HDL, triglycerides)
Type 2 diabetes
Investigating causal relationsh…
This strengthens the reliability of the findings.
🌟 5. Core Conclusions
✔️ Some age-related diseases are true causal reducers of lifespan, especially:
Cardiovascular disease, diabetes, Alzheimer’s, hypertension, and lipid disorders.
✔️ Higher body fat is a causal risk factor for reduced longevity, especially central fat.
✔️ Education causally increases lifespan, pointing to the importance of socioeconomic factors.
✔️ New potential targets for improving longevity include:
Managing VTE
Childhood growth patterns
Healthy body fat control
Optimal sugar intake
Investigating causal relationsh…
⭐ Perfect One-Sentence Summary
This paper uses Mendelian Randomization on thousands of environmental exposures to identify which factors truly cause longer or shorter human lifespans, revealing that cardiovascular and metabolic diseases, high body fat, and low education are major causal reducers of longevity...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/xjilkgkb-7882/data/document.pdf", "num_examples": 53, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/xjilkgkb- /home/sid/tuning/finetune/backend/output/xjilkgkb-7882/data/xjilkgkb-7882.json...
|
null
|
completed
|
1764887666
|
1764894568
|
NULL
|
/home/sid/tuning/finetune/backend/output/xjilkgkb- /home/sid/tuning/finetune/backend/output/xjilkgkb-7882/adapter...
|
False
|
Edit
Delete
|
|
1908c0dd-8bb6-4713-96c1-b7d918205bf6
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
oqftjgyu-8081
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Influence of two methods
|
Influence of two methods of dietary restriction on
|
/home/sid/tuning/finetune/backend/output/oqftjgyu- /home/sid/tuning/finetune/backend/output/oqftjgyu-8081/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Influence of Two Methods of Dietary Restriction on Influence of Two Methods of Dietary Restriction on Life History and Aging in the Cricket Acheta domesticus
Influence of two methods of die…
This study investigates how two forms of dietary restriction (DR)—
Intermittent feeding (food given only at intervals), and
Diet dilution (normal feeding but with lower nutrient concentration)—
affect the growth, maturation, survival, and aging of the house cricket Acheta domesticus.
The purpose is to compare how different restriction strategies change life span, development, and compensatory feeding, and to evaluate whether crickets are a strong model for aging research.
🧬 Why This Matters
Dietary restriction is known to extend lifespan in many species, but mechanisms differ.
Fruit flies (Drosophila) show inconsistent results because of high metabolic demand and water-related confounds; therefore, crickets—larger, omnivorous, and slower-growing—may model vertebrate-like responses more accurately.
Influence of two methods of die…
🍽️ The Two Restriction Methods Studied
1. Intermittent Feeding (DR24, DR36)
Crickets receive food only every 24 or 36 hours.
Key effects:
Total daily intake drops to 48% (DR24) and 31% (DR36) of control diets.
Influence of two methods of die…
They show compensatory overeating when food becomes available, but not enough to make up the deficit.
2. Dietary Dilution (DD25, DD40, DD55)
Food is mixed with cellulose to reduce nutrient density by 25%, 40%, or 55%.
Key effects:
Crickets eat more to compensate, especially older individuals, but still fail to match normal nutrient intake.
Influence of two methods of die…
Compensation is weaker than in intermittent feeding.
🧠 Major Findings
1. Longevity Extension Depends on the Restriction Method
Intermittent Feeding (DR)
Extended lifespan significantly.
DR24 increased longevity by ~18%.
DR36 extended maximum lifespan the most but caused high juvenile mortality.
Influence of two methods of die…
DR mainly extended the adult phase, meaning crickets lived longer as adults, not because they took longer to mature.
Diet Dilution (DD)
Effects varied by dilution level.
DD40 males lived the longest of all groups—164 days, far exceeding controls.
Influence of two methods of die…
Their life extension came not from slower aging, but from extremely delayed maturation.
Thus, DR slows aging, while DD often delays growth, creating extra lifespan by extending the immature stage.
2. Growth and Maturation Are Strongly Affected
DR caused slower growth, delayed maturation, and smaller adult size in females. Males sometimes became larger due to prolonged development.
Influence of two methods of die…
DD dramatically slowed growth, especially in males, producing the slowest-growing but longest-lived individuals (especially DD40 males).
Influence of two methods of die…
3. Gender Differences
Under DR, females benefitted more in lifespan extension, similar to patterns seen in Drosophila.
Influence of two methods of die…
Under DD, males lived far longer than females because males delayed maturation much more extensively.
Influence of two methods of die…
4. Compensation Costs
Compensatory feeding helps maintain growth, but:
It increases metabolic stress,
Reduces survival,
Causes trade-offs between growth and longevity.
Influence of two methods of die…
🧩 Overall Interpretation
The two forms of dietary restriction affect aging through different mechanisms:
Intermittent Feeding
Extends lifespan by slowing adult aging, similar to many vertebrate studies.
Diet Dilution
Extends lifespan mainly by delaying maturation, not by slowing aging.
This demonstrates that dietary restriction is not a single biological phenomenon, but a set of distinct processes influenced by nutrient timing, concentration, and life stage.
🟢 Final Perfect Summary
This study reveals that dietary restriction can extend life in crickets through two pathways:
Intermittent feeding slows aging and extends adult life.
Diet dilution delays maturation and prolongs youth, especially in males.
Crickets showed complex compensatory feeding, developmental trade-offs, and gender-specific responses, confirming them as a strong model for aging research where both development and adulthood are important....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/oqftjgyu-8081/data/document.pdf", "num_examples": 47, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/oqftjgyu- /home/sid/tuning/finetune/backend/output/oqftjgyu-8081/data/oqftjgyu-8081.json...
|
null
|
completed
|
1764888284
|
1764894596
|
NULL
|
/home/sid/tuning/finetune/backend/output/oqftjgyu- /home/sid/tuning/finetune/backend/output/oqftjgyu-8081/adapter...
|
False
|
Edit
Delete
|
|
d355b5ee-0bdd-41f1-b306-51d0d30a7f56
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
aihaukth-5364
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
How Long is Longevity
|
How Long is Long in Longevity
|
/home/sid/tuning/finetune/backend/output/aihaukth- /home/sid/tuning/finetune/backend/output/aihaukth-5364/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This paper explores a deceptively simple question: This paper explores a deceptively simple question: When does longevity actually begin?
Historically, societies have defined “old age” using fixed ages such as 60, 65, or 70, but this study shows that such ages are arbitrary, outdated, and demographically meaningless. Instead, the author proposes a scientific, population-based approach to define the true onset of longevity.
🧠 1. Main Argument
Traditional age thresholds (60–70 years) are not reliable indicators of longevity because:
They were created for social or economic reasons (military service, taxes, pensions).
They ignore how populations change over time.
They do not reflect biological, demographic, or evolutionary realities.
How Long is Long in Longevity
The study’s central idea:
Longevity should not be defined by chronological age—but by how many people remain alive at a given age.
How Long is Long in Longevity
The paper therefore redefines longevity in terms of survivorship, not age.
🔍 2. Why Chronological Age Is Misleading
The author reviews commonly used demographic indicators:
A. Life expectancy
Measures the average lifespan.
Useful, but only shows the mean and not the distribution.
How Long is Long in Longevity
B. Modal age at death (M)
The most common age at death.
Meaningful, but problematic in populations with high infant mortality.
How Long is Long in Longevity
C. Lifetable entropy threshold
Measures lifespan variability and identifies where mortality improvements matter most.
How Long is Long in Longevity
Each indicator gives partial insight, but none fully captures when a life becomes “long.”
🌱 3. A New Concept: Survivorship Ages (s-ages)
The author introduces s-ages, defined as:
x(s) = the age at which a proportion s of the population remains alive.
How Long is Long in Longevity
This is the inverse of the survival function:
s = 1 → birth
s = 0.5 → median lifespan
s = 0.37 → the proposed longevity threshold
S-ages reflect how survival shifts across generations and are mathematically tied to mortality, failure rates, and evolutionary pressures.
⚡ 4. The Key Scientific Breakthrough: Longevity Begins at x(0.37)
Why 37%?
Using the cumulative hazard concept from reliability theory, the author shows:
When cumulative hazard H(x) = 1, the population has experienced enough mortality to kill the average individual.
Mathematically, H(x) = −ln(s).
Setting H(x) = 1 gives s = e⁻¹ ≈ 0.37.
How Long is Long in Longevity
Interpretation:
Longevity begins at the age when only 37% of the population remains alive—x(0.37).
This is a scientifically grounded threshold based on:
Demography
Reliability theory
Evolutionary biology
Not arbitrary retirement-age traditions.
🧬 5. Biological Meaning (Evolutionary View)
Evolutionary biologists argue:
Natural selection weakens after reproductive ages.
Early-life forces determine vitality; later life is governed by “force of failure.”
How Long is Long in Longevity
By linking these views:
The onset of longevity is the point where natural selection stops dominating and accumulated damage becomes the main driver of survival.
This aligns perfectly with the hazard threshold H(x) = 1 → s = 0.37.
📊 6. Empirical Evidence (USA, Denmark, France, 1950–2020)
The paper shows survival curves and s-ages shifting toward older ages across decades.
Key patterns:
The longevity threshold x(0.37) consistently lies well above age 70.
It increases over time along with life expectancy, the entropy threshold, and modal age at death.
All indicators move upward together—showing that longevity is dynamic, not fixed.
How Long is Long in Longevity
In all countries studied:
People in the 1950s reached the x(0.37) longevity threshold much earlier than people today.
Meaning: survival to advanced ages is improving steadily.
🔑 7. Major Conclusions
✔ Longevity cannot be defined by a fixed age like 60 or 65.
✔ Longevity is a population-relative concept—based on survival, not age.
✔ The scientifically justified threshold is:
The age at which only 37% of the population remains alive — x(0.37).
✔ All longevity indicators point to a continuously increasing threshold over time.
✔ Old age today begins much later than traditional retirement ages.
🌟 Perfect One-Sentence Summary
Longevity should be defined not by chronological age but by the survival threshold x(0.37), where only 37% of the population is still alive—marking the scientifically grounded onset of a long life.
If you want, I can also create:
📌 A diagram of the 37% longevity threshold
📌 A mind map
📌 A short summary
📌 A comparison with your other longevity PDFs
📌 A PowerPoint presentation
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/aihaukth-5364/data/document.pdf", "num_examples": 31, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/aihaukth- /home/sid/tuning/finetune/backend/output/aihaukth-5364/data/aihaukth-5364.json...
|
null
|
completed
|
1764891665
|
1764894959
|
NULL
|
/home/sid/tuning/finetune/backend/output/aihaukth- /home/sid/tuning/finetune/backend/output/aihaukth-5364/adapter...
|
False
|
Edit
Delete
|
|
d295b561-a54e-42b9-b518-757cf4cba0c8
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jhaurcfl-8765
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Innovative approaches
|
Innovative approaches to managing longevity risk
|
/home/sid/tuning/finetune/backend/output/jhaurcfl- /home/sid/tuning/finetune/backend/output/jhaurcfl-8765/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a professional actuarial and financial This PDF is a professional actuarial and financial analysis report focused on how Asian countries can manage, mitigate, and transfer longevity risk—the financial risk that people live longer than expected. As populations across Asia age rapidly, pension systems, insurers, governments, and employers face rising strain due to longer lifespans, shrinking workforces, and escalating retirement costs. The report highlights global best practices, limitations of existing pension frameworks, and emerging models designed to stabilize retirement systems under demographic pressure.
The document is both analytical and policy-oriented, offering insights for regulators, insurers, asset managers, and policymakers.
🔶 1. Purpose of the Report
The report aims to:
Explain why longevity risk is increasing in Asia
Assess current pension and retirement structures
Present innovative financial and insurance solutions to manage the growing risk
Provide case studies and global examples
Guide Asian markets in adapting to demographic challenges
Innovative approaches to managi…
🔶 2. The Longevity Risk Challenge in Asia
Asia is aging at an unprecedented speed—faster than Europe and North America did. This creates several structural problems:
✔ Rapid increases in life expectancy
People are living longer than financial systems were designed for.
✔ Declining fertility rates
Shrinking worker-to-retiree ratios threaten the sustainability of pay-as-you-go pension systems.
✔ High savings culture but insufficient retirement readiness
Many households lack formal retirement coverage or under-save.
✔ Growing fiscal pressure on governments
Public pension liabilities expand as longevity rises.
✔ Rising health and long-term care costs
Aging populations require more medical and care services.
Innovative approaches to managi…
🔶 3. Gaps in Current Pension Systems
The report identifies weaknesses across Asian retirement systems:
Heavy reliance on state pension programs that face insolvency risks
Underdeveloped private pension markets
Limited annuity markets
Dependence on lump-sum withdrawals rather than lifetime income
Poor financial literacy regarding longevity risk
Innovative approaches to managi…
These gaps expose both individuals and institutions to substantial long-term financial risk.
🔶 4. Innovative Approaches to Managing Longevity Risk
The report outlines several advanced solutions that Asian markets can adopt:
⭐ A. Longevity Insurance Products
Life annuities
Provide guaranteed income for life
Transfer longevity risk from individuals to insurers
Deferred annuities / longevity insurance
Begin payouts later in life (e.g., at age 80 or 85)
Cost-efficient way to manage tail longevity risk
Enhanced annuities
Adjust payments for poorer-health individuals
Variable annuities and hybrid products
Combine investment and insurance elements
Innovative approaches to managi…
⭐ B. Longevity Risk Transfer Markets
Longevity swaps
Pension funds swap uncertain liabilities for fixed payments
Used widely in the UK; emerging interest in Asia
Longevity bonds
Government- or insurer-issued bonds tied to survival rates
Help investors hedge longevity exposure
Reinsurance solutions
Global reinsurers absorb longevity risk from domestic insurers and pension plans
Innovative approaches to managi…
⭐ C. Institutional Strategies
Better asset–liability matching
Increased allocation to long-duration bonds
Use of inflation-protected assets
Leveraging mortality data analytics and predictive modeling
Innovative approaches to managi…
⭐ D. Public Policy Innovations
Raising retirement ages
Automatic enrollment in pension plans
Financial education to improve individual decision-making
Incentivizing annuitization
Innovative approaches to managi…
🔶 5. Country Examples
The report includes cases from markets such as:
Japan, facing the world’s highest old-age dependency ratio
Singapore, strong mandatory savings but low annuitization
Hong Kong, improving Mandatory Provident Fund design
China, transitioning from family-based to system-based retirement security
Innovative approaches to managi…
Each market faces distinct challenges but shares a common need for innovative longevity solutions.
🔶 6. The Way Forward
The report concludes that Asia must:
Strengthen public and private pension systems
Develop deeper longevity risk transfer markets
Encourage lifelong income solutions
Build regulatory frameworks supporting innovation
Promote digital tools and data-driven longevity analytics
Innovative approaches to managi…
Without intervention, rising life expectancy will create major financial stresses across the region.
⭐ Perfect One-Sentence Summary
This PDF presents a comprehensive analysis of how Asian governments, insurers, and pension systems can manage growing longevity risk by adopting innovative insurance products, risk-transfer instruments, and policy reforms to secure sustainable retirement outcomes....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jhaurcfl-8765/data/document.pdf", "num_examples": 15, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jhaurcfl- /home/sid/tuning/finetune/backend/output/jhaurcfl-8765/data/jhaurcfl-8765.json...
|
null
|
completed
|
1764888208
|
1764895122
|
NULL
|
/home/sid/tuning/finetune/backend/output/jhaurcfl- /home/sid/tuning/finetune/backend/output/jhaurcfl-8765/adapter...
|
False
|
Edit
Delete
|
|
63956c16-65f4-4016-a5a7-b2ceadb5eb36
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
uelhllsj-4431
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Greenland Shark Lifespan
|
Greenland Shark Lifespan and Implications
|
/home/sid/tuning/finetune/backend/output/uelhllsj- /home/sid/tuning/finetune/backend/output/uelhllsj-4431/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a scientific and conceptual exploratio This PDF is a scientific and conceptual exploration of the exceptionally long lifespan of the Greenland shark (Somniosus microcephalus), one of the longest-living vertebrates on Earth, and what its unique biology can teach us about human aging and longevity. The document blends marine biology, evolutionary science, aging research, and comparative physiology to explain how and why the Greenland shark can live for centuries, and which of those mechanisms may inspire future breakthroughs in human life-extension.
🔶 1. Purpose of the Document
The paper has two main goals:
To summarize what is known about the Greenland shark’s extreme longevity
To discuss how its biological traits might inform human aging research
It provides a bridge between animal longevity science and human gerontology, making it relevant for researchers, students, and longevity scholars.
🔶 2. The Greenland Shark: A Longevity Outlier
The Greenland shark is introduced as:
The longest-lived vertebrate known to science
Estimated lifespan: 272 to 500+ years
Mature only at 150 years of age
Lives in the deep, cold waters of the Arctic and North Atlantic
The document emphasizes that its lifespan far exceeds that of whales, tortoises, and other long-lived species.
🔶 3. How Its Age Is Measured
The PDF describes how researchers used radiocarbon dating of eye lens proteins—the same method used in archeology—to determine the shark’s age.
Key points:
Eye lens proteins form before birth and never regenerate
Bomb radiocarbon traces from the 1950s provide a global timestamp
This allows scientists to estimate individual ages with high precision
🔶 4. Biological Factors Behind the Shark’s Longevity
The paper discusses multiple mechanisms that may explain its extraordinary lifespan:
⭐ Slow Metabolism
Lives in near-freezing water
Exhibits extremely slow growth (1 cm per year)
Low metabolic rate reduces cell damage over time
⭐ Cold Environment
Cold temperatures reduce oxidative stress
Proteins and enzymes degrade more slowly
⭐ Minimal Predation & Low Activity
Slow-moving and top of its food chain
Low energy expenditure
⭐ DNA Stability & Repair (Hypothesized)
Potentially enhanced DNA repair systems
Resistance to cancer and cellular senescence
⭐ Extended Development and Late Maturity
Reproductive maturity at ~150 years
Suggests an evolutionary investment in somatic maintenance over early reproduction
These mechanisms collectively support the concept that slow living = long living.
🔶 5. Evolutionary Insights
The document highlights that Greenland sharks follow an evolutionary strategy of:
Slow growth
Late reproduction
Reduced cellular damage
Enhanced long-term survival
This strategy resembles that of other long-lived species (e.g., bowhead whales, naked mole rats) and supports life-history theories of longevity.
🔶 6. Implications for Human Longevity Research
The PDF connects shark biology to human aging questions, suggesting several research implications:
⭐ Metabolic Rate and Aging
Slower metabolic processes may reduce oxidative damage
Could inspire therapies that mimic metabolic slow-down without harming function
⭐ DNA Repair & Cellular Maintenance
Studying shark genetics may reveal protective pathways
Supports research into genome stability and cancer suppression
⭐ Protein Stability at Low Temperatures
Sharks preserve tissue integrity for centuries
May inspire cryopreservation and protein stability research
⭐ Longevity Without Cognitive Decline
Sharks remain functional for centuries
Encourages study of brain aging resilience
The document stresses that while humans cannot adopt cold-water lifestyles, the shark’s biology offers clues to preventing molecular damage, a key factor in aging.
🔶 7. Broader Scientific Significance
The report argues that Greenland shark longevity challenges assumptions about:
Aging speed
Environmental impacts on lifespan
Biological limits of vertebrate aging
It contributes to a growing body of comparative longevity research seeking to understand how some species achieve extreme lifespan and disease resistance.
🔶 8. Conclusion
The PDF concludes that the Greenland shark represents a natural experiment in extreme longevity, offering valuable biological insights that could advance human aging research. While humans cannot replicate the shark’s cold, slow metabolism, studying its physiology and genetics may help uncover pathways that extend lifespan and healthspan in people.
⭐ Perfect One-Sentence Summary
This PDF provides a scientific overview of the Greenland shark’s extraordinary centuries-long lifespan and explores how its unique biology—slow metabolism, environmental adaptation, and exceptional cellular maintenance—may offer important clues for advancing human longevity....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/uelhllsj-4431/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/uelhllsj- /home/sid/tuning/finetune/backend/output/uelhllsj-4431/data/uelhllsj-4431.json...
|
null
|
failed
|
1764894878
|
1764895179
|
NULL
|
/home/sid/tuning/finetune/backend/output/uelhllsj- /home/sid/tuning/finetune/backend/output/uelhllsj-4431/adapter...
|
False
|
Edit
Delete
|
|
b596fa0a-4893-4b7a-b744-95f9f068b63b
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ymoxtdyn-7204
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Impact of Ecological
|
Impact of Ecological Footprint on the Longevity of
|
/home/sid/tuning/finetune/backend/output/ymoxtdyn- /home/sid/tuning/finetune/backend/output/ymoxtdyn-7204/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This study investigates how environmental degradat This study investigates how environmental degradation, ecological footprint, climate factors, and socioeconomic variables influence human life expectancy in major emerging Asian economies including Bangladesh, China, India, Malaysia, South Korea, Singapore, Thailand, and Vietnam.
1. Core Purpose
The research aims to determine whether rising ecological footprint—the pressure placed on natural ecosystems by human use of resources—reduces life expectancy, and how other factors such as globalization, GDP, carbon emissions, temperature, health expenditure, and infant mortality interact with longevity in these countries (2000–2019).
🌍 2. Key Findings
A. Negative Environmental Impacts on Life Expectancy
The study finds that:
Higher ecological footprint ↓ life expectancy
Each 1% rise in ecological footprint reduces life expectancy by 0.021%.
Carbon emissions ↓ life expectancy
A 1% rise in CO₂ emissions reduces life expectancy by 0.0098%.
Rising average temperature ↓ life expectancy
Heatwaves, diseases, respiratory problems, and infectious illnesses are intensified by climate change.
B. Positive Determinants of Longevity
Globalization ↑ life expectancy
Increased trade, technology spread, and global integration improve development and healthcare.
GDP ↑ life expectancy
Economic growth improves living standards, jobs, nutrition, and health services.
Health expenditure ↑ life expectancy
Every 1% rise in public health spending increases life expectancy by 0.089%.
C. Negative Social Determinants
Infant mortality ↓ life expectancy
A 1% rise in infant deaths decreases life expectancy by 0.061%, reflecting poor healthcare quality.
🔍 3. Data & Methods
Panel data (2000–2019) from 8 Asian economies.
Variables include ecological footprint, CO₂ emissions, temperature, GDP, globalization, health expenditure, and infant mortality.
Econometric models used:
Cross-sectional dependence tests
Second-generation unit root tests (Pesaran CADF)
KAO Cointegration
FMOLS (Fully Modified Ordinary Least Squares) for long-run estimations.
The statistical model explains 94% of life expectancy variation (R² = 0.94).
🌱 4. Major Conclusions
Environmental degradation significantly reduces human longevity in emerging Asian countries.
Ecological footprint and temperature rise are major threats to health and human welfare.
Carbon emissions drive respiratory, cardiovascular, and infectious diseases.
Globalization, GDP, and health spending improve life expectancy.
Strong environmental policies are needed to reduce ecological pressure and carbon emissions.
Health systems must be strengthened, especially in developing Asian economies.
🧭 5. Policy Recommendations
Reduce ecological footprint by improving resource efficiency.
Decarbonize industry, transport, and energy sectors.
Invest more in public health systems and medical infrastructure.
Create markets for ecosystem services.
Promote sustainable development, green energy, and trade policies.
Reduce infant mortality through prenatal, maternal, and child healthcare....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/ymoxtdyn-7204/data/document.pdf", "num_examples": 41, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ymoxtdyn- /home/sid/tuning/finetune/backend/output/ymoxtdyn-7204/data/ymoxtdyn-7204.json...
|
null
|
completed
|
1764889621
|
1764895315
|
NULL
|
/home/sid/tuning/finetune/backend/output/ymoxtdyn- /home/sid/tuning/finetune/backend/output/ymoxtdyn-7204/adapter...
|
False
|
Edit
Delete
|
|
417543b9-9abe-41c6-95ae-12b85e4beebd
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
meuvcaig-6493
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
humans in 21st century
|
humans in the twenty-first century
|
/home/sid/tuning/finetune/backend/output/meuvcaig- /home/sid/tuning/finetune/backend/output/meuvcaig-6493/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Implausibility of Radical Life Extension in Humans Implausibility of Radical Life Extension in Humans in the Twenty-First Century
Human in 21st century
This study, published in Nature Aging (2024), analyzes real demographic data from the world’s longest-lived populations to determine whether radical human life extension is occurring—or likely to occur—in this century. The authors conclude that radical life extension is not happening and is biologically implausible unless we discover ways to slow biological aging itself, not just treat diseases.
🧠 1. Central Argument
Over the 20th century, life expectancy grew rapidly due to public health and medical advances. But since 1990, improvements in life expectancy have slowed dramatically across all longest-lived nations.
Human in 21st century
The core message:
Unless aging can be biologically slowed, humans are already near the upper limits of natural life expectancy.
Human in 21st century
📉 2. Has Radical Life Extension Happened?
The authors define radical life extension as:
👉 A 0.3-year increase in life expectancy per year (3 years per decade) — similar to gains during the 20th-century longevity revolution.
Using mortality data from 1990–2019 (Australia, France, Italy, Japan, South Korea, Spain, Sweden, Switzerland, Hong Kong, USA):
🔴 Findings:
Only Hong Kong and South Korea briefly approached this rate (mostly in the 1990s).
Every country shows slowed growth in life expectancy since 2000.
Human in 21st century
The U.S. even experienced declines in life expectancy in recent decades due to midlife mortality.
Human in 21st century
🎯 3. Will Most People Today Reach 100?
The data say no.
Actual probabilities of reaching age 100:
Females: ~5%
Males: ~1.8%
Highest observed: Hong Kong (12.8% females, 4.4% males)
Human in 21st century
Nowhere near the 50% survival to 100 predicted by “radical life extension” futurists.
📊 4. How Hard Is It to Increase Life Expectancy Today?
To add just one year to life expectancy, countries now must reduce mortality at every age by far more than in the past.
Example: For Japanese females (2019):
To go from 88 → 89 years requires
👉 20.3% reduction in death rates at ALL ages.
Human in 21st century
These reductions are increasingly unrealistic using current medical approaches.
🧬 5. Biological & Demographic Constraints
Three demographic signals show humans are approaching biological limits:
A. Life table entropy (H*) is stabilizing
Shows mortality improvements are becoming harder.
Human in 21st century
B. Lifespan inequality (Φ*) is decreasing
Deaths are increasingly compressed into a narrow age window — meaning humans are already dying close to the biological limit.
Human in 21st century
C. Maximum lifespan has stagnated
No increase beyond Jeanne Calment’s record of 122.45 years.
Human in 21st century
Together, these metrics prove that life expectancy gains are slowing because humans are nearing biological constraints—not because progress in medicine has stopped.
🚫 6. What Would Radical Life Extension Require?
The authors create a hypothetical future where life expectancy reaches 110 years.
To achieve this:
70% of females must survive to 100
24% must survive beyond 122.5 (breaking the maximum human lifespan)
6–7% must live to 150
Human in 21st century
This would require:
88% reduction in death rates at every age up to 150
Human in 21st century
This is impossible using only disease treatment. It would require curing most causes of death.
🌍 7. Composite “Best-Case” Mortality Worldwide
The authors compile the lowest death rates ever observed in any country (2019):
Best-case female life expectancy: 88.7 years
Best-case male life expectancy: 83.2 years
Human in 21st century
Even with zero deaths from birth to age 50, life expectancy increases by only one additional year.
Human in 21st century
This shows why further increases are extremely difficult.
🧭 8. Final Conclusions
Radical life extension is not happening in today’s long-lived nations.
Biological and demographic forces limit life expectancy to about 85–90 years for populations.
Survival to 100 will remain rare (around 5–15% for females; 1–5% for males).
Treating diseases alone cannot extend lifespan dramatically.
Only slowing biological aging (geroscience) could meaningfully shift these limits.
Human in 21st century
🌟 Perfect One-Sentence Summary
Humanity is already near the biological limits of life expectancy, and radical life extension in the 21st century is implausible unless science discovers ways to slow the fundamental processes of aging....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/meuvcaig-6493/data/document.pdf", "num_examples": 25, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/meuvcaig- /home/sid/tuning/finetune/backend/output/meuvcaig-6493/data/meuvcaig-6493.json...
|
null
|
completed
|
1764890339
|
1764895445
|
NULL
|
/home/sid/tuning/finetune/backend/output/meuvcaig- /home/sid/tuning/finetune/backend/output/meuvcaig-6493/adapter...
|
False
|
Edit
Delete
|
|
49b24cbd-34ce-4f86-a06d-3f2c2f8f6384
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
iuwkyasg-0219
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Global Roadmap for Health
|
Global Roadmap for Healthy Longevity
|
/home/sid/tuning/finetune/backend/output/iuwkyasg- /home/sid/tuning/finetune/backend/output/iuwkyasg-0219/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Global Roadmap for Healthy Longevity
(Consensus Global Roadmap for Healthy Longevity
(Consensus Study Report, National Academy of Medicine, 2022)
This report presents a global, evidence-based strategy for transforming aging into an opportunity by promoting healthy longevity—a state where people live long lives in good health, with full physical, cognitive, and social functioning, and where societies harness the potential of older adults.
🧠 1. Why This Roadmap Matters
Across the world, populations are aging faster than ever due to:
Longer life expectancy, and
Declining birth rates
The number of people aged 65+ has been growing more rapidly than any other age group, and this trend will continue.
Global Roadmap for Healthy Long…
However, a critical problem exists:
📉 People are living longer, but not healthier.
Between 2000 and 2019, global lifespan increased, especially in low- and middle-income countries,
but years of good health stagnated, meaning more years are spent in poor health.
Global Roadmap for Healthy Long…
🌍 2. Purpose of the Roadmap
To address this challenge, the National Academy of Medicine convened a global, multidisciplinary commission to create a roadmap for achieving healthy longevity worldwide.
Global Roadmap for Healthy Long…
The aim is to help countries develop data-driven, all-of-society strategies that promote health, equity, productivity, and human flourishing across the lifespan.
❤️ 3. What Healthy Longevity Means
According to the commission, healthy longevity is:
Living long with health, function, meaning, purpose, dignity, and social well-being, where years in good health approach the biological lifespan.
Global Roadmap for Healthy Long…
This reflects the WHO definition of health as a state of complete:
physical
mental
social well-being
—not merely the absence of disease.
🎯 4. Vision for the Future
The report emphasizes that aging societies can thrive, not decline, if healthy longevity is embraced as a societal goal.
With the right policies, older adults can:
Contribute meaningfully to families and communities
Participate in the workforce or volunteer roles
Live with dignity, purpose, and independence
Support strong economies and intergenerational cohesion
Global Roadmap for Healthy Long…
⭐ The future can be optimistic—if we act now.
⚠️ 5. The Cost of Inaction
If societies fail to respond, consequences include:
More years lived in poor health
Higher suffering and dependency
Increased financial burden on families
Lost productivity and fewer opportunities for younger and older people
Lower GDP
Larger fiscal pressures on governments
Global Roadmap for Healthy Long…
In short:
Ignoring healthy longevity is expensive—socially and economically.
🧩 6. Principles for Achieving Healthy Longevity
The commission identifies five core principles:
Global Roadmap for Healthy Long…
1. People of all ages should reach their full health potential
With dignity, meaning, purpose, and functioning.
2. Societies must enable optimal health at every age
Creating conditions where individuals can flourish physically, mentally, and socially.
3. Reduce disparities and advance equity
So that people of all countries and social groups benefit.
4. Recognize older adults as valuable human, social, and financial capital
Their contributions strengthen families, communities, and economies.
5. Use data and meaningful metrics
To measure progress, guide policy, and ensure accountability.
🏛️ 7. How Countries Should Act
Every nation must create its own pathway based on its unique demographics, infrastructure, and culture.
However, the roadmap emphasizes:
✔ Government-led calls to action
✔ Evidence-based planning
✔ Multisector collaboration (healthcare, urban design, technology, finance, education)
✔ Building supportive social and community infrastructure
Global Roadmap for Healthy Long…
These are essential for transforming aging from a crisis into an opportunity.
🌟 Perfect One-Sentence Summary
The Global Roadmap for Healthy Longevity outlines how aging societies can ensure that people live longer, healthier, more meaningful lives—and emphasizes that now is the time for coordinated global action to achieve this future.
If you'd like, I can also create:
📌 A diagram / infographic
📌 A short summary
📌 A comparison with your other longevity PDFs
📌 A PowerPoint-style slide set
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/iuwkyasg-0219/data/document.pdf", "num_examples": 4, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/iuwkyasg- /home/sid/tuning/finetune/backend/output/iuwkyasg-0219/data/iuwkyasg-0219.json...
|
null
|
completed
|
1764894928
|
1764895530
|
NULL
|
/home/sid/tuning/finetune/backend/output/iuwkyasg- /home/sid/tuning/finetune/backend/output/iuwkyasg-0219/adapter...
|
False
|
Edit
Delete
|
|
6de08c55-9bdd-4fd7-a7a6-b038ed7aca76
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
nyqlyyen-2541
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The Impact of Longevity
|
The Impact of Longevity Improvements on U.S.
|
/home/sid/tuning/finetune/backend/output/nyqlyyen- /home/sid/tuning/finetune/backend/output/nyqlyyen-2541/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a policy-oriented actuarial and econom This PDF is a policy-oriented actuarial and economic analysis that explains how improvements in U.S. longevity—people living longer than previous generations—affect population size, economic productivity, Social Security, Medicare, government budgets, and overall national well-being. The document uses demographic projections, mortality data, and economic modeling to show how even small improvements in life expectancy significantly change the financial and social landscape of the United States.
Its central message is clear:
Longevity improvements generate substantial economic and societal benefits, but also increase long-term public spending, especially through Social Security and Medicare. Both the benefits and costs must be understood together.
📈 1. What the Document Examines
The paper analyzes:
How rising life expectancy will reshape the U.S. population
The economic value created when people live longer
Increased tax revenues from longer working lives
Higher federal spending resulting from extended retirements
Effects on Social Security, Medicare, and fiscal sustainability
Impact of Longevity improvement…
👥 2. Population & Longevity Trends
The analysis highlights:
The U.S. population is aging as mortality declines.
Even modest improvements in longevity generate large changes in the number of older Americans.
The share of adults over age 65 will continue rising for decades.
Impact of Longevity improvement…
These demographic shifts increase both the economic potential of a healthier older population and the fiscal pressure on entitlement programs.
💵 3. Economic Benefits of Longevity Improvements
Living longer and healthier creates major economic gains:
✔ Increased Labor Supply
Many adults work longer if they remain healthy.
✔ Higher Productivity
Longer education, more experience, and healthier aging improve worker output.
✔ Greater Tax Revenues
Extended working years increase income taxes, payroll taxes, and spending.
✔ Larger Consumer Market
An aging but healthy population boosts demand for goods, services, and innovation.
Impact of Longevity improvement…
🏛 4. Fiscal Costs of Longevity Improvements
The report explains that increased longevity also increases federal spending:
✔ Higher Social Security Outlays
More retirees receiving benefits for more years.
✔ Higher Medicare & Medicaid Costs
Longer lifespans mean longer periods of medical care and long-term care use.
✔ Potential Strain on Disability & Pension Systems
If health improvements do not keep pace with lifespan gains, disability costs may rise.
Impact of Longevity improvement…
⚖️ 5. Net Impact: Benefits vs. Costs
A key conclusion:
Longevity improvements produce very large economic benefits, but public program spending rises as well, requiring policy adjustments.
The document quantifies both sides:
Benefits: trillions of dollars in increased economic value
Costs: higher federal program obligations, especially for the elderly
Impact of Longevity improvement…
The net impact depends on policy choices such as retirement age, health system investment, and how healthspan improves relative to lifespan.
🔮 6. Policy Implications
The PDF suggests that policymakers must prepare for an aging America by:
● Strengthening Social Security solvency
● Reforming Medicare to handle long-term cost growth
● Encouraging longer working lives
● Investing in preventive health and chronic disease management
● Focusing on healthspan, not just lifespan
Impact of Longevity improvement…
If reforms are implemented effectively, longevity improvements can become an economic advantage rather than a fiscal burden.
⭐ Overall Summary
This PDF provides a balanced and research-driven examination of how increasing longevity influences the U.S. economy, government programs, and national finances. It shows that longer lives bring enormous economic value—in productivity, workforce participation, and consumer activity—but also increase federal spending on Social Security and Medicare. The report emphasizes that preparing for an aging population requires proactive adjustments in retirement policy, health care, and fiscal planning....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/nyqlyyen-2541/data/document.pdf", "num_examples": 14, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/nyqlyyen- /home/sid/tuning/finetune/backend/output/nyqlyyen-2541/data/nyqlyyen-2541.json...
|
null
|
completed
|
1764889601
|
1764895602
|
NULL
|
/home/sid/tuning/finetune/backend/output/nyqlyyen- /home/sid/tuning/finetune/backend/output/nyqlyyen-2541/adapter...
|
False
|
Edit
Delete
|
|
2d3ccc6b-f3bd-4607-a795-7430a717089f
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
romzwrbu-7696
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Longevity pyramid
|
Longevity pyramid
|
/home/sid/tuning/finetune/backend/output/romzwrbu- /home/sid/tuning/finetune/backend/output/romzwrbu-7696/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF presents a structured scientific and prac This PDF presents a structured scientific and practical framework—the Longevity Pyramid—that organizes the most important strategies for extending human life and improving healthspan. It combines current research in geroscience, biology of aging, lifestyle medicine, nutrition, exercise physiology, biomarkers, pharmacology, and cutting-edge longevity interventions into a layered model. Each layer represents a different level of reliability, evidence strength, and practical application.
The document’s central message is that longevity should be approached systematically, starting with foundational lifestyle practices and building up to advanced therapies. It also emphasizes that healthy longevity is not only about lifespan (living longer) but about healthspan (living longer and healthier).
🔶 1. Purpose of the Longevity Pyramid
The PDF aims to:
Provide a clear hierarchy of what influences human longevity
Distinguish between evidence-based practices and emerging or experimental interventions
Help people prioritize interventions that give the largest longevity benefit
Bring scientific clarity to an area often filled with hype
Longevity pyramid & strategies …
🔶 2. The Structure of the Longevity Pyramid
The pyramid is divided into tiers, each representing a level of influence and scientific support for longevity strategies.
⭐ Tier 1: Foundational Lifestyle Pillars (Most Important & Most Evidence-Based)
These are the essential habits that strongly support long life in every major study:
✔ Nutrition
Whole-food diets
Caloric moderation
Anti-inflammatory and metabolic health–focused eating patterns
✔ Physical Activity
Regular aerobic exercise
Muscular strength training
Daily movement
✔ Sleep
Consistent 7–9 hours per night
Good sleep hygiene
✔ Stress Management
Mindfulness
Psychological health
Balanced life routines
These factors form the base of the pyramid because they have the greatest overall impact on longevity.
Longevity pyramid & strategies …
⭐ Tier 2: Preventive Medicine & Early Detection
This tier includes:
Regular health screenings
Monitoring biomarkers such as glucose, cholesterol, inflammatory markers
Personalized risk assessment
Vaccinations
Early detection of disease is one of the most powerful tools for extending healthy lifespan.
Longevity pyramid & strategies …
⭐ Tier 3: Pharmacological Longevity Tools
These interventions are medically supported but vary depending on individual risk profiles:
Metformin
Statins
Aspirin (select cases)
Anti-hypertensives
Supplements with evidence-based benefits
Longevity pyramid & strategies …
These are not miracle treatments but targeted interventions that address risk factors that shorten lifespan.
⭐ Tier 4: Geroprotectors & Emerging Longevity Drugs
These are drugs and compounds specifically aimed at slowing aging processes:
Senolytics
Rapalogs (mTOR inhibitors)
NAD+ boosters
Hormetic compounds
Peptides
Longevity pyramid & strategies …
The evidence is strong in animals but still developing in humans.
⭐ Tier 5: Advanced Longevity Technologies (Frontier Science)
This top tier includes the most experimental, emerging, and futuristic interventions:
Gene editing
Stem cell therapies
Epigenetic reprogramming
AI-driven biological optimization
Wearable & biomonitoring technologies
Longevity pyramid & strategies …
These show promise but remain early-stage and require more research.
🔶 3. The Message of the Pyramid
The document emphasizes that many people chase advanced longevity interventions while ignoring the foundations that matter most. The pyramid advocates a bottom-up approach, stressing:
Start with lifestyle
Add preventive medicine
Use pharmacological tools if needed
Incorporate advanced interventions only after mastering the basics
Longevity pyramid & strategies …
It also highlights that there is no single magic longevity pill—true longevity requires a combination of foundational and advanced strategies.
⭐ Perfect One-Sentence Summary
This PDF presents the “Longevity Pyramid,” a structured, evidence-based framework showing that human longevity depends on foundational lifestyle habits first, followed by preventive medicine, targeted drugs, geroprotective therapies, and advanced technologies—offering a complete, hierarchical strategy for extending lifespan and healthspan....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/romzwrbu-7696/data/document.pdf", "num_examples": 196, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/romzwrbu- /home/sid/tuning/finetune/backend/output/romzwrbu-7696/data/romzwrbu-7696.json...
|
null
|
completed
|
1764880164
|
1764895993
|
NULL
|
/home/sid/tuning/finetune/backend/output/romzwrbu- /home/sid/tuning/finetune/backend/output/romzwrbu-7696/adapter...
|
False
|
Edit
Delete
|
|
97060097-4f32-495f-893a-e4a32afbb266
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
dufynboh-9223
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Signature in Long- Lived
|
Signature in Long- Lived Ant Queens
|
/home/sid/tuning/finetune/backend/output/dufynboh- /home/sid/tuning/finetune/backend/output/dufynboh-9223/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The PDF is a scientific research article that inve The PDF is a scientific research article that investigates how different castes of an ant species—especially workers—possess distinct bioenergetic profiles, meaning their cells produce and use energy differently depending on their caste function.
The study uses integrated proteomic and metabolic analyses to uncover how metabolic pathways differ between worker ants, queens, and males, revealing a unique energy-production signature in workers that is not seen in other castes.
📌 Purpose of the Study
The research aims to understand how division of labor in social insects is supported at the cellular and metabolic level.
Because workers perform the majority of colony tasks—like foraging, nursing, defense, and nest maintenance—the authors examine whether their bioenergetic machinery (proteins, mitochondria, and metabolic pathways) is uniquely adapted for their high functional demands.
🧬 Key Findings
1. Workers have a unique bioenergetic signature
Workers differ sharply from queens and males in the abundance of proteins involved in:
NADH metabolism
TCA cycle (citric acid cycle)
Fatty acid oxidation
Oxidative phosphorylation (OXPHOS)
NAD⁺ salvage pathways
Inter-Caste Comparison Reveals …
These differences indicate that worker ants possess a highly specialized, high-efficiency energy system designed to support their physically demanding roles.
2. Worker brains show molecular specializations
Proteomic analysis of brains shows:
Elevated levels of proteins linked to neurometabolic robustness
Stronger support for active, energy-intensive behaviors
Optimization of brain tissue for sustained activity, problem solving, and task execution
Inter-Caste Comparison Reveals …
This suggests that behavioral specialization begins at the cellular level.
3. Mitochondrial activity is specially enhanced in workers
Measurements demonstrate:
Higher mitochondrial respiration
Greater capacity for ATP production
More efficient energy turnover
Workers’ mitochondria are fine-tuned for endurance, allowing them to perform nonstop colony duties.
4. Integration of multiple datasets
The study combines:
Proteomics (“down-up, brain-up, up-down” clusters)
Gene network analysis (WGCNA)
Mitochondrial respiration assays
Pathway enrichment (TCA cycle, amino acid metabolism, glyoxylate cycle)
This holistic approach shows that worker caste metabolism is systemically distinct, not just different in a few proteins.
🐜 Biological Meaning
The findings highlight that social insect caste systems are supported by deep metabolic specialization.
Workers must be energetic, adaptable, and durable, and their bioenergetic profile reflects this.
Queens are optimized for reproduction, not high daily energy expenditure.
Males are optimized for short-lived reproductive roles, with simpler metabolic requirements.
Thus, caste differences are encoded not only in behavior and morphology—but also in core cellular metabolism.
📘 Overall Conclusion
The PDF demonstrates that worker ants have a unique, highly specialized energy-production system, visible across proteins, metabolic pathways, and mitochondrial function. This sets workers apart from other castes and explains their exceptional physical and cognitive performance inside the colony.
It reveals a bioenergetic foundation for division of labor, showing how evolution shapes cellular physiology to match social roles....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/dufynboh-9223/data/document.pdf", "num_examples": 59, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/dufynboh- /home/sid/tuning/finetune/backend/output/dufynboh-9223/data/dufynboh-9223.json...
|
null
|
completed
|
1764887749
|
1764897044
|
NULL
|
/home/sid/tuning/finetune/backend/output/dufynboh- /home/sid/tuning/finetune/backend/output/dufynboh-9223/adapter...
|
False
|
Edit
Delete
|
|
3e73ef7e-46ff-49fa-aa12-b9a92621455a
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
icofglqw-1630
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
How long do patients
|
How long do patients with chronic disease ?
|
/home/sid/tuning/finetune/backend/output/icofglqw- /home/sid/tuning/finetune/backend/output/icofglqw-1630/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The PDF is a clinical research article that invest The PDF is a clinical research article that investigates how long patients with chronic medical conditions live, and how their survival compares with that of the general population. The study focuses on using cohort survival analysis to estimate life expectancy after diagnosis for individuals with chronic diseases.
The document is designed to help clinicians, patients, and caregivers better understand:
the prognosis of chronic illnesses,
the expected years of life after diagnosis, and
variations in survival based on disease type, risk factors, and demographics.
The study includes both model-based projections and observed survival curves from multiple patient populations.
📌 Main Purpose of the PDF
To provide accurate survival estimates for chronic disease patients by analyzing:
life expectancy after diagnosis,
mortality rates over time,
relative survival compared with age-matched individuals,
the effect of disease severity and comorbidities.
The paper aims to offer practical, medically meaningful data for planning long-term patient care.
🏥 Diseases Analyzed
The document examines survival patterns for multiple chronic illnesses (as shown in the extracted table), including:
Diabetes
Hypertension
Chronic Obstructive Pulmonary Disease (COPD)
Coronary artery disease
Cancer (various types)
Heart failure
Chronic kidney disease
Each condition has its own survival profile, reflecting its unique biological and clinical course.
📊 Key Findings
1. Survival varies greatly by disease type.
Some diseases show relatively long survival (e.g., controlled hypertension), while others show rapid decline (e.g., advanced heart failure or late-stage cancer).
2. Life expectancy decreases significantly with disease severity.
Mild and moderate stages allow longer survival.
Severe stages reduce life expectancy sharply.
3. Age at diagnosis has a major effect.
Younger patients typically lose more potential life years, even if they survive longer after diagnosis.
4. Comorbidities worsen survival outcomes.
Patients with multiple chronic conditions have significantly lower life expectancy than those with a single disease.
📈 Data & Tables Provided
The PDF includes a major table that lists:
Years lived after diagnosis
Average age at death
Expected survival window
Comparison with general population life expectancy
Example entries include life expectancy figures such as:
Patients living 5–8 years after diagnosis of certain diseases
Some conditions showing surviving 10–14 years
Severe diseases showing survival 3–6 years
All data illustrate how chronic illness reduces lifespan and initiates a predictable survival pattern.
🧪 Methodology
The study uses:
Cohort survival analysis
Longitudinal patient records over many years
Kaplan–Meier survival curves
Hazard ratio modeling
These methods provide precise, statistically robust estimates of life expectancy.
❤️ Why This Information Matters
The document helps:
Patients
Understand realistic expectations for future health and lifespan.
Clinicians
Plan treatment goals, monitoring frequency, and long-term care.
Caregivers & Families
Make informed decisions about support, lifestyle adjustments, and long-term planning.
🧾 Overall Conclusion
The PDF shows that chronic diseases significantly reduce life expectancy, but the extent varies widely depending on:
disease type,
severity,
patient age,
and comorbid conditions.
It provides clear survival data to guide medical decision-making and patient counseling.
If you want, I can also provide:
✅ a short summary
✅ a very simple explanation
✅ a list of life expectancies by disease
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/icofglqw-1630/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/icofglqw- /home/sid/tuning/finetune/backend/output/icofglqw-1630/data/icofglqw-1630.json...
|
null
|
failed
|
1764891680
|
1764897097
|
NULL
|
/home/sid/tuning/finetune/backend/output/icofglqw- /home/sid/tuning/finetune/backend/output/icofglqw-1630/adapter...
|
False
|
Edit
Delete
|
|
45e10f36-62a4-4a66-916a-d8c72cd4e215
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
nhhhywgu-7544
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Healthy longevity in the
|
Healthy longevity in the Asia
|
/home/sid/tuning/finetune/backend/output/nhhhywgu- /home/sid/tuning/finetune/backend/output/nhhhywgu-7544/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This report presents a comprehensive overview of h This report presents a comprehensive overview of how Asian societies are aging and how they can achieve healthy longevity — the ability to live long lives in good health, free from disease, disability, and social decline. It highlights the population changes, health challenges, and policy solutions required for Asia to benefit from the longevity revolution.
🧠 1. Core Idea
Asia is aging at an unprecedented speed, and many countries will become “super-aged” (≥20% of population aged 65+) within the next few decades.
Healthy longevity is no longer optional — it is a social, economic, and health imperative.
Healthy longevity in the Asia
The report argues that countries must shift from managing aging to maximizing healthy aging, preventing disease earlier, redesigning health systems, and building environments where people can live longer, healthier lives.
🌏 2. The Demographic Shift in Asia
✔ Asia is the world’s fastest-aging region
Nations like Japan, South Korea, Singapore, and China are experiencing rapid increases in older populations.
Life expectancy is rising while fertility declines.
Healthy longevity in the Asia
✔ The aging transition affects health, workforce, economy, and social systems
Older populations require more medical care, long-term care, and supportive environments.
✔ Many countries will reach a “super-aged” status by 2030–2050
Healthy longevity in the Asia
❤️ 3. What “Healthy Longevity” Means
The report defines healthy longevity as:
The state in which an individual lives both long and well — maintaining physical, mental, social, and economic well-being throughout old age.
Healthy longevity in the Asia
It is not just lifespan, but healthspan — the number of years lived in good health.
🧬 4. Key Determinants of Healthy Longevity in Asia
A. Health Systems Must Shift to Preventive Care
Focus on chronic disease prevention
Detect disease earlier
Improve access to healthcare
Healthy longevity in the Asia
B. Social Determinants Matter
Education
Income
Healthy behavior
Social connection
Healthy longevity in the Asia
C. Lifelong Health Behaviors
Smoking, diet, exercise, and social engagement strongly influence later-life health.
Healthy longevity in the Asia
D. Age-Friendly Cities & Infrastructure
Walkability, transportation, housing, technology, and safety play major roles.
Healthy longevity in the Asia
E. Technology & Innovation
Digital health, AI, robotics, and telemedicine are critical tools for elderly care.
Healthy longevity in the Asia
🏥 5. Challenges Facing Asia
1. Chronic Non-Communicable Diseases (NCDs)
Heart disease, cancer, diabetes, and stroke dominate morbidity and mortality.
Healthy longevity in the Asia
2. Unequal Access to Healthcare
Rural–urban gaps, poverty, and service shortages create disparities.
Healthy longevity in the Asia
3. Long-Term Care Needs Are Exploding
Asian families traditionally provided care, but modern lifestyles reduce this capacity.
Healthy longevity in the Asia
4. Financial Pressure on Health and Pension Systems
Governments face rising costs as populations age.
Healthy longevity in the Asia
🎯 6. Policy Recommendations
A. Promote Preventive Health Across the Lifespan
Encourage healthy behaviors from childhood to old age.
Healthy longevity in the Asia
B. Strengthen Primary Care
Shift from hospital-based to community-based systems.
Healthy longevity in the Asia
C. Build Age-Inclusive Environments
Urban design, transport, and housing must support healthy and active aging.
Healthy longevity in the Asia
D. Use Technology to Transform Elder Care
Smart homes, assistive devices, robotics, digital monitoring.
Healthy longevity in the Asia
E. Support Caregivers & Expand Long-Term Care Systems
Formal and informal caregivers both need training and resources.
Healthy longevity in the Asia
🌟 7. The Vision for Asia’s Healthy Longevity Future
By embracing innovation, prevention, community care, and age-friendly environments, Asia can transform aging into an opportunity rather than a crisis.
The report envisions societies where:
People stay healthy longer
Older adults remain active contributors
Healthcare is affordable and accessible
Cities and communities support aging with dignity
Healthy longevity in the Asia
🌟 Perfect One-Sentence Summary
Healthy longevity in Asia requires transforming health systems, environments, and societies to ensure people not only live longer but live better across their entire lifespan.
If you want, I can also provide:
📌 A diagram
📌 A mind map
📌 A short summary
📌 A 10-slide presentation
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/nhhhywgu-7544/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/nhhhywgu- /home/sid/tuning/finetune/backend/output/nhhhywgu-7544/data/nhhhywgu-7544.json...
|
null
|
failed
|
1764892626
|
1764897141
|
NULL
|
/home/sid/tuning/finetune/backend/output/nhhhywgu- /home/sid/tuning/finetune/backend/output/nhhhywgu-7544/adapter...
|
False
|
Edit
Delete
|
|
428043fc-4f50-4624-ab06-892cf67f7510
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
gvecdvlb-2105
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Intermittent and periodic
|
Intermittent and periodic fasting, longevity and d
|
/home/sid/tuning/finetune/backend/output/gvecdvlb- /home/sid/tuning/finetune/backend/output/gvecdvlb-2105/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This article is a comprehensive scientific review This article is a comprehensive scientific review explaining how intermittent fasting (IF) and periodic fasting (PF) affect metabolism, cellular stress resistance, aging, and chronic disease risk. It synthesizes animal studies, human trials, and mechanistic biology to show that structured fasting is a powerful biological signal that recalibrates energy pathways, activates repair systems, and promotes long-term resilience.
🧠 1. What Fasting Does to the Body (Core Biological Mechanisms)
Switch from glucose to ketones
After several hours of fasting, the body shifts from glucose metabolism to fat-derived ketone bodies, allowing organs—especially the brain—to use energy more efficiently.
lifespan and longevity
Activation of cellular repair pathways
Fasting triggers:
Autophagy (cellular clean-up)
DNA repair
Stress-response proteins
These protect cells from oxidation, inflammation, and molecular damage.
lifespan and longevity
Reduced inflammation & oxidative stress
Inflammatory markers drop globally, enhancing resistance to many chronic diseases.
lifespan and longevity
💪 2. Intermittent Fasting (Shorter Fasts: Hours–1 Day)
IF includes time-restricted feeding and alternate-day fasting.
Metabolic Effects
Improved insulin sensitivity
Lower glucose and insulin levels
Enhanced fat metabolism
lifespan and longevity
Neuronal Protection
IF protects neurons by:
Boosting neurotrophic factors
Enhancing mitochondrial efficiency
Improving synaptic function
lifespan and longevity
Chronic Disease Prevention
Regular IF reduces risk factors for:
Diabetes
Cardiovascular disease
Obesity
lifespan and longevity
🧬 3. Periodic Fasting (Longer Fasts: 2+ Days)
PF includes 2–5 day fasting cycles or fasting-mimicking diets.
Deep Cellular Renewal
Extended fasting induces:
Regeneration of immune cells
Reduction of damaged cells
Reset of metabolic signals like IGF-1 and mTOR
lifespan and longevity
Longevity Effects
In animal studies, PF delays:
Aging
Cognitive decline
Inflammatory diseases
lifespan and longevity
PF produces benefits not achieved with IF alone.
❤️ 4. Effects on Major Organs & Systems
Brain
Fasting enhances:
Stress resistance
Neuroplasticity
Cognitive performance
lifespan and longevity
Cardiovascular System
Effects include:
Lower resting blood pressure
Reduced cholesterol & triglycerides
Reduced heart disease risk
lifespan and longevity
Immune System
PF cycles can:
Reduce autoimmune responses
Enhance immune regeneration
lifespan and longevity
Metabolism
Both IF and PF improve:
Fat oxidation
Glucose control
Mitochondrial performance
lifespan and longevity
🧪 5. Animal and Human Evidence
Animal Studies
Across multiple species, fasting:
Extends lifespan
Delays age-related diseases
Enhances resilience to toxins & stress
lifespan and longevity
Human Studies
Observed effects include:
Reduced inflammation
Weight loss
Better metabolic health
Improved cardiovascular markers
lifespan and longevity
Clinical trials also show benefits during:
Obesity treatment
Chemotherapy support
Autoimmune conditions
lifespan and longevity
🎯 6. Why Fasting Promotes Longevity
The paper emphasizes a unified principle:
⭐ Fasting temporarily stresses the body → the body adapts → long-term resilience and repair improve
These adaptive processes:
Protect cells
Delay aging
Reduce disease susceptibility
lifespan and longevity
This “metabolic switching + cellular repair" framework is central to its longevity effects.
⚠️ 7. Risks, Considerations, & Who Should Not Fast
Although the article focuses on benefits, it also notes that fasting must be medically supervised for:
Frail individuals
People with chronic diseases
Underweight individuals
Pregnant or breastfeeding women
lifespan and longevity
🏁 PERFECT ONE-SENTENCE SUMMARY
Intermittent and periodic fasting activate powerful metabolic and cellular repair processes that enhance stress resistance, improve multiple biomarkers of health, and can extend longevity while reducing the risk of many chronic diseases....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/gvecdvlb-2105/data/document.pdf", "num_examples": 83, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/gvecdvlb- /home/sid/tuning/finetune/backend/output/gvecdvlb-2105/data/gvecdvlb-2105.json...
|
null
|
completed
|
1764887726
|
1764897300
|
NULL
|
/home/sid/tuning/finetune/backend/output/gvecdvlb- /home/sid/tuning/finetune/backend/output/gvecdvlb-2105/adapter...
|
False
|
Edit
Delete
|
|
194a372b-87c4-4e26-a935-ef24e7b7f767
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
sigapesq-1263
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Host Longevity Matters
|
Host Longevity Matters
|
/home/sid/tuning/finetune/backend/output/sigapesq- /home/sid/tuning/finetune/backend/output/sigapesq-1263/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
“Host Longevity Matters” investigates how the rema “Host Longevity Matters” investigates how the remaining lifespan of a host influences the basic reproduction number (R₀) of infectious diseases. Unlike traditional epidemiological models—which often assume infinite infectious duration or ignore host lifespan—the authors show that R₀ is deeply shaped by host longevity, especially for long-lasting infections.
The study combines two powerful components:
A within-host model capturing pathogen replication, mutation, immune response, and resource dynamics.
A between-host transmission model capturing contact structure, secondary infections, and network effects.
By integrating both layers, the paper explores how pathogen evolution depends on two internal parameters:
Replication rate (ρ)
Successful mutation probability (δ)
and one external ecological parameter:
Host contact rate (α)
The goal is to determine which pathogen strategy maximizes R₀ under different host lifespans.
🔍 Core Insight
Pathogens evolve toward one of two fundamental strategies:
1. Killer-like Strategy
Fast replication
Intermediate mutation rates
High pathogen load
Short, intense infections
Favors rapid spread when:
Host lifespan is short, OR
Host contact rates are low
2. Milker-like Strategy
Slow replication
High mutation rates
Low, sustained pathogen load
Long infection duration
Favors persistence when:
Host lifespan is long, AND/OR
Contact rates are high
The study demonstrates a sharp transition between these strategies depending on the combination of:
Host longevity (Dmax)
Contact rate (α)
This yields a bifurcation line separating killer-like from milker-like evolutionary optima.
📈 Key Findings
1. Host Longevity Strongly Shapes R₀
For short-lived hosts (e.g., insects), R₀ increases roughly linearly with contact rate.
For long-lived hosts (e.g., humans), R₀ rapidly reaches a plateau even with moderate contact.
The impact of longevity is large enough to change evolutionary conclusions from previous models.
2. Strategy Switch Depends on Contact Rate
There exists a critical contact rate αₙ, where pathogens switch from:
Killer strategy (fast replication)
to Milker strategy (slow replication)
The value of αₙ shifts strongly with host lifespan.
3. Above a Certain Longevity Threshold, Only Milker Strategy Is Optimal
For very long-lived hosts:
Killer-like strategies disappear entirely.
Pathogens evolve toward mild, persistent infections.
This explains why many long-standing human diseases show long-duration, low-virulence dynamics.
4. Zoonotic Diseases Are Exceptions
Because they originate from short-lived animals, zoonoses (e.g., avian influenza, Ebola) are often:
Highly virulent
Fast-replicating
Short-lasting (killer-like)
This aligns with the model’s predictions.
🧠 Implications
For Evolutionary Epidemiology
Host longevity must be included when predicting pathogen evolution.
Long-lived species tend to select for milder, persistent pathogens.
For Public Health
Models ignoring host lifespan may misestimate epidemic thresholds.
When evaluating disease control strategies, lifespan restriction (e.g., culling, selective breeding) can alter pathogen evolution.
For Theory
This model is among the first to show that R₀ is not purely a pathogen trait, but emerges from interaction between:
Host immune dynamics
Lifespan constraints
Contact structures
Pathogen mutation and replication
🧭 In Summary
“Host Longevity Matters” shows that the lifespan of a host is a critical, previously overlooked determinant of pathogen fitness and evolution.
Long-lived hosts push pathogens toward slow, stealthy, “milker-like” behavior.
Short-lived hosts favor fast, damaging “killer-like” pathogens.
This work demonstrates that R₀, infection strategy, and pathogen evolution are inseparable from host longevity....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/sigapesq-1263/data/document.pdf", "num_examples": 39, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/sigapesq- /home/sid/tuning/finetune/backend/output/sigapesq-1263/data/sigapesq-1263.json...
|
null
|
completed
|
1764892570
|
1764897369
|
NULL
|
/home/sid/tuning/finetune/backend/output/sigapesq- /home/sid/tuning/finetune/backend/output/sigapesq-1263/adapter...
|
False
|
Edit
Delete
|
|
8a79b710-547a-4f71-ae54-cb52c6750cb8
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
xofkgdzk-4012
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Healthy lifestyle
|
Healthy lifestyle and life expectancy
|
/home/sid/tuning/finetune/backend/output/xofkgdzk- /home/sid/tuning/finetune/backend/output/xofkgdzk-4012/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a scientific study that examines how f This PDF is a scientific study that examines how four major lifestyle behaviors affect life expectancy, especially in people with and without chronic diseases. The research evaluates how combinations of healthy habits can increase lifespan, even for individuals already diagnosed with long-term medical conditions.
It provides evidence on how lifestyle choices—including smoking, alcohol consumption, physical activity, and body weight—change the number of years a person can expect to live from age 50 onward.
The paper includes summary tables, life expectancy comparisons, and detailed statistical analysis across three chronic diseases.
📌 Main Purpose of the Study
To quantify how healthy lifestyle patterns influence:
✔ Life expectancy at age 50
✔ Additional years lived with and without chronic disease
✔ Survival differences between lifestyle groups
✔ The impact of disease type on lifestyle benefits
The research aims to show that lifestyle improvement is beneficial at any health status, including for patients with:
Cancer
Cardiovascular disease
Type 2 diabetes
🧬 Key Lifestyle Behaviors Analyzed
The study focuses on four major risk factors:
Smoking status
Body Mass Index (BMI)
Physical activity levels
Alcohol intake
Participants are grouped into three lifestyle categories (as shown in the table):
Unhealthy lifestyle
Intermediate lifestyle
Healthy lifestyle
📊 Major Findings
1️⃣ Healthy lifestyle significantly increases life expectancy
For all participants, adopting a healthy lifestyle increases life expectancy at age 50 by:
5.2 additional years for men
4.9 additional years for women
Even moderate improvement (intermediate lifestyle) adds several years of life.
2️⃣ Benefits apply to people WITH chronic diseases
Individuals with existing chronic diseases also gain extra years from healthier behaviors.
Cancer patients
Healthy lifestyle adds 6.1 years
Cardiovascular disease patients
Healthy lifestyle adds 5.0 years
Patients with diabetes
Healthy lifestyle adds 3.4 years
This proves that lifestyle still matters, even after disease onset.
3️⃣ Unhealthy lifestyle causes large losses in life expectancy
For the unhealthy lifestyle group, expected life after age 50 drops below:
20.7 years for men
24.1 years for women
—significantly lower than those living healthily.
4️⃣ Healthy lifestyle increases disease-free years
The study shows that individuals with healthier habits spend:
more years without chronic disease
fewer years with disability
more years with better physical functioning
📉 Data Table Summary (from PDF)
The table in the PDF summarizes life expectancy under 4 conditions:
Without disease ("—")
Cancer
Cardiovascular disease (CVD)
Diabetes
Life expectancy from age 50 varies by lifestyle:
Healthy lifestyle (best outcomes)
≈ 29.0–31.0 additional years
Intermediate
≈ 26.0–28.0 years
Unhealthy lifestyle
≈ 20.7–24.1 years
The table clearly displays the contribution of each lifestyle category and disease state to total remaining lifespan.
🧾 Overall Conclusion
The PDF concludes that a healthy lifestyle dramatically increases life expectancy, regardless of disease status.
Key takeaways:
✔ Lifestyle improvements reduce mortality
✔ Benefits apply to both healthy individuals and those with chronic disease
✔ Smokers, inactive individuals, and those with obesity have significantly shorter lives
✔ Healthy habits add 4–7 years of life after age 50
The message is clear:
It is never too late to adopt a healthier lifestyle.
If you'd like, I can also create:
✅ a short summary
✅ a very easy explanation
✅ a comparison with other longevity papers
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/xofkgdzk-4012/data/document.pdf", "num_examples": 5, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/xofkgdzk- /home/sid/tuning/finetune/backend/output/xofkgdzk-4012/data/xofkgdzk-4012.json...
|
null
|
completed
|
1764892643
|
1764897450
|
NULL
|
/home/sid/tuning/finetune/backend/output/xofkgdzk- /home/sid/tuning/finetune/backend/output/xofkgdzk-4012/adapter...
|
False
|
Edit
Delete
|
|
60b98694-b72b-4e9d-a780-cd2f78b70412
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
rrdtmrbz-3489
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
healthy lifespan
|
Healthy lifespan inequality
|
/home/sid/tuning/finetune/backend/output/rrdtmrbz- /home/sid/tuning/finetune/backend/output/rrdtmrbz-3489/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document provides a comprehensive global anal This document provides a comprehensive global analysis of healthy lifespan inequality (HLI)—a groundbreaking indicator that measures how much variation exists in the age at which individuals first experience morbidity. Unlike traditional health metrics that capture only averages, such as life expectancy (LE) and health-adjusted life expectancy (HALE), HLI reveals the distribution and timing of health deterioration within populations.
Using data from the Global Burden of Disease Study 2019, the authors reconstruct mortality and morbidity curves to compare lifespan inequality (LI) with healthy lifespan inequality across 204 countries and territories from 1990 to 2019. This analysis uncovers significant global patterns in how early or late people begin to experience disease, disability, or less-than-good health.
The document presents several key findings:
1. Global Decline in Healthy Lifespan Inequality
Between 1990 and 2019, global HLI decreased for both sexes, indicating progress in narrowing the spread of ages at which morbidity begins. However, high-income countries experienced stagnation, showing no further improvement despite increases in longevity.
2. Significant Regional Differences
Lowest HLI is observed in high-income regions, East Asia, and Europe.
Highest HLI is concentrated in Sub-Saharan Africa and South Asia.
Countries such as Mali, Niger, Nigeria, Pakistan, and Haiti exhibit the widest variability in morbidity onset.
3. Healthy Lifespan Inequality Is Often Greater Than Lifespan Inequality
Across most regions, HLI exceeds LI—meaning variability in health loss is greater than variability in death. This indicates populations are becoming more equal in survival but more unequal in how and when they experience disease.
4. Gender Differences
Women tend to experience higher HLI than men, reinforcing the “health–survival paradox”:
Women live longer
But spend more years in poor health
And experience more uncertainty about when morbidity begins.
5. Rising Inequality After Age 65
For older adults, HLI65 has increased globally, signaling that while people live longer, the onset of morbidity is becoming more unpredictable in later life. Longevity improvements do not necessarily compress morbidity at older ages.
6. A Shift in Global Health Inequalities
The study reveals that as mortality declines worldwide, inequalities are shifting away from death and toward disease and disability. This transition marks an important transformation in modern population health and has major implications for:
healthcare systems
pension planning
resource allocation
long-term care
public health interventions
7. Policy Implications
The findings stress that improving average lifespan is not enough. Policymakers must also address when morbidity begins and how uneven that experience is across populations. Rising heterogeneity in morbidity onset, especially among older adults, requires:
stronger preventative health strategies
lifelong health monitoring
reduction of socioeconomic and regional disparities
integration of morbidity-related indicators into national health assessments
In Short
This study reveals a crucial and previously overlooked dimension of global health: even as people live longer, the timing of health deterioration is becoming more unequal, especially in high-income and aging societies. Healthy lifespan inequality is emerging as a vital metric for understanding the true dynamics of global aging and for designing health systems that prioritize not only longer life, but fairer and healthier life.
If you want, I can also create:
✅ A shorter perfect description
✅ An executive summary
✅ A diagram for HLI vs LI
✅ A simplified student-level explanation...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/rrdtmrbz-3489/data/document.pdf", "num_examples": 54, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/rrdtmrbz- /home/sid/tuning/finetune/backend/output/rrdtmrbz-3489/data/rrdtmrbz-3489.json...
|
null
|
completed
|
1764892679
|
1764897466
|
NULL
|
/home/sid/tuning/finetune/backend/output/rrdtmrbz- /home/sid/tuning/finetune/backend/output/rrdtmrbz-3489/adapter...
|
False
|
Edit
Delete
|
|
bb21b439-9974-441f-9bf9-bdb5693d16ea
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
atmaowak-0526
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Healthy lifestyle
|
Healthy lifestyle and life expectancy with
|
/home/sid/tuning/finetune/backend/output/atmaowak- /home/sid/tuning/finetune/backend/output/atmaowak-0526/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This scientific study investigates how healthy lif This scientific study investigates how healthy lifestyle behaviors in midlife influence life expectancy, both with and without major chronic diseases, over a 20-year period. The research uses data from 57,053 Danish adults aged 50–69 years from the well-known Diet, Cancer and Health cohort.
The authors aim to understand how everyday lifestyle choices shape long-term health, disease onset, multimorbidity, and healthcare use.
🔑 Purpose of the Study
The study asks:
How does a combined healthy lifestyle score relate to:
Life expectancy free of major chronic diseases
Life expectancy with disease
Multimorbidity (2+ simultaneous chronic illnesses)
Days of hospitalization over 20 years?
It quantifies how much longer and healthier people live as their lifestyle improves.
🧪 How the Study Was Conducted
Population
57,053 men and women, ages 50–69
Denmark, followed for up to 21.5 years
Free of major disease at the start (1997)
Lifestyle Health Score (0–9 points)
Based on 5 behavioral factors:
Smoking (0–2 points)
Sport activity (0–1 point)
Alcohol intake (0–2 points)
Diet quality (0–2 points)
Waist circumference (0–2 points)
A higher score = healthier lifestyle.
Diseases included
Participants were tracked for the development of:
Cancer
Type 2 diabetes
Stroke
Heart disease
Dementia
COPD
Asthma
Follow-up outcomes
Life expectancy without disease
Life expectancy with disease
Time with one disease and multi-disease
Hospitalization days
📊 Key Findings (Perfect Summary)
🟢 1. Healthy behavior significantly extends disease-free life
For 65-year-old participants, each 1-point increase in the health score resulted in:
+0.83 years of disease-free life for men
+0.86 years for women
People with the highest score (9) lived ~7.5 more years disease-free compared to those with the lowest score (0).
🔴 2. Healthy lifestyle reduces the years lived with chronic disease
For each 1-point increase in health score:
Men: –0.18 years with disease
Women: –0.37 years with disease
Women gained the most reduction.
🔵 3. Multimorbidity drops sharply with higher health scores
Among 65-year-olds:
Men with a low score spent 16.8% of life with 2+ diseases
Men with high scores spent only 3.6%
The pattern is similar in women.
Healthy lifestyle greatly compresses time lived with multiple illnesses.
🟣 4. Healthy lifestyle dramatically cuts hospitalization days
For 65-year-old men:
Score 0 → 6.1 days/year in the hospital
Score 9 → 2.4 days/year
For women:
Score 0 → 5.5 days/year
Score 9 → 2.5 days/year
Healthier behaviors = less burden on healthcare systems.
🔥 Which behavior mattered most?
1. Smoking (largest impact)
Current smoking reduced disease-free life by:
–3.20 years in men
–3.74 years in women
And increased years with disease.
2. High waist circumference
Reduced disease-free years by:
–2.54 years (men)
–1.90 years (women)
3. Diet, exercise, & alcohol
These had moderate but meaningful positive effects.
🧠 Final Interpretation
The study clearly shows:
Healthy living in midlife extends life, delays disease, and reduces hospital use.
Even small lifestyle improvements make measurable differences.
The health score is a simple but powerful predictor of later-life health outcomes.
📌 One Perfect Sentence Summary
A healthy lifestyle combining no smoking, regular activity, optimal diet, balanced alcohol intake, and healthy waist size can extend disease-free life by more than 7 years, reduce multimorbidity, and significantly cut hospitalization over 20 years.
If you'd like, I can create:
✅ A simple student summary
✅ A diagram/flowchart
✅ A presentation (PPT)
✅ A PDF summary
✅ A visual table of results
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/atmaowak-0526/data/document.pdf", "num_examples": 66, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/atmaowak- /home/sid/tuning/finetune/backend/output/atmaowak-0526/data/atmaowak-0526.json...
|
null
|
completed
|
1764892660
|
1764897757
|
NULL
|
/home/sid/tuning/finetune/backend/output/atmaowak- /home/sid/tuning/finetune/backend/output/atmaowak-0526/adapter...
|
False
|
Edit
Delete
|
|
c5c3ee4a-de70-4477-a75f-04c137f4923c
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
rhxrwfta-8164
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Healthy Aging Among
|
Healthy Aging Among Centenarians and Near-Centenar
|
/home/sid/tuning/finetune/backend/output/rhxrwfta- /home/sid/tuning/finetune/backend/output/rhxrwfta-8164/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a comprehensive academic research pape This PDF is a comprehensive academic research paper that explores what allows people to live to 100 years and beyond while still maintaining physical, psychological, and social well-being. It examines the characteristics, lifestyles, health patterns, and resilience factors of centenarians and near-centenarians, highlighting why some individuals age successfully despite extreme longevity.
The paper integrates demographic data, medical profiles, social determinants, and psychological traits to understand healthy aging in the oldest-old—a population that is rapidly increasing worldwide.
🔶 1. Purpose of the Study
The document aims to:
Identify what differentiates healthy centenarians from those with typical age-related decline
Analyze their physical health, cognitive functioning, and emotional well-being
Explore long-life determinants including lifestyle, genetics, environment, and personality
Understand how these individuals maintain independence and quality of life
Provide insights for public health and aging research
It serves as a foundational resource for gerontologists, clinicians, and policymakers.
🔶 2. Who Are the Participants?
The study focuses on:
Centenarians (100+ years)
Near-centenarians (ages 95–99)
These groups are compared across:
Health status
Cognitive functioning
Daily living ability
Social networks
Psychological resilience
🔶 3. Key Findings
⭐ A. Physical Health Patterns
The paper notes:
Many centenarians delay major diseases until very late in life (“compression of morbidity”)
Some maintain surprisingly good mobility and independence
Common chronic issues include vision, hearing, and musculoskeletal limitations
Hospitalization rates are not always higher than younger elderly groups
Despite extreme age, a proportion of centenarians preserve functional health.
⭐ B. Cognitive Functioning
The study highlights:
A meaningful number maintain intact cognitive abilities
Others show mild impairments, but dementia is not universal
Cognitive resilience is linked to higher education, mental engagement, and social activity
Longevity does not guarantee cognitive decline; variability is wide.
⭐ C. Psychological Strength & Emotional Well-Being
A central message is that many centenarians possess strong mental resilience:
High optimism
Emotional stability
Adaptive coping skills
Lower depressive symptoms than expected
Positive psychological traits strongly correlate with healthy aging.
⭐ D. Social Environment & Support
Findings show:
Strong family support is crucial
Continued social engagement boosts health and mood
Many maintain close relationships with caregivers and relatives
Successful aging is deeply connected to social connection.
⭐ E. Lifestyle Factors
Patterns common among long-lived individuals include:
Moderation in diet
Regular light physical activity
Avoidance of smoking
Effective stress management
Consistent daily routines
These habits contribute significantly to longevity quality—not just lifespan.
⭐ F. Biological & Genetic Contributions
Although lifestyle matters, the study notes:
Genetics plays a major role in reaching 100+
Longevity-associated genes influence inflammation, metabolism, and cellular repair
Family history of longevity is a strong predictor
🔶 4. Broader Implications
The paper stresses that understanding healthy aging in centenarians can:
Help identify protective factors for the general population
Guide interventions for aging societies
Improve caregiving and support systems
Challenge stereotypes about extreme old age
🔶 5. Central Conclusion
Healthy aging at 100+ is shaped by a combination of genetics, lifestyle, psychological resilience, and strong social support. Many centenarians remain physically functional, mentally active, emotionally stable, and socially connected—demonstrating that long life can also be a high-quality life.
⭐ Perfect One-Sentence Summary
This PDF provides a detailed scientific examination of how centenarians and near-centenarians achieve healthy aging, revealing that exceptional longevity is supported by resilient psychological traits, strong social networks, delayed disease onset, functional independence, and a meaningful interplay between lifestyle and genetics....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/rhxrwfta-8164/data/document.pdf", "num_examples": 8, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/rhxrwfta- /home/sid/tuning/finetune/backend/output/rhxrwfta-8164/data/rhxrwfta-8164.json...
|
null
|
completed
|
1764894050
|
1764898565
|
NULL
|
/home/sid/tuning/finetune/backend/output/rhxrwfta- /home/sid/tuning/finetune/backend/output/rhxrwfta-8164/adapter...
|
False
|
Edit
Delete
|
|
1c39c4ad-acbf-4b69-8902-960d7918d5a7
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
gbsjziqy-6720
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
How has the variance
|
How has the variance of longevity changed ?
|
/home/sid/tuning/finetune/backend/output/gbsjziqy- /home/sid/tuning/finetune/backend/output/gbsjziqy-6720/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is a comprehensive research paper th This document is a comprehensive research paper that examines how the variance of longevity (variation in age at death) has changed across different population groups in the United States over the past several decades. Rather than focusing only on life expectancy, it highlights how unpredictable lifespan is, which is crucial for retirement planning and the value of lifetime income products like annuities.
🔎 Main Purpose of the Study
The core purpose is to analyze:
How lifespan variation has changed from the 1970s to 2019
How differences vary across race, gender, and socioeconomic status (education level)
How changes in lifespan variability influence the economic value of annuities
The authors focus heavily on the implications for retirement planning, longevity risk, and financial security.
🔍 Populations Analyzed
The study evaluates five major groups:
General U.S. population
Annuitants (people who purchase annuities)
White—high education
White—low education
Black—high education
Black—low education
All groups are analyzed separately for men and women, and conditional on survival to ages 50, 62, 67, and 70.
📈 Key Findings (Perfect Summary)
1. Population-level variance has remained stable since the 1970s
Even though life expectancy increased, the spread of ages at death (standard deviation) remained mostly unchanged for the general population.
2. SES and racial disparities in lifespan variation remain large
Black and lower-education individuals have consistently greater lifespan variation.
They face higher risks of both premature death and very late death.
This inequality captures an important dimension of social and economic disadvantage.
3. Different groups show different trends (2000–2019)
Variance increased for almost all groups
→ especially high-education Black and low-education White individuals.
Exception: Low-education Black males
→ They showed a substantial decrease in variability mostly due to reduced premature mortality.
4. Annuitants have less lifespan variation at age 50
Those who purchase annuities tend to be healthier, wealthier, and show less lifespan uncertainty.
However, by age 67, the difference in variation between annuitants and the general population nearly disappears.
💰 Economic Insights: Impact on Annuity Value
Using a lifecycle model, the study calculates wealth equivalence — how much additional wealth a person would need to compensate for losing access to a fair annuity.
Key insight:
Even though longevity variance increased, the value of annuities actually declined over time.
Why?
Because life expectancy increased, delaying mortality credits to older ages — lowering annuity value in economic terms.
Quantitative Findings
A one-year increase in standard deviation → raises annuity value by 6.8% of initial wealth.
A one-year increase in life expectancy → reduces annuity value by 3.1%.
From 2000–2019:
General population saw only a 1.3–2.0% increase in annuity value due to rising variance.
By group:
High-education Black males: +13.6%
Low-education Black males: –6.1%
🔬 Methodology
The study uses:
SSA cohort life tables for the general population
Mortality estimates using NVSS & ACS data for race-education groups
Annuity mortality tables (1971 IAM, 1983 IAM, 2000, 2012 IAM) for annuitants
Lifespan variation measured using standard deviation of age at death (Sx)
Wealth equivalence is computed using a CRRA utility model with full annuitization and actuarially fair payouts.
🧠 Why This Matters
Lifespan uncertainty directly affects:
✔ Retirement planning
✔ Optimal savings behavior
✔ Need for annuities or guaranteed lifetime income
✔ Social welfare policy
Groups with higher lifespan uncertainty benefit more from annuities.
The study’s results emphasize:
Persistent inequalities in mortality patterns
The importance of accessible lifetime income options
The role of policy in addressing retirement security
📌 Perfect One-Sentence Summary
The document shows that while life expectancy has risen, the variance of longevity has remained stable overall but diverged notably across racial and socioeconomic groups, significantly influencing the economic value and importance of annuities in retirement planning.
If you want:
✅ A diagram
✅ A simplified student-friendly summary
✅ A PPT, PDF, or infographic
✅ A comparison table
✅ A visual chart
Just tell me — I can generate it!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/gbsjziqy-6720/data/document.pdf", "num_examples": 12, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/gbsjziqy- /home/sid/tuning/finetune/backend/output/gbsjziqy-6720/data/gbsjziqy-6720.json...
|
null
|
completed
|
1764891697
|
1764899216
|
NULL
|
/home/sid/tuning/finetune/backend/output/gbsjziqy- /home/sid/tuning/finetune/backend/output/gbsjziqy-6720/adapter...
|
False
|
Edit
Delete
|
|
06ff8cf8-a770-4a3a-b39d-d333c4550263
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
tllivfbe-3782
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
How chronic disease
|
How chronic disease affects ageing?
|
/home/sid/tuning/finetune/backend/output/tllivfbe- /home/sid/tuning/finetune/backend/output/tllivfbe-3782/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This monographic report, How Chronic Diseases Affe This monographic report, How Chronic Diseases Affect Ageing, provides a comprehensive and multidisciplinary analysis of how the global rise in life expectancy is directly influencing the prevalence, complexity, and long-term impact of chronic diseases in ageing populations. Drawing on international health organisations, national statistics, clinical research, and current care models, the document explains how chronic diseases—such as cardiovascular conditions, diabetes, chronic respiratory illnesses, cancer, and other age-associated disorders—shape the physical, functional, cognitive, emotional, and social dimensions of older adults.
The report examines demographic trends, theoretical frameworks, and epidemiological data to explain why chronicity is becoming one of the major public health challenges of the 21st century. It details the increasing coexistence of multiple chronic conditions (multimorbidity), the clinical complexities of polypharmacy, the progressive decline in autonomy, and the emergence of frailty—both physical and social—as a defining characteristic of advanced age.
Through a structured and evidence-based approach, the document outlines:
✔ Types of chronic diseases prevalent in ageing adults
Including cardiovascular disease, COPD, cancer, diabetes, arthritis, hypertension, osteoporosis, depression, and neurodegenerative disorders such as Alzheimer’s.
✔ The chronic patient profile
Describing levels of complexity, comorbidity, frailty, care dependence, and the growing role of multidisciplinary teamwork in long-term management.
✔ Risk factors
From modifiable lifestyle behaviours (tobacco, diet, activity) to metabolic, genetic, environmental, and socio-economic determinants.
✔ Key challenges
Such as medication reconciliation, treatment non-adherence, limited access to specialised geriatric resources, fragmented care systems, psychological burden, and nutritional vulnerabilities.
✔ Solutions and innovations
Including preventive strategies (primary, secondary, tertiary, quaternary), strengthened primary care, case management models, specialised geriatric resources, PROMs and PREMs for quality-of-life measurement, and advanced technologies—AI, remote monitoring, predictive models—to anticipate complications and personalise care.
✔ Conclusions
Highlighting the need for integrated, person-centred, preventive, predictive, and technologically supported healthcare models capable of addressing the growing burden of chronic diseases in an ageing world.
This report serves as an essential resource for healthcare professionals, policymakers, researchers, and organisations seeking to better understand, manage, and innovate within the intersection of chronicity and ageing.
If you want, I can also create:
✅ A short description
✅ A meta description for SEO
✅ A 100-word executive description
✅ A title, keywords, and index for the document
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/tllivfbe-3782/data/document.pdf", "num_examples": 6, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/tllivfbe- /home/sid/tuning/finetune/backend/output/tllivfbe-3782/data/tllivfbe-3782.json...
|
null
|
completed
|
1764891718
|
1764899539
|
NULL
|
/home/sid/tuning/finetune/backend/output/tllivfbe- /home/sid/tuning/finetune/backend/output/tllivfbe-3782/adapter...
|
False
|
Edit
Delete
|
|
b6fa1df4-8e33-4ee4-acbc-884994678559
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
lgwfqloi-6680
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Human capital and life
|
Human capital and longevity
|
/home/sid/tuning/finetune/backend/output/lgwfqloi- /home/sid/tuning/finetune/backend/output/lgwfqloi-6680/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Title: Human Capital and Longevity: Evidence from Title: Human Capital and Longevity: Evidence from 50,000 Twins
Authors: Petter Lundborg, Carl Hampus Lyttkens, Paul Nystedt
Published: July 2012
Dataset: Swedish Twin Registry (≈50,000 same-sex twins, 1886–1958)
🔍 What the Study Investigates
The document analyzes why well-educated people live longer, using one of the world’s largest collections of identical (MZ) and fraternal (DZ) twins. Because twins share genes and environments, this study uniquely isolates whether the connection between education and longevity is causal or simply due to shared background factors.
📊 Core Research Questions
Does education truly increase lifespan?
Or do unobserved factors—such as genetics, early-life health, birth weight, family environment, or ability—explain the link?
How much extra life expectancy is gained from higher education?
🧬 Why Twins Are Used
Twins help the researchers eliminate:
Shared genes
Shared childhood environments
Early-life conditions
Many unobserved family-level factors
This allows a much cleaner measurement of the effect of education alone.
📈 Main Findings (Clear & Strong)
1️⃣ Education strongly increases longevity.
Across all models:
Each extra year of schooling reduces mortality by about 6%.
2️⃣ Even after controlling for:
Shared genes
Shared environment
Birth weight differences
Height (proxy for IQ & early health)
Only twins who differ in schooling
➡️ The relationship remains significant and strong.
3️⃣ High education adds 2.5–3 additional years of life at age 60.
This effect is:
Consistent for men and women
Consistent across birth cohorts
Strongest in younger generations
Stronger at mid-life (age 50–60) than in old age
🧪 Key Tests & Evidence
Birth Weight Test
Birth weight differences predict schooling differences
BUT birth weight does not predict mortality
→ So omission of birth weight does not bias the education effect.
Height (Ability Proxy) Test
Taller twins achieve more schooling
But height does not predict mortality in twin comparisons
→ Ability differences cannot explain the education–longevity link.
MZ vs DZ Twins
Identical twins (MZ) share 100% genes
Fraternal twins (DZ) share ~50%
Results are extremely similar
Suggests genetics are not driving the relationship.
📉 Non-Linear Benefits
Education levels:
<10 years
10–12 years
≥13 years (university level)
Effects:
Middle group: ~13% lower mortality
University group: 35–40% lower mortality
Very strong evidence of a degree effect.
⏳ Age Patterns
The effect is strongest between ages 50–60
The benefit declines slightly at older ages
But remains significant across all age groups
📅 Cohort Patterns
The education–longevity gap has grown stronger over time
Likely due to rising skill demands and better health knowledge among educated groups
📘 Methodology
The study uses advanced statistical tools:
Cox proportional hazards models
Stratified partial likelihood (twin fixed-effects)
Gompertz survival models
Linear probability models for survival to 70 and 80
These allow precise estimation of the effect of education on mortality.
📌 Policy Implications
Education has large, long-term health returns
These returns go far beyond labor market earnings
Increasing education could significantly raise population longevity—especially in developing countries
Evidence suggests education improves:
Health behaviors
Decision-making
Access to knowledge
Use of medical information
🎯 Final Summary (Perfect One-Liner)
The study provides powerful evidence that education itself—not genes, family environment, or early-life factors—directly increases human lifespan by several years, making schooling one of the most effective longevity-enhancing investments in society....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/lgwfqloi-6680/data/document.pdf", "num_examples": 74, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/lgwfqloi- /home/sid/tuning/finetune/backend/output/lgwfqloi-6680/data/lgwfqloi-6680.json...
|
null
|
completed
|
1764890347
|
1764899943
|
NULL
|
/home/sid/tuning/finetune/backend/output/lgwfqloi- /home/sid/tuning/finetune/backend/output/lgwfqloi-6680/adapter...
|
False
|
Edit
Delete
|
|
250632b8-ddec-491c-97aa-aeb4de573fe1
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
xaxkkpem-6210
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Healthy life expectancy,
|
Healthy life expectancy, mortality, and age
|
/home/sid/tuning/finetune/backend/output/xaxkkpem- /home/sid/tuning/finetune/backend/output/xaxkkpem-6210/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This paper explains why traditional measures of He This paper explains why traditional measures of Healthy Life Expectancy (HLE) can be misleading when they rely only on age-specific morbidity (illness/disability) rates.
The authors show that many health conditions in older ages are not primarily driven by age, but by Time-To-Death (TTD)—how close someone is to dying. Because of this, the usual practice of linking health problems to chronological age produces distorted results, especially when comparing populations or tracking trends over time.
Key Insights
Morbidity often rises sharply in the final years before death, regardless of the person's age.
Therefore, when life expectancy increases, the population shifts so that more people are farther from death, leading to lower observed disability at a given age—even if the true underlying health process hasn’t changed.
This means that improvements in mortality alone can make it appear that morbidity has decreased or that people are healthier at older ages.
As a result, period HLE estimates may falsely suggest real health improvements, when the change actually comes from mortality declines—not better health.
What the Study Demonstrates
Using U.S. Health and Retirement Study data and mortality tables:
They model disability patterns based on TTD and convert them into apparent age patterns.
They show mathematically and empirically how mortality changes distort age-based morbidity curves.
They test how much bias enters standard health expectancy decompositions (e.g., Sullivan method).
They find that a 5-year increase in life expectancy after age 60 can artificially reduce disability estimates by up to 1 year, even if actual morbidity is unchanged.
Core Message
Age-based prevalence of disease/disability cannot be reliably interpreted without understanding how close individuals are to death.
Thus, comparing HLE between populations—or within a population over time—can be biased unless TTD dynamics are considered....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/xaxkkpem-6210/data/document.pdf", "num_examples": 21, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/xaxkkpem- /home/sid/tuning/finetune/backend/output/xaxkkpem-6210/data/xaxkkpem-6210.json...
|
null
|
completed
|
1764894023
|
1764900033
|
NULL
|
/home/sid/tuning/finetune/backend/output/xaxkkpem- /home/sid/tuning/finetune/backend/output/xaxkkpem-6210/adapter...
|
False
|
Edit
Delete
|
|
e62ac31b-cbd5-4910-bf31-f9b2fba57195
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ljrlcirv-5496
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Healthy Ageing
|
Healthy Ageing
|
/home/sid/tuning/finetune/backend/output/ljrlcirv- /home/sid/tuning/finetune/backend/output/ljrlcirv-5496/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is an academic research article titl This document is an academic research article titled “Healthy Ageing and Mediated Health Expertise” by Christa Lykke Christensen, published in Nordicom Review (2017). It explores how older adults understand health, how they think about ageing, and most importantly, how media influence their beliefs and behaviors about healthy living.
✅ Main Purpose of the Article
The study investigates:
How older people use media to learn about health.
Whether they trust media health information.
How media messages shape their ideas of active ageing, lifestyle, and personal responsibility for health.
🧓📺 Core Focus
The article is based on 16 qualitative interviews with Danish adults aged 65–86. Through these interviews, the author analyzes how elderly people react to health information in media such as TV, magazines, and online content.
⭐ Key Insights and Themes
1️⃣ Two Different Ageing Strategies Identified
The research shows that older adults fall into two broad groups:
(A) Those who maintain a youthful lifestyle into old age
Highly active (gym, sports, diet programs).
Use media health content as guidance (exercise shows, magazines, expert advice).
Believe good lifestyle can prolong life.
Try hard to “control” ageing through diet and activity.
(B) Those who accept natural ageing
Define health as simply “not being sick.”
Value mobility, independence, social interaction.
More relaxed about diet and exercise.
Focus on quality of life, relationships, emotional well-being.
More critical and skeptical of media health claims.
2️⃣ Role of Media
The article describes a dual influence:
Positive influence
Media provide accessible knowledge.
Inspire healthy habits.
Offer motivation and new routines.
Negative influence
Information often contradicts itself.
Creates pressure to meet unrealistic standards.
Can lead to guilt, frustration, confusion.
Overemphasis of diet/exercise overshadows social and emotional health.
3️⃣ “The Will to Be Healthy”
Inspired by previous research, the article explains that modern society expects older people to:
Stay active
Eat perfectly
Avoid illness through personal discipline
Continuously self-improve
Older adults feel that being healthy becomes a moral obligation, not just a personal choice.
4️⃣ Media’s Framing of Ageing
The media often portray older adults as:
Energetic
Positive
Fit
Productive
These representations push the idea of “successful ageing,” creating pressure for older individuals to avoid looking or feeling old.
5️⃣ Tension and Dilemmas
The study reveals emotional conflicts such as:
Wanting a long life but not wanting to feel old.
Trying to follow health advice but feeling overwhelmed.
Personal health needs vs. societal expectations.
Desire for autonomy vs. media pressure.
📌 Conclusions
The article concludes that:
Health and ageing are shaped heavily by media messages.
Older people feel responsible for their own ageing process.
Media act as a “negotiating partner” — guiding, confusing, pressuring, or inspiring.
Ageing today is not passive; it requires continuous decision-making and self-management.
There is no single way to age healthily — each individual balances ideals, limitations, and life experience....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/ljrlcirv-5496/data/document.pdf", "num_examples": 2, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ljrlcirv- /home/sid/tuning/finetune/backend/output/ljrlcirv-5496/data/ljrlcirv-5496.json...
|
null
|
completed
|
1764894090
|
1764900108
|
NULL
|
/home/sid/tuning/finetune/backend/output/ljrlcirv- /home/sid/tuning/finetune/backend/output/ljrlcirv-5496/adapter...
|
False
|
Edit
Delete
|
|
eaf682f7-d4eb-4235-a8eb-3c6718f0d703
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
grbyzvsu-9946
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
LIFE EXPECTANCY AND HUMAN
|
LIFE EXPECTANCY AND HUMAN CAPITAL INVESTMENTS
|
/home/sid/tuning/finetune/backend/output/grbyzvsu- /home/sid/tuning/finetune/backend/output/grbyzvsu-9946/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a theoretical and economic analysis th This PDF is a theoretical and economic analysis that examines how life expectancy influences human capital investment—particularly education, skill acquisition, and long-term personal development. The central purpose of the paper is to explain why people invest more in education and training when they expect to live longer, and how improvements in survival rates reshape economic behavior, societal development, and intergenerational outcomes.
The core message:
Longer life expectancy increases the returns to human capital, incentivizes individuals to acquire more education and skills, and plays a crucial role in shaping economic growth and income distribution.
🎓 1. Purpose and Motivation
The paper addresses key questions:
Why do individuals invest more in education when life expectancy rises?
How does increased longevity affect economic growth?
How do survival improvements change intergenerational human capital transmission?
What are the broader implications for inequality and development?
It links demography with economics, showing that human capital decisions depend heavily on expected lifespan.
LIFE EXPECTANCY AND HUMAN CAPIT…
🧠 2. Core Theoretical Insight
Human capital investment—like education or training—has upfront costs but produces returns over time.
If people expect to live longer:
They enjoy returns for more years
They have more incentive to invest
They delay retirement
They allocate more time to schooling in youth
They acquire training even in mid-life
Thus, longer life expectancy raises the value of human capital.
LIFE EXPECTANCY AND HUMAN CAPIT…
👶 3. The Overlapping Generations Framework
The paper uses an OLG (Overlapping Generations) model, where:
Parents invest in children
Children become productive adults
Longer life expectancy changes optimal investments
Key mechanisms:
⭐ Higher expected lifespan → higher returns on education
Parents allocate more resources toward schooling.
⭐ Children attend school longer
Their lifetime earnings potential increases.
⭐ Economy accumulates more knowledge
Driving long-run growth.
LIFE EXPECTANCY AND HUMAN CAPIT…
📈 4. Empirical and Theoretical Implications
✔ More schooling
Increased life expectancy correlates with more years of formal education.
✔ Higher productivity
A more educated workforce boosts national growth.
✔ Lower fertility
Parents invest more per child as education becomes more valuable.
✔ Intergenerational impact
Educated parents pass on higher human capital to children.
✔ Economic development pathway
Longevity is a key driver in the transition from low- to high-income economies.
LIFE EXPECTANCY AND HUMAN CAPIT…
⚠️ 5. Inequality and Distributional Effects
The document also examines how life expectancy interacts with economic inequality:
Higher-income families invest more in children, widening gaps.
Unequal improvements in survival can reinforce inequality.
Policy interventions may be required to equalize educational opportunity.
The overall conclusion:
Longevity-driven human capital growth can either reduce or increase inequality depending on policy design.
LIFE EXPECTANCY AND HUMAN CAPIT…
🧩 6. Policy Implications
⭐ Support for early-life education
Because returns amplify over longer lifespans.
⭐ Investments in public health
Better health → higher life expectancy → higher human capital.
⭐ Incentives for lifelong learning
Especially in aging societies.
⭐ Reduce barriers to education
To avoid inequality expansion.
LIFE EXPECTANCY AND HUMAN CAPIT…
⭐ Overall Summary
This PDF explains that life expectancy is a powerful determinant of human capital investment. Longer lives increase the payoff from education, encourage skill acquisition, and promote economic growth through a more productive workforce. However, if survival and educational opportunities are unevenly distributed, inequality may rise. The paper provides a strong theoretical foundation for understanding why healthier, longer-living societies tend to be more educated and more economically advanced....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/grbyzvsu-9946/data/document.pdf", "num_examples": 70, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/grbyzvsu- /home/sid/tuning/finetune/backend/output/grbyzvsu-9946/data/grbyzvsu-9946.json...
|
null
|
completed
|
1764886987
|
1764900188
|
NULL
|
/home/sid/tuning/finetune/backend/output/grbyzvsu- /home/sid/tuning/finetune/backend/output/grbyzvsu-9946/adapter...
|
False
|
Edit
Delete
|
|
5c3bc022-5cbf-42f3-9e07-e6a343b2ab21
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
kwzpadlx-9963
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The effect of water
|
The effect of drinking water
|
/home/sid/tuning/finetune/backend/output/kwzpadlx- /home/sid/tuning/finetune/backend/output/kwzpadlx-9963/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Theeffectofdrinkingwaterqualityonthehealthand long Theeffectofdrinkingwaterqualityonthehealthand longevityofpeople-AcasestudyinMayang,HunanProvince, China
JLu1,2 andFYuan1 1DepartmentofEngineeringandSafety,UiTTheArcticUniversityofNorway,N9037Tromsø,Norway
E-mail:Jinmei.lu@uit.no Abstract. Drinking water is an important source for trace elements intake into human body. Thus, the drinking water quality has a great impact on people’s health and longevity. This study aims to study the relationship between drinking water quality and human health and longevity. A longevity county Mayang in Hunan province, China was chosen as the study area. The drinking water and hair of local centenarians were collected and analyzed the chemical composition. The drinking water is weak alkalineandrichintheessentialtraceelements.ThedailyintakesofCa,Cu,Fe,Se,Sr from drinking water for residents in Mayang were much higher than the national average daily intake from beverage and water. There was a positive correlation between Ni and Pb in drinking water and Ni and Pb in hair. There were significant correlationsbetweenCu,KindrinkingwaterandBa,Ca,Mg,Srinthehairatthe0.01 level. The concentrations of Mg, Sr, Se in drinking water showed extremely significant positive relation with two centenarian index 100/80% and 100/90% correlation. Essential trace elements in drinking water can be an important factor for localhealthandlongevity.
1. Introduction Trace elements can not be manufactured by human body itself, and they must be taken from the natural environment. Water is a major source of trace elements necessary for the growth of biological organisms. The composition of trace elements in water has a significant impact on human health. Changes in drinking water and groundwater sources can lead to significant changes in health risk relatedwithtraceelements[1]. Insufficient or excessive trace elements in water can lead to the occurrence of certain diseases. Liu XJ et al. found that the concentrations of Cu, Fe, Sr, Ti and V in the water samples from area with high incidence of gastric cancer were significantly higher than those in the area with low incidence of gastric cancer [2]. Another research on the relationship between the concentration of trace elements in drinking water and gastric cancer showed that Se and Zn can significantly prevent the development of gastric cancer [3]. Kikuchi H. et al. studied the relationship between the levels of trace elements in water and age-adjusted incidence of colon and rectal cancer, and the results showed that the incidence ...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/kwzpadlx-9963/data/document.pdf", "num_examples": 3, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/kwzpadlx- /home/sid/tuning/finetune/backend/output/kwzpadlx-9963/data/kwzpadlx-9963.json...
|
null
|
completed
|
1764899642
|
1764900536
|
NULL
|
/home/sid/tuning/finetune/backend/output/kwzpadlx- /home/sid/tuning/finetune/backend/output/kwzpadlx-9963/adapter...
|
False
|
Edit
Delete
|
|
032e3228-4f35-4ed9-b254-cd096cd6cdb3
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
naoffskb-1736
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
health services
|
health services use by older adults
|
/home/sid/tuning/finetune/backend/output/naoffskb- /home/sid/tuning/finetune/backend/output/naoffskb-1736/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a fact sheet that summarizes how older This PDF is a fact sheet that summarizes how older adults (age 65+) use health services in the United States. It presents national statistics on doctor visits, chronic diseases, hospital care, emergency care, prescription drug use, long-term services, and long-term care needs among seniors.
The focus is to show how rising longevity, chronic illness, and disability shape healthcare demands in older populations.
The document is structured with clear data points, percentages, and brief explanations—ideal for public health professionals, students, policymakers, and caregivers.
📌 Main Topics Covered
1. Use of Physician Services
Seniors account for 26% of all physician visits in the U.S.
Doctor visits increase with age due to chronic disease management.
Many older adults see multiple specialists annually.
2. Hospital Use
People aged 65+ make up a large proportion of hospital admissions.
Older adults have higher rates of:
inpatient stays
readmissions
longer lengths of stay
Hospitalization risk increases with complex chronic conditions.
3. Emergency Department (ED) Visits
Seniors frequently use emergency departments for:
falls
injuries
acute illness episodes
complications of chronic diseases
ED visits rise significantly after age 75.
4. Chronic Diseases
The PDF highlights the heavy burden of chronic illness in late life:
80% of older adults have at least one chronic condition.
Up to 50% have two or more chronic diseases.
Common conditions include:
arthritis
heart disease
diabetes
hypertension
osteoporosis
COPD
Chronic illness is the primary driver of healthcare utilization in older populations.
5. Prescription Drug Use
Older adults use a disproportionately high number of medications.
Polypharmacy (using 5+ medications at once) is common and increases risks of:
adverse drug reactions
drug–drug interactions
falls
hospitalization
6. Long-Term Services and Supports (LTSS)
The PDF includes essential data on long-term care:
Older adults are the largest users of home care, community-based services, and institutional care.
A growing population of seniors requires:
help with activities of daily living (ADLs)
nursing home services
home health care
personal care services
7. Long-Term Care Facilities
The data highlight the following:
65+ adults represent the majority of people living in:
nursing homes
assisted living facilities
Many residents have significant functional or cognitive impairment (e.g., dementia).
8. Summary of Utilization Patterns
The PDF shows a clear pattern:
Older adults are the highest users of healthcare across almost all service types.
Their needs are shaped by:
multiple chronic diseases
declining mobility
cognitive decline
functional impairments
increased vulnerability to acute health events
As longevity increases, demand for health services will continue to rise.
🧾 Overall Conclusion
The PDF provides a concise but comprehensive portrait of how much and what types of healthcare older adults use.
Key messages:
✔ Older adults use far more physician services, hospital care, and emergency care than younger groups.
✔ Chronic diseases dominate health service use.
✔ Prescription medication use is high, with major safety concerns.
✔ Long-term services and institutional care are essential for many seniors.
✔ As the population ages, the healthcare system must adapt to growing demand.
If you want, I can also prepare:
✅ a short summary
✅ a data-only summary
✅ an infographic-style description
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/naoffskb-1736/data/document.pdf", "num_examples": 4, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/naoffskb- /home/sid/tuning/finetune/backend/output/naoffskb-1736/data/naoffskb-1736.json...
|
null
|
completed
|
1764894127
|
1764900746
|
NULL
|
/home/sid/tuning/finetune/backend/output/naoffskb- /home/sid/tuning/finetune/backend/output/naoffskb-1736/adapter...
|
False
|
Edit
Delete
|
|
c849e927-e000-4f63-a601-d7b6e2ef75cd
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
evvycfst-1808
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Dublin Longevity
|
Dublin Longevity Declaration
|
/home/sid/tuning/finetune/backend/output/evvycfst- /home/sid/tuning/finetune/backend/output/evvycfst-1808/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Consensus Recommendation to Immediately Expand Res Consensus Recommendation to Immediately Expand Research on Extending Healthy Human Lifespans
For millennia, the consensus of the general public has been that aging is inevitable. For most of our history, even getting to old age was a significant accomplishment – and while centenarians have been around at least since the time of the Greeks, aging was never of major interest to medicine.
That has changed. Longevity medicine has entered the mainstream. First, evidence accumulated that lifestyle modifications prevent chronic diseases of aging and extend healthspan, the healthy and highly functional period of life. More recently, longevity research has made great progress – aging has been found to be malleable and hundreds of interventional strategies have been identified that extend lifespan and healthspan in animal models. Human clinical studies are underway, and already early results suggest that the biological age of an individual is modifiable.
A concerted effort has been made in the longevity field to institutionalize the word “healthspan”. Why healthspan (how long we stay healthy) and not its side-effect of lifespan (how long we live)? The reasons are linked more to perception than reality. Fundamental to this need to highlight healthspan is the idea that individuals get when they are asked if they want to live longer. Many imagine their parents or grandparents at the end of their lives when they often have major health issues and low quality of life. Then they conclude that they would not choose to live longer in that condition. This is counter to longevity research findings, which show that it is possible to intervene in late middle life and extend both healthspan and lifespan simultaneously. Emphasizing healthspan also reduces concerns of some individuals about whether it is ethical to live longer.
A drawback of this exists, though: many current longevity interventions may extend healthspan more than lifespan. Lifestyle interventions such as exercise probably fit this mold. Many interventions that have dramatic health-extending effects in invertebrate models have more modest effects in mice, and there is a concern that they will be further reduced in humans. In other words, the drugs and small molecules that we are excited about today may, despite their hefty development costs and lengthy approval processes, only extend average healthspan by five or ten years and may not extend maximum lifespan at all. Make no mistake, this would still represent a revolution in medical practice! A five-year extension in human healthspan, with equitable access for all people, would save trillions per year in healthcare costs, provide extra life quality across the entire population ...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/evvycfst-1808/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/evvycfst- /home/sid/tuning/finetune/backend/output/evvycfst-1808/data/evvycfst-1808.json...
|
null
|
failed
|
1764899560
|
1764900764
|
NULL
|
/home/sid/tuning/finetune/backend/output/evvycfst- /home/sid/tuning/finetune/backend/output/evvycfst-1808/adapter...
|
False
|
Edit
Delete
|
|
f79e649f-eda8-48e0-9d2a-2c56d701f647
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ynjzdyfn-6686
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Gut microbiota variations
|
Gut microbiota variations over the lifespan and
|
/home/sid/tuning/finetune/backend/output/ynjzdyfn- /home/sid/tuning/finetune/backend/output/ynjzdyfn-6686/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This study investigates how the gut microbiota (th This study investigates how the gut microbiota (the community of microorganisms living in the gut) changes throughout the reproductive lifespan of female rabbits and how these changes relate to longevity. It compares two maternal rabbit lines:
Line A – a standard commercial line selected mainly for production traits.
Line LP – a long-lived line created using longevity-based selection criteria.
🔬 What the Study Did
Researchers analyzed 319 fecal samples collected from 164 female rabbits across their reproductive lives (from first parity to death/culling). They used advanced DNA sequencing of the gut microbiome, including:
16S rRNA sequencing
Bioinformatics (DADA2, QIIME2)
Alpha diversity (richness/evenness within a sample)
Beta diversity (differences between samples)
Zero-inflated negative binomial mixed models (ZINBMM)
Animals were categorized into three longevity groups:
LL: Low longevity (died/culled before 5th parity)
ML: Medium longevity (5–10 parities)
HL: High longevity (more than 10 parities)
🧬 Key Findings
1. Aging Strongly Alters the Gut Microbiome
Age caused a consistent decline in diversity:
Lower richness
Lower evenness
Reduced Shannon index
20% of ASVs in line A and 16% in line LP were significantly associated with age.
Most age-associated taxa declined with age.
Age explained the greatest proportion of sample-to-sample microbiome variation.
2. Longevity Groups Have Distinct Microbiomes
High-longevity rabbits (HL) showed lower evenness, meaning fewer taxa dominated the community.
Differences between longevity groups were more pronounced in line A than line LP.
In line A, 15–16% of ASVs differed between HL and LL/ML.
In line LP, only 4% differed.
Suggests genetic selection for longevity stabilizes microbiome patterns.
3. Strong Genetic Line Effects
LP rabbits consistently had higher alpha diversity than A rabbits.
About 6–12% of ASVs differed between lines even when comparing animals of the same longevity, proving:
Genetics shape the microbiome independently of lifespan.
Several bacterial families were consistently different between lines, such as:
Lachnospiraceae
Oscillospiraceae
Ruminococcaceae
Akkermansiaceae
🧩 What It Means
The gut microbiota shifts dramatically with age, even under identical feeding and environmental conditions.
Specific bacteria decline as rabbits age, likely tied to immune changes, reproductive stress, or physiological aging.
Longevity is partially linked to microbiome composition—but genetics strongly determines how much the microbiome changes.
The LP line shows more microbiome stability, hinting at genetic resilience.
🌱 Why It Matters
This research helps:
Understand aging biology in mammals
Identify microbial markers of longevity
Improve breeding strategies for long-lived, healthy livestock
Explore microbiome-driven approaches for health and productivity...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/ynjzdyfn-6686/data/document.pdf", "num_examples": 47, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ynjzdyfn- /home/sid/tuning/finetune/backend/output/ynjzdyfn-6686/data/ynjzdyfn-6686.json...
|
null
|
completed
|
1764894867
|
1764900849
|
NULL
|
/home/sid/tuning/finetune/backend/output/ynjzdyfn- /home/sid/tuning/finetune/backend/output/ynjzdyfn-6686/adapter...
|
False
|
Edit
Delete
|
|
681ebc18-4c2d-473c-87e8-4939e6b29058
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ekheefis-7496
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Gene expression signature
|
Gene expression signatures of human cell
|
/home/sid/tuning/finetune/backend/output/ekheefis- /home/sid/tuning/finetune/backend/output/ekheefis-7496/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Inge Seim1,2, Siming Ma1 and Vadim N Gladyshev1
D Inge Seim1,2, Siming Ma1 and Vadim N Gladyshev1
Different cell types within the body exhibit substantial variation in the average time they live, ranging from days to the lifetime of the organism. The underlying mechanisms governing the diverse lifespan of different cell types are not well understood. To examine gene expression strategies that support the lifespan of different cell types within the human body, we obtained publicly available RNA-seq data sets and interrogated transcriptomes of 21 somatic cell types and tissues with reported cellular turnover, a bona fide estimate of lifespan, ranging from 2 days (monocytes) to a lifetime (neurons). Exceptionally long-lived neurons presented a gene expression profile of reduced protein metabolism, consistent with neuronal survival and similar to expression patterns induced by longevity interventions such as dietary restriction. Across different cell lineages, we identified a gene expression signature of human cell and tissue turnover. In particular, turnover showed a negative correlation with the energetically costly cell cycle and factors supporting genome stability, concomitant risk factors for aging-associated pathologies. In addition, the expression of p53 was negatively correlated with cellular turnover, suggesting that low p53 activity supports the longevity of post-mitotic cells with inherently low risk of developing cancer. Our results demonstrate the utility of comparative approaches in unveiling gene expression differences among cell lineages with diverse cell turnover within the same organism, providing insights into mechanisms that could regulate cell longevity.
npj Aging and Mechanisms of Disease (2016) 2, 16014; doi:10.1038/npjamd.2016.14; published online 7 July 2016
INTRODUCTION Nature can achieve exceptional organismal longevity, 4100 years in the case of humans. However, there is substantial variation in ‘cellular lifespan’, which can be conceptualized as the turnover of individual cell lineages within an individual organism.1 Turnover is defined as a balance between cell proliferation and death that contributes to cell and tissue homeostasis.2 For example, the integrity of the heart and brain is largely maintained by cells with low turnover/long lifespan, while other organs and tissues, such as the outer layers of the skin and blood cells, rely on high cell turnover/short lifespan.3–5 Variation in cellular lifespan is also evident across lineages derived from the same germ layers formed during embryogenesis. For example, the ectoderm gives rise to both long-lived neurons4,6,7 and short-lived epidermal skin cells.8 Similarly, the mesoderm gives rise to long-lived skeletal muscle4 and heart muscle9 and short-lived monocytes,10,11 while the endoderm is the origin of long-lived thyrocytes (cells of the thyroid gland)12 and short-lived urinary bladder cells.13 How such diverse cell lineage lifespans are supported within a single organism is not clear, but it appears that differentiation shapes lineages through epigenetic changes to establish biological strategies that give rise to lifespans that support the best fitness for cells in their respective niche. As fitness is subject to trade-offs, different cell types will adjust their gene regulatory networks according to their lifespan. We are interested in gene expression signatures that support diverse biological strategies to achieve longevity. Prior work on species longevity can help inform strategies for tackling this research question. Species longevity is a product of evolution and is largely shaped by genetic and environmental factors.14 Comparative transcriptome
studies of long-lived and short-lived mammals, and analyses that examined the longevity trait across a large group of mammals (tissue-by-tissue surveys, focusing on brain, liver and kidney), have revealed candidate longevity-associated processes.15,16 They provide gene expression signatures of longevity across mammals and may inform on interventions that mimic these changes, thereby potentially extending lifespan. It then follows that, in principle, comparative analyses of different cell types and tissues of a single organism may similarly reveal lifespan-promoting genes and pathways. Such analyses across cell types would be conceptually similar, yet orthogonal, to the analysis across species. Publicly available transcriptome data sets (for example, RNA-seq) generated by consortia, such as the Human Protein Atlas (HPA),17 Encyclopedia of DNA Elements (ENCODE),18 Functional Annotation Of Mammalian genome (FANTOM)19 and the Genotype-Tissue Expression (GTEx) project,20 are now available. They offer an opportunity to understand how gene expression programs are related to cellular turnover, as a proxy for cellular lifespan. Here we examined transcriptomes of 21 somatic cells and tissues to assess the utility of comparative gene expression methods for the identification of longevity-associated gene signatures.
RESULTS We interrogated publicly available transcriptomes (paired-end RNA-seq reads) of 21 human cell types and tissues, comprising 153 individual samples, with a mean age of 56 years (Table 1; details in Supplementary Table S1). Their turnover rates (an estimate of cell lifespan4) varied from 2 (monocytes) to 32,850 (neurons) days, with all three germ layers giving rise to both short-lived a...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/ekheefis-7496/data/document.pdf", "num_examples": 34, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ekheefis- /home/sid/tuning/finetune/backend/output/ekheefis-7496/data/ekheefis-7496.json...
|
null
|
completed
|
1764896878
|
1764901074
|
NULL
|
/home/sid/tuning/finetune/backend/output/ekheefis- /home/sid/tuning/finetune/backend/output/ekheefis-7496/adapter...
|
False
|
Edit
Delete
|
|
3770b1f5-7678-4e82-8759-dce971159e9d
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jztokeky-4259
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Evidence for a limit
|
Evidence for a limit to human lifespan
|
/home/sid/tuning/finetune/backend/output/jztokeky- /home/sid/tuning/finetune/backend/output/jztokeky-4259/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Driven by technological progress, human life expec Driven by technological progress, human life expectancy has increased greatly since the nineteenth century. Demographic evidence has revealed an ongoing reduction in old-age mortality and a rise of the maximum age at death, which may gradually extend human longevity1,2. Together with observations that lifespan in various animal species is flexible and can be increased by genetic or pharmaceutical intervention, these results have led to suggestions that longevity may not be subject to strict, species-specific genetic constraints. Here, by analysing global demographic data, we show that improvements in survival with age tend to decline after age 100, and that the age at death of the world’s oldest person has not increased since the 1990s. Our results strongly suggest that the maximum lifespan of humans is fixed and subject to natural constraints. Maximum lifespan is, in contrast to average lifespan, generally assumed to be a stable characteristic of a species3. For humans, the
maximum reported age at death is generally set at 122 years, the age at death of Jeanne Calment, still the oldest documented human
individual who ever lived4. However, some evidence suggests that
maximum lifespan is not fixed. Studies in model organisms have shown that maximum lifespan is flexible and can be affected by genetic and pharmacological interventions5. In Sweden, based on a long series of reliable information on the upper limits of human lifespan, the
maximum reported age at death was found to have risen from about
101 years during the 1860s to about 108 years during the 1990s6. According to the authors, this finding refutes the common assertion that human lifespan is fixed and unchanging over time6. Indeed, the most convincing argument that the maximum lifespan of humans is not fixed is the ongoing increase in life expectancy in most countries over the course of the last century1,2. Figure 1a shows this increase for France, a country with high-quality mortality data, but very similar patterns were found for most other developed nations (Extended Data Fig. 1). Hence, the possibility has been considered that mortality may decline further, breaking any pre-conceived boundaries of human lifespan1,7. As shown by data from the Human Mortality Database8, many of the historical gains in life expectancy have been attributed to a
reduction in early-life mortality. More recent data, however, show
evidence for a decline in late-life mortality, with the fraction of each birth cohort reaching old age increasing with calendar year. In France, the number of individuals per 100,000 surviving to old age (70 and up) has increased since 1900 (Fig. 1b), which points towards a continuing increase in human life expectancy. This pattern is very similar across the other 40 countries and territories included in the database (Extended Data Figs 2, 3). However, the rate of improvement in survival peaks and then declines for very old age levels (Fig. 1c), which points
1Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA. 2Department of Ophthalmology & Visual Sciences, Albert Einstein College of Medicine, Bronx, New York 10461, USA. *These authors contributed equally to this work.
1900 1950 2000 1
100
10,000
Female
Survivors per 100,000
1900 1950 2000
Male
Age (years) 70 80 90 100 105 110
1920 1940 1960 1980 2000
80
85
90
95
100
Year
Age with greatest gain (years)
1900 1920 1940 1960 1980 2000
30 40 50 60 70 80
Year
Life expectancy at birth (years)
Female Male
0204060801 00
0.02
0
0.04
0.06
Age (years)
Rate of change since 1900
Female Male
ab
cd
Figure 1 | Trends in life expectancy and late-life survival. a, Life expectancy at birth for the population in each given year. Life expectancy in France has increased over the course of the 20th and early 21st centuries. b, Regressions of the fraction of people surviving to old age demonstrate that survival has increased since 1900, but the rate of increase appears to be slower for ages over 100. c, Plotting the rate of
change (coefficients resulting from regression of log-transformed data) reveals that gains in survival peak around 100 years of age and then rapidly decline. d, Relationship between calendar year and the age that experiences the most rapid gains in survival over the past 100 years. The age with most rapid gains has increased over the century, but its rise has been slowing and it appears to have reached a plateau...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jztokeky-4259/data/document.pdf", "num_examples": 16, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/jztokeky- /home/sid/tuning/finetune/backend/output/jztokeky-4259/data/jztokeky-4259.json...
|
null
|
completed
|
1764899149
|
1764901242
|
NULL
|
/home/sid/tuning/finetune/backend/output/jztokeky- /home/sid/tuning/finetune/backend/output/jztokeky-4259/adapter...
|
False
|
Edit
Delete
|
|
18e12aca-f2c6-4bed-b809-3e0e1110881e
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
aygvnaxq-2918
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Impact of rapamycin life
|
Impact of rapamycin on longevity
|
/home/sid/tuning/finetune/backend/output/aygvnaxq- /home/sid/tuning/finetune/backend/output/aygvnaxq-2918/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This document is a comprehensive scientific review This document is a comprehensive scientific review exploring how rapamycin influences aging and longevity across biological systems. It explains, in clear mechanistic detail, how rapamycin inhibits the mTOR pathway, a central regulator of growth, metabolism, and cellular aging.
The paper summarizes:
1. Why Aging Happens
It describes aging as the gradual accumulation of cellular and molecular damage, leading to reduced function, increased disease risk, and ultimately death.
2. The Role of mTOR in Aging
mTOR is a nutrient-sensing pathway that controls growth, metabolism, protein synthesis, autophagy, and mitochondrial function.
Overactivation of mTOR accelerates aging.
Rapamycin inhibits mTORC1 and indirectly mTORC2, creating conditions that slow aging at the cellular, tissue, and organ level.
3. Rapamycin as a Longevity Drug
The review highlights extensive evidence from yeast, worms, flies, and mice, showing that rapamycin:
Extends lifespan
Improves healthspan
Reduces age-related diseases
4. Key Anti-Aging Mechanisms of Rapamycin
The document details multiple biological pathways influenced by rapamycin:
Protein Homeostasis
Improves fidelity of protein translation
Reduces toxic misfolded protein accumulation
Suppresses harmful senescence-associated secretory phenotype (SASP)
Autophagy Activation
Encourages the removal of damaged organelles and proteins
Protects against neurodegeneration, heart aging, liver aging, and metabolic decline
Mitochondrial Protection
Enhances function and reduces oxidative stress
Immune Rejuvenation
Balances inflammatory signaling
Reduces age-related immune dysfunction
5. Organ-Specific Benefits
The paper includes a detailed table summarizing preclinical evidence showing rapamycin’s benefits in:
Cardiovascular system
Nervous system
Liver
Kidneys
Muscles
Reproductive organs
Respiratory system
Gastrointestinal tract
These benefits involve improvements in:
Autophagy
Stem cell activity
Inflammation
Oxidative stress
Mitochondrial health
6. Limitations & Challenges
While promising, rapamycin has:
Metabolic side effects
Immune-related risks
Dose-timing challenges
Proper therapeutic regimens are required before safe widespread human use.
In Summary
This document provides an up-to-date, detailed, and scientific overview of how rapamycin may slow aging and extend lifespan by targeting mTOR signaling. It integrates molecular biology, animal research, and clinical considerations to outline rapamycin’s potential as one of the most powerful known geroprotective drugs....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/aygvnaxq-2918/data/document.pdf", "num_examples": 26, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/aygvnaxq- /home/sid/tuning/finetune/backend/output/aygvnaxq-2918/data/aygvnaxq-2918.json...
|
null
|
completed
|
1764889575
|
1764901608
|
NULL
|
/home/sid/tuning/finetune/backend/output/aygvnaxq- /home/sid/tuning/finetune/backend/output/aygvnaxq-2918/adapter...
|
False
|
Edit
Delete
|
|
7d81f0d8-d1f8-4053-adb9-5ded01f9e05f
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
dxnygstl-3313
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Healthy Living Guide
|
Healthy Living Guide
|
/home/sid/tuning/finetune/backend/output/dxnygstl- /home/sid/tuning/finetune/backend/output/dxnygstl-3313/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This PDF is a polished, reader-friendly, research- This PDF is a polished, reader-friendly, research-backed wellness guide created to help people improve their overall health in the years 2020–2021. Designed as a practical lifestyle companion, it presents clear, evidence-based advice on nutrition, physical activity, weight management, mental well-being, and maintaining healthy habits during challenging times—especially the COVID-19 pandemic.
It combines scientific recommendations, simple tools, checklists, and motivational strategies into an accessible format that supports long-term healthy living.
🔶 1. Purpose of the Guide
The document aims to help readers:
Understand the core principles of healthy living
Build habits that support long-term physical and emotional well-being
Adapt their lifestyle to pandemic-era challenges
Apply simple, realistic changes to diet, movement, and daily routines
It brings together the most up-to-date public health and nutrition research into a single, user-friendly resource.
🔶 2. Key Themes Covered
The guide addresses the essential pillars of health:
⭐ Healthy Eating
Emphasizes fruits, vegetables, whole grains, nuts, legumes, and healthy fats
Highlights the importance of high-quality food choices
Encourages limiting sugar, sodium, and processed foods
Offers practical meal planning and grocery tips
⭐ Healthy Weight
Explains the relationship between calorie intake, energy balance, and metabolism
Provides strategies for weight loss and weight maintenance
Introduces mindful eating and portion awareness
⭐ Healthy Movement
Encourages daily physical activity, not just structured exercise
Outlines benefits for cardiovascular health, muscle strength, mobility, and mood
Suggests ways to stay active at home
⭐ Mental and Emotional Well-Being
Provides guidance for reducing stress and supporting resilience
Highlights the role of sleep, social connection, and relaxation techniques
Offers coping strategies for pandemic-related anxiety
⭐ COVID-19 and Healthy Living
Explains how the pandemic influenced lifestyle patterns
Encourages maintaining routines for immunity and mental health
Offers science-based recommendations for safety and preventive care
🔶 3. Practical Tools Included
The guide contains numerous supportive features:
Healthy plate diagrams
Food quality rankings
Movement breaks and activity suggestions
Goal-setting templates
Simple recipes and snack ideas
Checklists for building healthy routines
These tools make it easy for readers to turn concepts into action.
🔶 4. Tone and Design
The document is:
Encouraging, positive, and supportive
Richly illustrated with colorful visuals
Organized into short, readable sections
Designed for both beginners and advanced health-conscious individuals
🔶 5. Core Message
The central idea of the guide is that healthy living is achievable through small, consistent, everyday decisions—not extreme diets or intense workout programs. It promotes balance, quality nutrition, regular movement, and mental well-being as the foundations of a long and healthy life.
⭐ Perfect One-Sentence Summary
This PDF is a clear, science-based, and practical guide that teaches readers how to improve their diet, activity levels, weight, and mental well-being—especially during the COVID-19 era—through simple, sustainable healthy living strategies....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/dxnygstl-3313/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/dxnygstl- /home/sid/tuning/finetune/backend/output/dxnygstl-3313/data/dxnygstl-3313.json...
|
null
|
failed
|
1764892616
|
1764901645
|
NULL
|
/home/sid/tuning/finetune/backend/output/dxnygstl- /home/sid/tuning/finetune/backend/output/dxnygstl-3313/adapter...
|
False
|
Edit
Delete
|
|
8e8ca1b4-de7c-4d60-a85d-3996892921e1
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
bqgaiyvm-8168
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
The Four Keys
|
The Four Keys to Longevity
|
/home/sid/tuning/finetune/backend/output/bqgaiyvm- /home/sid/tuning/finetune/backend/output/bqgaiyvm-8168/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Famous comedian George Burns was once quoted as sa Famous comedian George Burns was once quoted as saying, “If you live to be one hundred, you’ve got it made. Very few people die past that age”. By 2050, it is estimated that there will be more than one million centenarians living in the u.S.1 For most people, planning for retirement or their later years is focused mostly on finances and how they will spend their time. However, ensuring they spend those years in good health is something that many overlook. The times are certainly changing, with medical advances and technological breakthroughs, planning for retirement and living longer needs to be more holistic.
In 1970, average life expectancy at birth in the United States was 71 years. In 2014, it is 79 years; and by 2050, the U.S. Census Bureau projects that average life expectancy will be 84 years.2 Today, according to the National Institute on Aging, there are over 40 million people in the United States aged 65 or older, accounting for about 13 percent of the total population. In 1900, there were just 3.1 million older Americans, or about 4.1% of the population.3 The vast majority of baby boomers—those born between 1946 and 1964—are on a quest to improve their odds of living longer than previous generations. They not only want to live longer, they want to live healthily, happily and more financially secure than ever before. Although there is no magic potion to ensure a long and healthy life, there are some notable accounts of individuals, families, and even whole communities that have defied the aging odds.
The holy grail of longevity In one such amazing story, Stamatis Moraitis, a Greek veteran of World War II, narrates how he was diagnosed with lung cancer in the 1960s
while living in the United States.4 He decided to forgo chemotherapy, and instead returned to his birthplace, Ikaria, the island where “people forget to die”. Moraitis abandoned his western diet and lifestyle and embraced the traditional island culture. His American doctors had told Moraitis he had only nine months to live, yet after moving to Ikaria he was still living— cancer free—45 years after his original diagnosis. According to the story, he never had chemotherapy, took drugs or sought therapy of any sort. All he did was move home to Ikaria and embrace the local lifestyle. He claimed he even outlived his U.S. physicians who, decades earlier, had predicted his imminent death as the only plausible outcome of his devastating diagnosis. Moraitis is not alone when it comes to longevity on the island of Ikaria. In fact, University of Athens researchers have concluded that people on Ikaria are reaching the age of 90 at two-and-a-half times the rate of their American counterparts.5 Stark differences in their lifestyle are apparent, even to a casual observer. ...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/bqgaiyvm-8168/data/document.pdf", "num_examples": 4, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/bqgaiyvm- /home/sid/tuning/finetune/backend/output/bqgaiyvm-8168/data/bqgaiyvm-8168.json...
|
null
|
completed
|
1764898528
|
1764901837
|
NULL
|
/home/sid/tuning/finetune/backend/output/bqgaiyvm- /home/sid/tuning/finetune/backend/output/bqgaiyvm-8168/adapter...
|
False
|
Edit
Delete
|
|
c51dd11f-b64d-4ae8-8ffc-272f0fa4dfd5
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
arrmgvhy-3290
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Has the Rate of Human Age
|
Has the Rate of Human Aging Already Been Modified
|
/home/sid/tuning/finetune/backend/output/arrmgvhy- /home/sid/tuning/finetune/backend/output/arrmgvhy-3290/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
This paper investigates whether the biological rat This paper investigates whether the biological rate of human aging has changed over the past century, or whether improvements in survival and life expectancy result mostly from reducing early-life and midlife mortality rather than slowing aging itself.
The study uses historical mortality data and aging-rate models to determine if humans age more slowly today or if we simply live longer before aging starts dominating mortality.
🔍 Core Question
Has aging itself slowed down, or do we just survive long enough to reach old age more often?
📊 Methods Used
The study examines:
Mortality curves over time (e.g., 1900–present)
The Gompertz function, which mathematically describes how mortality risk doubles with age
Changes in:
Initial mortality rate (IMR)
Rate of aging (Gompertz slope)
Data comes from:
Historical life tables
Cross-country mortality records
Comparisons of birth cohorts over time
The focus is on whether the slope of mortality increase with age has changed — this slope is considered a direct indicator of the rate of aging.
🧠 Key Findings (Perfect Summary)
1. Human aging rate appears largely unchanged
The study finds no strong evidence that the rate at which mortality increases with age (the Gompertz slope) has slowed.
This means humans likely age at the same biological speed as they did 100 years ago.
2. What has changed is the starting point of aging
Early-life and midlife mortality have dropped dramatically due to sanitation, medicine, nutrition, and public health.
As a result, more people reach old age, giving the impression that aging has slowed.
But aging itself (measured by mortality acceleration) has remained stable.
3. Modern longevity gains are driven by shifting the mortality curve
Rather than flattening the curve (slower aging), society has:
Pushed the curve downward (lower mortality at all ages)
Delayed the onset of chronic disease
Improved survival after age 60
These factors extend lifespan without changing the underlying biological aging rate.
4. Even in recent decades, aging rate shows stability
Improvements after 1970 came from:
Cardiovascular improvements
Medical interventions
Smoking decline
But studies consistently show the rate of mortality acceleration remains constant.
🧬 Overall Interpretation
Human aging — measured as the exponential rise in mortality risk with age — has not slowed.
Instead, society has become better at preventing early death, allowing more people to reach advanced ages.
In short:
❗ We live longer not because we age slower, but because we avoid dying earlier.
📌 One-Sentence Perfect Summary
The paper concludes that although human life expectancy has increased dramatically, the biological rate of aging has remained essentially unchanged, and modern longevity gains are due to reduced mortality before and during old age rather than slower aging itself.
If you want, I can also provide:
A diagram or flowchart
A 5-line summary
A student-friendly explanation
A PDF or PowerPoint version
Just tell me!...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/arrmgvhy-3290/data/document.pdf", "num_examples": 64, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/arrmgvhy- /home/sid/tuning/finetune/backend/output/arrmgvhy-3290/data/arrmgvhy-3290.json...
|
null
|
completed
|
1764894210
|
1764901992
|
NULL
|
/home/sid/tuning/finetune/backend/output/arrmgvhy- /home/sid/tuning/finetune/backend/output/arrmgvhy-3290/adapter...
|
False
|
Edit
Delete
|
|
eaf15e4e-34b7-45f6-af33-87617548f0bf
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ufydvoij-3348
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Genetic longevity
|
Genetic Longevity
|
/home/sid/tuning/finetune/backend/output/ufydvoij- /home/sid/tuning/finetune/backend/output/ufydvoij-3348/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Markus Valge, Richard Meitern and Peeter Hõrak*
D Markus Valge, Richard Meitern and Peeter Hõrak*
Department of Zoology, University of Tartu, Tartu, Estonia
Life-history traits (traits directly related to survival and reproduction) co-evolve and materialize through physiology and behavior. Accordingly, lifespan can be hypothesized as a potentially informative marker of life-history speed that subsumes the impact of diverse morphometric and behavioral traits. We examined associations between parental longevity and various anthropometric traits in a sample of 4,000–11,000 Estonian children in the middle of the 20th century. The offspring phenotype was used as a proxy measure of parental genotype, so that covariation between offspring traits and parental longevity (defined as belonging to the 90th percentile of lifespan) could be used to characterize the aggregation between longevity and anthropometric traits. We predicted that larger linear dimensions of offspring associate with increased parental longevity and that testosterone-dependent traits associate with reduced paternal longevity. Twelve of 16 offspring traits were associated with mothers’ longevity, while three traits (rate of sexual maturation of daughters and grip strength and lung capacity of sons) robustly predicted fathers’ longevity. Contrary to predictions, mothers of children with small bodily dimensions lived longer, and paternal longevity was not linearly associated with their children’s body size (or testosterone-related traits). Our study thus failed to find evidence that high somatic investment into brain and body growth clusters with a long lifespan across generations, and/or that such associations can be detected on the basis of inter-generational phenotypic correlations.
KEYWORDS
anthropometric traits, body size, inter-generational study, longevity, obesity, sex difference
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/ufydvoij-3348/data/document.pdf", "num_examples": 17, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ufydvoij- /home/sid/tuning/finetune/backend/output/ufydvoij-3348/data/ufydvoij-3348.json...
|
null
|
completed
|
1764896608
|
1764902018
|
NULL
|
/home/sid/tuning/finetune/backend/output/ufydvoij- /home/sid/tuning/finetune/backend/output/ufydvoij-3348/adapter...
|
False
|
Edit
Delete
|
|
9a0425e4-d8fb-4bf8-b0c4-cf6fa577c747
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
rblkezvg-9303
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
New map of Life
|
New Map Of life
|
/home/sid/tuning/finetune/backend/output/rblkezvg- /home/sid/tuning/finetune/backend/output/rblkezvg-9303/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
The New Map of Life is a visionary blueprint for r The New Map of Life is a visionary blueprint for redesigning society to support lives that routinely reach 100 years with purpose, health, and opportunity. Instead of treating longer life as a crisis, the report reframes longevity as a profound achievement—and argues that success depends on rebuilding our social, economic, educational, and health systems for a world where centenarian life becomes normal.
The central idea:
We must redesign life’s stages—not extend old age.
This means improving childhood, work, education, health, communities, and inequality across the entire lifespan so that the extra decades are healthy and meaningful, not marked by disease or decline.
The report proposes eight foundational principles for a society built for longevity, supported by research in economics, psychology, public health, education, urban design, and social sciences.
🧭 Core Themes & Insights
1. Longevity Requires a New Life Course
The traditional model—education → work → retirement—breaks down in a 100-year society.
Instead, life must be flexible, with:
multiple careers
lifelong learning
extended midlife productivity
later, healthier transitions into older age
The report emphasizes fluid, nonlinear life paths that enable reinvention and continuous growth.
2. Healthspan Must Match Lifespan
A 100-year life is only valuable if the added decades are lived in good health.
The report calls for:
early-life investment in nutrition, physical activity, and stress reduction
prevention-centered healthcare
reduction of chronic disease
redesign of environments to promote active living
mental health support across all ages
The goal: compress morbidity, not extend frailty.
3. Learning Should Last a Lifetime
Education must shift from “front-loaded” to “lifelong.”
Key reforms include:
universal childhood support
multi-stage college or education “returns” at midlife
employer-supported learning sabbaticals
continual skill renewal in a changing economy
Learning becomes a lifelong asset for resilience, income stability, and cognitive health.
4. Work Must Become Age-Diverse, Flexible, and Purpose-Centered
With longer lives, people will work 50–60 years, but not continuously in the same way.
The report calls for:
flexible work arrangements
age-diverse teams
midlife career transitions
phased retirement options
redesigned job benefits not tied to single employers
Work must support health, meaning, and social connection—not just income.
5. Families and Communities Must Be Reinforced
Longevity increases the importance of:
strong social connections
multigenerational living options
community infrastructure
walkability
safe, accessible transportation
Healthy aging is deeply social, not individual.
6. Financial Security Must Stretch Across 100 Years
Traditional retirement models are unsustainable. The report recommends:
portable benefits
new savings models
flexible retirement ages
risk pooling
more equitable wealth-building opportunities
Financial systems must adapt to careers with multiple transitions.
7. Inequality Is the Biggest Threat to a Long-Lived Society
Longevity is currently unequally distributed—wealth, race, gender, and geography shape life expectancy.
The report insists that:
early childhood investment
improved education quality
access to preventive healthcare
better working conditions
are essential to ensure everyone benefits from longevity.
Longevity can only be a public good if it’s accessible to all.
🏙️ What a Longevity-Ready Society Looks Like
The report paints a picture of societies where:
cities are age-integrated and walkable
workplaces welcome people at 20, 40, 60, and 80
education is continuous
healthcare aggressively prevents disease
caregiving is supported, shared, and respected
retirement is flexible, not binary
purpose and connection last across the lifespan
It’s a future where longer life means better life, not longer decline.
🎯 Overall Conclusion
The New Map of Life reimagines everything—from childhood to education, work, health, retirement, community design, and public policy—for a world in which living to 100 is common. It argues that longevity is not a burden, but a once-in-human-history opportunity—if societies redesign their systems to support health, purpose, financial security, and social connection across all decades of life.
The message is transformative:
We don’t need to add years to life—we need to add life to years....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/rblkezvg-9303/data/document.pdf", "num_examples": 145, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/rblkezvg- /home/sid/tuning/finetune/backend/output/rblkezvg-9303/data/rblkezvg-9303.json...
|
null
|
completed
|
1764876274
|
1764902219
|
NULL
|
/home/sid/tuning/finetune/backend/output/rblkezvg- /home/sid/tuning/finetune/backend/output/rblkezvg-9303/adapter...
|
False
|
Edit
Delete
|
|
599ab3a3-c70a-4ba3-aec0-5660dee3f783
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
jofodeku-7336
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Exploring Human Longevity
|
Exploring Human Longevity
|
/home/sid/tuning/finetune/backend/output/jofodeku- /home/sid/tuning/finetune/backend/output/jofodeku-7336/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Riya Kewalani, Insiya Sajjad Hussain Saifudeen Du Riya Kewalani, Insiya Sajjad Hussain Saifudeen Dubai Gem Private School, Oud Metha Road, Dubai, PO Box 989, United Arab Emirates; riya.insiya@gmail.com
ABSTRACT: This research aims to investigate whether climate has an impact on life expectancy. In analyzing economic data from 172 countries that are publicly available from the United Nations World Economic Situation and Prospects 2019, as well as classifying all countries from different regions into hot or cold climate categories, the authors were able to single out income, education, sanitation, healthcare, ethnicity, and diet as constant factors to objectively quantify life expectancy. By measuring life expectancies as indicated by the climate, a comprehensible correlation can be built of whether the climate plays a vital role in prolonging human life expectancy and which type of climate would best support human life. Information gathered and analyzed from examination focused on the contention that human life expectancy can be increased living in colder regions. According to the research, an individual is likely to live an extra 2.2163 years in colder regions solely based on the country’s income status and climate, while completely ruling out genetics. KEYWORDS: Earth and Environmental Sciences; Life expectancy; Climate Science; Longevity; Income groups.
To better understand the study, it is crucial to understand the difference between life span, life expectancy, and longevity. According to the United Nations Population Division, life expectancy at birth is defined as “the average number of years that a newborn could expect to live if he or she were to pass through life subject to the age-specific mortality rates of a given period.” ¹ When addressing the life expectancy of a country, it refers to the mean life span of the populace in that country. This factual normal is determined dependent on a populace in general, including the individuals who die during labor, soon after labor, during puberty or adulthood, the individuals who die in war, and the individuals who live well into mature age. On the other hand, according to News Medical Life Sciences, life span refers to “the maximum number of years that a person can expect to live based on the greatest number of years anyone from the same data set has lived.” ² Taking humans as the model, the oldest recorded age attained by any living individual is 122 years, thereby implicating that human beings have a lifespan of at least 122 years. Life span is also known as longevity. As life expectancy has been extended, factors that affect it have been substantially debated. Consensus on factors that influence life expectancy include gender, ethnicity, pollution, climate change, literacy rate, healthcare access, and income level. Other changeable lifestyle factors also have an impact on life expectancy, including but not limited to, exercise, alcohol, smoking and diet. Nevertheless, life expectancy has for the most part continuously increased over time. The authors’ study aims to quantify and study the factors that affect human life expectancy. According to the American Journal of Physical Anthropology, Neolithic and Bronze Age data collected suggests life expectancy was an average of 36 years for both men and women. ³ Hunter-gatherers had a higher life expectancy than farmers as agriculture was not common yet and
people would resort to hunting and foraging food for survival. From then, life expectancy has been shown to be an upward trend, with most studies suggesting that by the late medieval English era, life expectancy of an aristocrat could be as much as 64 years; a figure that closely resembles the life expectancy of many populations around the world today. The increase in life expectancy is attributed to the advancements made in sanitation, education, and lodging during the nineteenth and mid-twentieth centuries, causing a consistent decrease in early and midlife mortality. Additionally, great progress made in numerous regions of well-being and health, such as the discovery of antibiotics, the green revolution that increased agricultural production, the enhancement of maternal and child survival, and mortality from infectious diseases, particularly human immunodeficiency virus (HIV)/ AIDS, tuberculosis (TB), malaria, and neglected tropical diseases (NTDs), has declined. According to the World Health Organization (WHO), global average life expectancy has increased by 5.5 years between 2000 and 2016, which has been notably the fastest increase since the 1950s.⁴ As per the United Nations World Population Prospects, life expectancy will continue to display an upward trend in all regions of the world. However, the average life expectancy isn’t predicted to grow exponentially as it has these past few decades. Projected increases in life expectancy in Northern America, Europe and Latin American and the Caribbean are expected to become more gradual and stagnant, while projections for Africa continue at a much higher rate compared to the rest of the world. Asia is expected to match the global average by the year 2050. Differences in life expectancy across regions of the world are estimated to persist even into the future due to the differences in group incomes, however, income disparity between regions is forecasted to diminish significantly by 2050 ...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/jofodeku-7336/data/document.pdf"}...
|
/home/sid/tuning/finetune/backend/output/jofodeku- /home/sid/tuning/finetune/backend/output/jofodeku-7336/data/jofodeku-7336.json...
|
null
|
failed
|
1764898903
|
1764902514
|
NULL
|
/home/sid/tuning/finetune/backend/output/jofodeku- /home/sid/tuning/finetune/backend/output/jofodeku-7336/adapter...
|
False
|
Edit
Delete
|
|
c4b246d6-e88e-4449-9a90-94825db1a914
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
dvrazzun-9083
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
From Life Span to Health
|
From Life Span to Health Span: Declaring “Victory”
|
/home/sid/tuning/finetune/backend/output/dvrazzun- /home/sid/tuning/finetune/backend/output/dvrazzun-9083/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
S. Jay Olshansky
School of Public Health, Univers S. Jay Olshansky
School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, USA Correspondence: sjayo@uic.edu
Adifficultdilemmahaspresenteditselfinthecurrentera.Modernmedicineandadvancesin the medical sciences are tightly focused on a quest to find ways to extend life—without considering either the consequences of success or the best way to pursue it. From the perspectiveofphysicianstreatingtheirpatients,itmakessensetohelpthemovercomeimmediate healthchallenges,butfurtherlifeextensioninincreasinglymoreagedbodieswillexposethe savedpopulationtoanelevatedriskofevenmoredisablinghealthconditionsassociatedwith aging. Extended survival brought forth by innovations designed to treat diseases will likely push more people into a“ red zone”a later phase in life when the risk of frailty and disability risesexponentially.Theinescapableconclusionfromtheseobservationsisthatlifeextension should no longer be the primary goal of medicine when applied to long-lived populations. The principal outcome and most important metric of success should be the extension of health span, and the technological advances described herein that are most likely to make the extension of healthy life possible.
ON THE ORIGIN OF LIFE SPAN How long people live as individuals, the expected duration of life of people of any age base do current death rates in a national population, and the demographic aging of national populations (e.g., proportion of the population aged 65 and older), are simple metrics that are colloquially understood as reflective of health and longevity. Someone that lives for 100 years had a lifespan of a century ,and a life expectancy at birth of 80 years for men in the United States means that male babies born today will live to an average of 80 years if death rates at all ages today prevail throughout the life of the cohort. When life expectancy rises or declines, that is inter pretend
as an improvement or worsening of public health. These demographic and statistical metrics are reflective measurement tools only—they disclose little about why they change or vary, they reveal nothing about why they exist at all, and theyare indirect and imprecise measures of the health of a population. Understandingwhythereisaspecies-specific life span to begin with and what forces influence its presence ,level ,and the dynamics of variation and change (collectively referred to her “life span determination”) is critical to comprehending why the topic
...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/dvrazzun-9083/data/document.pdf", "num_examples": 15, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/dvrazzun- /home/sid/tuning/finetune/backend/output/dvrazzun-9083/data/dvrazzun-9083.json...
|
null
|
completed
|
1764897569
|
1764902965
|
NULL
|
/home/sid/tuning/finetune/backend/output/dvrazzun- /home/sid/tuning/finetune/backend/output/dvrazzun-9083/adapter...
|
False
|
Edit
Delete
|
|
cfc82824-51e1-4f28-94bd-5d2a146aff50
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
kbpgbviq-7258
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Genetics of extreme human
|
Genetics of extreme human longevity to guide drug
|
/home/sid/tuning/finetune/backend/output/kbpgbviq- /home/sid/tuning/finetune/backend/output/kbpgbviq-7258/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Zhengdong D. Zhang 1 ✉, Sofiya Milman1,2, Jhih-R Zhengdong D. Zhang 1 ✉, Sofiya Milman1,2, Jhih-Rong Lin1, Shayne Wierbowski3, Haiyuan Yu3, Nir Barzilai1,2, Vera Gorbunova4, Warren C. Ladiges5, Laura J. Niedernhofer6, Yousin Suh 1,7, Paul D. Robbins 6 and Jan Vijg1,8
Ageing is the greatest risk factor for most common chronic human diseases, and it therefore is a logical target for developing interventions to prevent, mitigate or reverse multiple age-related morbidities. Over the past two decades, genetic and pharmacologic interventions targeting conserved pathways of growth and metabolism have consistently led to substantial extension of the lifespan and healthspan in model organisms as diverse as nematodes, flies and mice. Recent genetic analysis of long-lived individuals is revealing common and rare variants enriched in these same conserved pathways that significantly correlate with longevity. In this Perspective, we summarize recent insights into the genetics of extreme human longevity and propose the use of this rare phenotype to identify genetic variants as molecular targets for gaining insight into the physiology of healthy ageing and the development of new therapies to extend the human healthspan...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/kbpgbviq-7258/data/document.pdf", "num_examples": 21, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/kbpgbviq- /home/sid/tuning/finetune/backend/output/kbpgbviq-7258/data/kbpgbviq-7258.json...
|
null
|
completed
|
1764896137
|
1764903055
|
NULL
|
/home/sid/tuning/finetune/backend/output/kbpgbviq- /home/sid/tuning/finetune/backend/output/kbpgbviq-7258/adapter...
|
False
|
Edit
Delete
|
|
d62bfc4c-254d-4012-a4e0-5bb1653873b1
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
ofksvfmq-2726
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Life Expectancy
|
Life Expectancy and Economic Growth
|
/home/sid/tuning/finetune/backend/output/ofksvfmq- /home/sid/tuning/finetune/backend/output/ofksvfmq-2726/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Life expectancy does not affect all countries the Life expectancy does not affect all countries the same way.
Its impact depends on whether a country is before or after the demographic transition.
The demographic transition is the historical shift from:
High mortality & high fertility → Low mortality & low fertility
This shift completely changes how population, education, and income respond to improved life expectancy.
🧠 CORE IDEA (The Big Discovery)
Life expectancy can both increase and decrease economic growth — depending on the stage of development.
⭐ Before the demographic transition (pre-transitional countries):
Lower mortality → population grows faster
Fertility remains high
Little investment in education
Result: Population growth reduces per-capita income
📉 Life expectancy hurts economic growth in early-stage countries
Life Expectancy and Economic Gr…
⭐ After the demographic transition (post-transitional countries):
Lower mortality → population growth slows down
Families invest more in education (human capital rises)
Economic productivity increases
Result: Per-capita income grows faster
📈 Life expectancy boosts economic growth in advanced-stage countries
Life Expectancy and Economic Gr…
🔥 Ultimate Insight
Improving life expectancy is actually a trigger for the demographic transition itself.
This means:
When life expectancy becomes high enough, a country begins shifting from high fertility to low fertility.
This shift is what unlocks sustained long-run economic growth.
📌 The paper finds strong evidence:
Higher life expectancy significantly increases the probability of undergoing the demographic transition.
Life Expectancy and Economic Gr…
📊 How It Works – Mechanism Explained
1. Pre-Transition Phase (Low Development)
Mortality falls, people live longer
But fertility stays high → population explodes
More people sharing limited land/capital → income per capita drops
Education gains are small
Life Expectancy and Economic Gr…
2. Transition Phase (Around 1970 for many countries)
Fertility begins to fall
Population growth slows
Human capital investment begins to rise
Life Expectancy and Economic Gr…
3. Post-Transition Phase (High Development)
Longer lives → people invest more in education
Human capital grows
Smaller families → more resources per child
Income per capita increases strongly
Life Expectancy and Economic Gr…
🔍 Evidence From the Paper
Based on data from 47 countries (1940–2000):
✔ In pre-transitional countries:
Life expectancy increase → higher population, lower income per capita
Life Expectancy and Economic Gr…
✔ In post-transitional countries:
Life expectancy increase → lower population growth, higher income per capita, higher education levels
Life Expectancy and Economic Gr…
✔ By 2000:
Life expectancy had strong positive effects on schooling in all countries
Life Expectancy and Economic Gr…
🧩 Why Earlier Research Was Conflicting
Previous studies found:
Sometimes life expectancy increases GDP
Sometimes it decreases it
This paper explains why:
👉 The effect depends on whether the country has undergone the demographic transition.
If you mix pre- and post-transition countries, the results get confused.
Life Expectancy and Economic Gr…
🏁 Perfect One-Sentence Summary
Improvements in life expectancy can slow economic growth in early-stage countries by accelerating population growth but strongly boost growth in advanced countries by reducing fertility, raising education, and triggering the demographic transition....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/ofksvfmq-2726/data/document.pdf", "num_examples": 71, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/ofksvfmq- /home/sid/tuning/finetune/backend/output/ofksvfmq-2726/data/ofksvfmq-2726.json...
|
null
|
completed
|
1764887100
|
1764903246
|
NULL
|
/home/sid/tuning/finetune/backend/output/ofksvfmq- /home/sid/tuning/finetune/backend/output/ofksvfmq-2726/adapter...
|
False
|
Edit
Delete
|
|
72c13666-41f7-47ab-a17e-67dc58672e47
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
poagxwbb-4174
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Gene Expression Biomarker
|
Gene Expression Biomarkers and Longevity
|
/home/sid/tuning/finetune/backend/output/poagxwbb- /home/sid/tuning/finetune/backend/output/poagxwbb-4174/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Chronological age, a count of how many orbits of t Chronological age, a count of how many orbits of the sun an individual has made as a passenger of planet earth, is a useful but limited proxy of aging processes. Some individuals die of age related diseases in their sixties, while others live to double that age. As a result, a great deal of effort has been put into identifying biomarkers that reflect the underlying biological changes involved in aging. These markers would provide insights into what processes were involved, provide measures of how much biological aging had occurred and provide an outcome measure for monitoring the effects of interventions to slow ageing processes. Our DNA sequence is the fixed reference template from which all our proteins are produced. With the sequencing of the human genome we now have an accurate reference library of gene sequences. The recent development of a new generation of high throughput array technology makes it relatively inexpensive to simultaneously measure a large number of base sequences in DNA (or RNA, the molecule of gene expression). In the last decade, array technologies have supported great progress in identifying common DNA sequence differences (SNPs) that confer risks for age related diseases, and similar approaches are being used to identify variants associated with exceptional longevity [1]. A striking feature of the findings is that the majority of common disease-associated variants are located not in the protein coding sequences of genes, but in regions of the genome that do not produce proteins. This indicates that they may be involved in the regulation of nearby genes, or in the processing of their messages. While DNA holds the static reference sequences for life, an elaborate regulatory system influences whether and in what abundance gene transcripts and proteins are produced. The relative abundance of each tran
script is a good guide to the demand for each protein product in cells (see section 2 below). Thus, by examining gene expression patterns or signatures associated with aging or age related traits we can peer into the underlying production processes at a fundamental level. This approach has already proved successful in clinical applications, for example using gene signatures to classify cancer subtypes [2]. In aging research, recent work conducted in the InCHIANTI cohort has identified gene-expression signatures in peripheral leucocytes linked to several aging phenotypes, including low muscle strength, cognitive impairment, and chronological age itself. In the sections that follow we provide a brief introduction to the underlying processes involved in gene expression, and summarize key work in laboratory models of aging. We then provide an overview of recent work in humans, thus far mostly from studies of circulating white cells.
2 Introducing gene expression
Since the early 1900s a huge worldwide research effort has lead to the discovery and widespread use of genetic science (see the NIH website [3] for a comprehensive review of the history of the subject, and a more detailed description of the transfer of genetic information). The human genome contains the information needed to create every protein used by cells. The information in the DNA is transcribed into an intermediate molecule known as the messenger RNA (mRNA), which is then translated into the sequence of aminoacids (proteins) which ultimately determine the structural and functional characteristics of cells, tissues and organisms (see figure 1 for a summary of the process). RNA is both an intermediate to proteins and a regulatory molecule; therefore the transcriptome (the RNA ∗Address correspondence to Prof. David Melzer, Epidemiology and Public Health Group, Medical School, University of Exeter, Exeter EX1 2LU, UK. E-mail: D.Melzer@exeter.ac.uk
1
2 INTRODUCING GENE EXPRESSION
Figure 1: Representation of the transcription and translation processes from DNA to RNA to Protein — DNA makes RNA makes Protein. This is the central dogma of molecular biology, and describes the transfer of information from DNA (made of four bases; Adenine, Guanine, Cytosine and Thymine) to RNA to Protein (made of up to 20 different amino acids). Machinery known as RNA polymerase carries out transcription, where a single strand of RNA is created that is complementary to the DNA (i.e. the sequence is the same, but inverted although in RNA thymine (T) is replaced by uracil (U)). Not all RNA molecules are messenger RNA (mRNA) molecules: RNA can have regulatory functions (e.g. micro RNAs), and or can be functional themselves, for example in translation transfer RNA (tRNA) molecules have an amino acid bound to one end (the individual components of proteins) and at the other bind to a specific sequence of RNA (a codon again, this is complementary to this original sequence) for instance in the figure a tRNA carrying methionine (Met) can bind to the sequence of RNA, and the ribosome (also in part made of RNA) attaches the amino acids together to form a protein.
production of a particular cell, or sample of cells, at a given time) is of particular interest in determining the underlying molecular mechanisms behind specific traits and phenotypes. Genes are also regulated at the posttranscriptional level, by non-coding RNAs or by posttranslational modifications to the encoded proteins. Transcription is a responsive process (many factors regulate transcription and translation in response to specific intra and extra-cellular signals), and thus the amount of RNA produced varies over time and between cell types and tissues. In addition to the gene and RNA transcript sequences that will determine the final protein sequence (so called exons) there are also intervening sections (the introns) that are removed by a process known as mRNA splicing. While it was once assumed that each gene produced only one protein, it is now
clear that up to 90% of our genes can produce different versions of their protein through varying the number of exons included in the protein, a process called alternative splicing. Alteration in the functional properties of the protein can be introduced by varying which exons are included in the transcript, giving rise to different isoforms of the same gene. Many RNA regulatory factors govern this process, and variations to the DNA sequence can affect the binding of these factors (which can be thousands of base pairs from the gene itself) and alter when, where and for how long a particular transcript is produced. The amount of mRNA produced for a protein is not necessarily directly related to the amount of protein produced or present, as other regulatory processes are involved. The amount of mRNA is broadly indicative of...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/poagxwbb-4174/data/document.pdf", "num_examples": 79, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/poagxwbb- /home/sid/tuning/finetune/backend/output/poagxwbb-4174/data/poagxwbb-4174.json...
|
null
|
completed
|
1764896695
|
1764903284
|
NULL
|
/home/sid/tuning/finetune/backend/output/poagxwbb- /home/sid/tuning/finetune/backend/output/poagxwbb-4174/adapter...
|
False
|
Edit
Delete
|
|
8b62b28b-9069-46c1-bb84-48f0cd59d971
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
dhtkdhkl-2775
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
A Longevity Agenda
|
A Longevity Agenda for Singapore
|
/home/sid/tuning/finetune/backend/output/dhtkdhkl- /home/sid/tuning/finetune/backend/output/dhtkdhkl-2775/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Over the last 60 years, life expectancy in Singapo Over the last 60 years, life expectancy in Singapore has increased by nearly 20 years to reach 85 – one of the highest in the world. That’s an extraordinary achievement that is taken for granted and that too often leads to a conversation about the costs of an ageing society. Those costs and concerns are very real, but a deeper more fundamental set of questions need to be answered.
If we are living this much longer, then how do we – individuals, companies and governments – respond to make the most of this extra time? How do we restructure our lives to make sure that as many people as possible, live as long as possible, in as healthy and fulfilled ways as possible?
This note draws on the findings from a high-level conference, sponsored by Rockefeller Foundation and Prudential Singapore, to map out what a global longevity agenda looks like, and to raise awareness around the world – at a government, corporate and individual level – on how we need to seize the benefits of this wonderful human achievement of longer lives.
It also looks at the measures that Singapore has taken to adjust to longer lives. Reassuringly, Singapore leads the world along many dimensions that have to do with ageing, and also longevity. However, there is much that needs to be done. Framing policies around longevity and ‘all of life’ and not just ageing and ‘end of life’ is needed if Singapore is to collectively maximise the gains available.
A Longevity Agenda For Singapore I 2
Executive Summary
• Singapore is undergoing a rapid demographic transition which will see the average age of its society
increase as the proportion of its older citizens increases.
• An ageing society creates many challenges. However, at the same time, with the number of older
people increasing, Singapore is benefitting from a longevity dividend.
• On average, Singaporeans are living for longer and in better health. In other words, how we are
ageing is changing – it is not just about there being more senior people. Exploiting this opportunity
to seize these positive advantages is the longevity agenda.
• A new-born in Singapore today, faces the prospect of living on average one of the longest lives in
human history, and so needs to prepare for his or her future differently.
• At an individual level, Singaporeans are already behaving differently – in terms of marriage, families,
work and education. Many are acting as social pioneers as they try to create a new map of life.
• To support individuals as they adapt to longer lives, Singapore needs to create a new map of life
that enables as many people as possible to live as long as possible and as healthily and as fulfilled as
possible.
• Achieving this will also ensure that not only the individual, but also the economy will benefit.
• Singapore is at the international frontier of best practice in terms of adjusting to an ageing society. It
also leads the way with many longevity measures.
• Further entrenching social change and experimentation, and creating a positive narrative around
longer, healthier lives; in particular, extending policies away from a sole focus on the old and towards the whole course of life are some key priorities ahead of us. ...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/dhtkdhkl-2775/data/document.pdf", "num_examples": 17, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/dhtkdhkl- /home/sid/tuning/finetune/backend/output/dhtkdhkl-2775/data/dhtkdhkl-2775.json...
|
null
|
completed
|
1764900103
|
1764903410
|
NULL
|
/home/sid/tuning/finetune/backend/output/dhtkdhkl- /home/sid/tuning/finetune/backend/output/dhtkdhkl-2775/adapter...
|
False
|
Edit
Delete
|
|
fcfbd6a9-78fc-4c53-8c83-19511b4d9bd5
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
azjxghdg-4763
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Inconvenient Truths About
|
Inconvenient Truths About Human Longevity
|
/home/sid/tuning/finetune/backend/output/azjxghdg- /home/sid/tuning/finetune/backend/output/azjxghdg-4763/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
S. Jay Olshansky, PhD1,* and Bruce A. Carnes, PhD2 S. Jay Olshansky, PhD1,* and Bruce A. Carnes, PhD2
1University of Illinois at Chicago, Division of Epidemiology and Biostatistics. 2University of Oklahoma. *Address correspondence to: S. Jay Olshansky, PhD, University of Illinois at Chicago. E-mail: sjayo@uic.edu
Received: February 2, 2019; Editorial Decision Date: April 3, 2019
Decision Editor: Anne Newman, MD, MPH
Abstract The rise in human longevity is one of humanity’s crowning achievements. Although advances in public health beginning in the 19th century initiated the rise in life expectancy, recent gains have been achieved by reducing death rates at middle and older ages. A debate about the future course of life expectancy has been ongoing for the last quarter century. Some suggest that historical trends in longevity will continue and radical life extension is either visible on the near horizon or it has already arrived; whereas others suggest there are biologically based limits to duration of life, and those limits are being approached now. In “inconvenient truths about human longevity” we lay out the line of reasoning and evidence for why there are limits to human longevity; why predictions of radical life extension are unlikely to be forthcoming; why health extension should supplant life extension as the primary goal of medicine and public health; and why promoting advances in aging biology may allow humanity to break through biological barriers that influence both life span and health span, allowing for a welcome extension of the period of healthy life, a compression of morbidity, but only a marginal further increase in life expectancy.
Keywords: Longevity, Public Health, Life Expectancy....
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/azjxghdg-4763/data/document.pdf", "num_examples": 8, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/azjxghdg- /home/sid/tuning/finetune/backend/output/azjxghdg-4763/data/azjxghdg-4763.json...
|
null
|
completed
|
1764899209
|
1764903422
|
NULL
|
/home/sid/tuning/finetune/backend/output/azjxghdg- /home/sid/tuning/finetune/backend/output/azjxghdg-4763/adapter...
|
False
|
Edit
Delete
|
|
42f0b47e-7ea7-456d-80db-d7e53fefb810
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
taqjaqel-7779
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
Determinants of longevity
|
Determinants of longevity
|
/home/sid/tuning/finetune/backend/output/taqjaqel- /home/sid/tuning/finetune/backend/output/taqjaqel-7779/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
K. CHRISTENSENa & J. W. VAUPELb From abOdense K. CHRISTENSENa & J. W. VAUPELb From abOdense University Medical School, Odense, Denmark; bSanford Institute, Duke University, Durham, NC, USA; and aThe Danish Epidemiology Science Centre, The Steno Institute of Public Health, Department of Epidemiology and Social Medicine, Aarhus University Hospital, Aarhus, Denmark
Abstract. Christensen K, Vaupel JW (Odense University Medical School, Odense, Denmark; Sanford Institute, Duke University, Durham, NC, USA; and The Danish Epidemiology Science Centre, The Steno Institute of Public Health, Department of Epidemiology and Social Medicine, Aarhus University Hospital, Aarhus, Denmark). Determinants of longevity: genetic, environmental and medical factors (Review). J Intern Med 1996; 240: 333–41.
This review focuses on the determinants of longevity in the industrialized world, with emphasis on results from recently established data bases. Strong evidence is now available that demonstrates that in developed
Introduction
The determinants of longevity might be expected to be well understood. The duration of life has captured the attention of many people for thousands of years; an enormous array of vital-statistics data are available for many centuries. Life-span is easily measured compared with other health phenomena, and in many countries data are available on whole populations and not just study samples. Knowledge concerning determinants of human longevity, however, is still sparse, and much of the little that is known has been learned in recent years. This review
countries the maximum lifespan as well as the mean lifespan have increased substantially over the past century. There is no evidence of a genetically determined lifespan of around 85 years. On the contrary, the biggest absolute improvement in survival in recent decades has occurred amongst 80 year-olds. Approximately one-quarter of the variation in lifespan in developed countries can be attributed to genetic factors. The influence of both genetic and environmental factors on longevity can potentially be modified by medical treatment, behavioural changes and environmental improvements.
Keywords: centenarians, life expectancy, lifespan, mortality.
focuses on genetic, environmental and medical factors as determinants of longevity in developed countries and discusses alternative paradigms concerning human longevity.
How should longevity be measured?
Longevity can be studied in numerous ways; key questions include the following. How long can a human live? What is the average length of life? Are the maximum and average lengths of life approaching limits? Why do some individuals live longer than others? In addressing these questions, it is useful to
# 1996 Blackwell Science Ltd 333
334 K. CHRISTENSEN & J. W. VAUPEL
study the maximum lifespan actually achieved in various populations, the mean lifespan, and the variation in lifespan. Estimating the maximum lifespan of human beings is simply a matter of finding a well-documented case report of a person who lived longer than other welldocumented cases. The assessment of mean lifespan in an actual population requires that the study population is followed from birth to extinction. An alternative approach is to calculate age-specific death rates at some point in time for a population, and then use these death rates to determine how long people would live on average in a hypothetical population in which these death rates prevailed over the course of the people’s lives. This second kind of mean lifespan is generally known as life expectancy. The life expectancy of the Swedish population in 1996 is the average lifespan that would be achieved by the 1996 birth cohort if Swedish mortality rates at each age remained at 1996 levels for the entire future life of this cohort. Assessment of determinants of life expectancy and variation in lifespan amongst individuals rely on demographic comparisons of different populations and on such traditional epidemiological designs as follow-up studies of exposed or treated versus nonexposed or nontreated individuals. Designs from genetic epidemiology – such as twin, adoption and other family studies – are useful in estimating the relative importance of genes and environment for the variation in longevity.
Determinants of extreme longevity
Numerous extreme long-livers have been reported in various mountainous regions, including Georgia, Kashmir, and Vilcabamba. In most Western countries, including the Scandinavian countries, exceptional lifespans have also been reported. Examples are Drachenberg, a Danish–Norwegian sailor who died in 1772 and who claimed that he was born in 1626, and Jon Anderson, from Sweden, who claimed to be 147 years old when he died in 1729. There is noconvincingdocumentationfortheseextremelonglivers. When it has been possible to evaluate such reports, they have proven to be very improbable [1, 2]. In countries, like Denmark and Sweden, with a long tradition of censuses and vital statistics, remarkable and sudden declines in the number of
extreme long-livers occur with the introduction of more rigorous checking of information on age of death, as the result of laws requiring birth certificates, the development of church registers and the establishment of statistical bureaus [3, 4]. This suggests that early extreme long-livers were probably just cases of age exaggeration. Today (March 1996), the oldest reported welldocumented maximum lifespan for females is 121 years [5] and for males 113 years [6]. Both these persons are still alive. Analyses of reliable cases of long-livers show that longevity records have been repeatedly broken over past decades [3, 6]; this suggests that even longer human lifespans may occur in the future. There has been surprisingly little success in identifying factors associated with extreme longevity. A variety of centenarian studies have been conducted during the last half century. As reviewed by Segerberg [7], most of the earlier studies were based on highly selected samples of individuals, without rigorous validation of the ages of reputed centenarians. During the last decade several more comprehensive, less selected centenarian studies have been carried out in Hungary [8], France [9], Finland [10] and Denmark [11]. A few specific genetic factors have been found to be associated with extreme longevity. Takata et al. [12] found a significantly lower frequency of HLA-DRw9 amongst centenarians than in an adult control group in Japan, as well as a significantly higher frequency of HLA-DR1. The HLA-antigens amongst the Japanese centenarians are negatively associated with the presence of autoimmune diseases in the Japanese population, which suggests that the association with these genetic markers is mediated through a lower incidence of diseases. More recently, both a French study [13] and a Finnish study [14] found a low prevalence of the e4 allele of apolipoprotein E amongst centenarians. The e4 allele has consistently been shown to be a risk factor both for coronary heart disease and for Alzheimer’s dementia. In the French study [13], it was also found that centenarians had an increased prevalence of the DDgenotype of angiotensin-converting enzyme (ACE) compared with adult controls. This result is contrary to what was expected as the DD-genotype of ACE has been reported to be associated with myocardial infarction. Only a few genetic association studies concerning extreme longevity have been published...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/taqjaqel-7779/data/document.pdf", "num_examples": 24, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/taqjaqel- /home/sid/tuning/finetune/backend/output/taqjaqel-7779/data/taqjaqel-7779.json...
|
null
|
completed
|
1764899299
|
1764903502
|
NULL
|
/home/sid/tuning/finetune/backend/output/taqjaqel- /home/sid/tuning/finetune/backend/output/taqjaqel-7779/adapter...
|
False
|
Edit
Delete
|
|
da7edd9b-68c4-4b9b-98da-5377f50cff19
|
8684964a-bab1-4235-93a8-5fd5e24a1d0a
|
nlesxcge-4276
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
aging research
|
AFAR American aging research
|
/home/sid/tuning/finetune/backend/output/nlesxcge- /home/sid/tuning/finetune/backend/output/nlesxcge-4276/merged_fp16_hf...
|
xevyo
|
/home/sid/tuning/finetune/backend/output/xevyo-bas /home/sid/tuning/finetune/backend/output/xevyo-base-v1/merged_fp16_hf...
|
xevyo-base-v1
|
Researchers believe that your longevity, that is, Researchers believe that your longevity, that is, the duration of your life, may rely on your having longevity assurance genes. Genes are the bits of DNA that determine an organism’s physical characteristics and drive a whole range of physiological processes. Longevity assurance genes are variations (called alleles) of certain genes that may allow you to live longer (and perhaps more healthily) than other people who inherit other versions of that gene.
WHY ARE LONGEVITY ASSURANCE GENES IMPORTANT?
If scientists could identify longevity genes in humans, in theory, they might also be able to develop ways to manipulate those genes to enable people to live much longer than they do today. Slowing the
aging process would also likely delay the appearance of agerelated diseases such as cancer, diabetes, and Alzheimer’s disease and therefore make people
healthier as well.
Most longevity assurance genes that have already been identified in lower organisms such as yeast, worms, and fruit flies act to increase lifespan and grant resistance to harmful environmental stress. For example, scientists have identified single gene variantions in roundworms that can extend lifespans by 40 to 100 percent. These genes also allow worms to withstand often fatal temperature extremes, excessive levels of toxic free radicals (cellular waste products), or damage due to ultraviolet light.
Some of the longevity assurance genes in lower organisms have similar counterparts among human or mammalian genes, which scientists are now studying. While researchers have not yet found genes that predispose us to greater longevity, some have identified single human gene variants that seem to have a protective effect against certain age-related diseases and are associated with long life. For example, inheriting one version of a gene for a particular protein called apolipoprotein E (Apo E) may decrease a
person’s risk of developing heart
disease and Alzheimer’s disease.
Identification of genes that prevent or delay crippling diseases at old age may help us find novel strategies for assuring a healthier, longer life, and enhancing the quality of life in the elderly.
Researchers believe that your longevity may rely on your having longevity assurance genes.
Infoaging Guide to Longevity | 3
HOW MUCH OF LONGEVITY IS GENETICALLY DETERMINED?
By some estimates, we humans have about 25,000 genes. But only a small fraction of those affect the length of our lives. It is hard to imagine that so few genes can be responsible for such a complex phenomenon as longevity. In looking at personality, psychologists ask how much is nature, that is, inherited, and how much is nurture, which means resulting from external influences. Similar questions exist about the heritability of lifespan. In other words, just how much of longevity is
genetically determined and how much it is mediated by external influences, such as smoking, diet, lifestyle, stress, and occupational exposures?
Studies do show that long-lived parents have long-lived children. Studies of adoptees confirm that their expected lifespans correlate more strongly to those of their birth parents than those of their adoptive parents. One study of twins reared apart suggests about a 30 percent role for heredity in lifespan, while another says the influence is even smaller.
Some scientists estimate the maximal lifespan of a human to be approximately 120 years, a full 50 years longer than the Biblical three score and ten (Psalms 90:10). The people who have actually achieved that maximum can be counted on one hand—or one finger. Mme. Jeanne Calment of France was 122 years old at her death in 1997. But although few challengers to her record exist, we are seeing more and more members of our society reach 100. In fact, in the United States today, there are more than 60,000 centenarians, and their ranks are projected to grow to nearly 1 million
by 2050. Much of this growth will be due to the convergence of the large aging Boomer demographic and improvements in health and medicine.
Most people who get to 100 do so by avoidance. They shun tobacco and excess alcohol, the sun and pollutants, sloth, bad diets, anger, and isolation. Still, many of us may know at least one smoking, drinking, sunburnt, lazy,
cantankerous recluse who has lived to 100—and wondered how he or she did it.
More and more, scientists are finding that part of the explanation lies in our genes. The siblings of centenarians have a four times greater probability of surviving to age 90 than do siblings of people who have an average life expectancy. When it comes to living 100 years, the probability is 17 times greater in male siblings of centenarians and eight times greater in female siblings of centenarians than the average lifespan of their birth cohort.
On the flip side, we humans carry a number of genes that are deleterious to our health and longevity. These genes increase our risk for heart disease and cancer, as well as age-related but harmless symptoms such as gray hair and wrinkles. Though we cannot change our genetic pedigrees, perhaps if we know what unhelpful genes we carry, we can take steps, such as ridding ourselves of bad health habits and adopting good ones, that can overcome the disadvantages our genes confer and live as long as those people with good genes.
WHAT WE HAVE LEARNED FROM LOWER ORGANISMS
Our understanding of genes and aging has exploded in recent years, due in large part to groundbreaking work done in simpler
organisms. By studying the effect of genetic modification on lifespan in laboratory organisms, researchers now provide fundamental insights into basic mechanisms of aging.
These include:
• Yeast
• Worms
• Fruit Flies
• Mice
Yeast Researchers have identified more than 100 genes in baker’s yeast (Saccharomyces cerevisiae) that are associated with increased longevity, and even more provocatively, have found human versions of many of these genes. Further study is ongoing.
As with all other organisms tested, researchers have reported that restricting the amount of calories available to yeast, either through reducing the sugar or amino acid content of the culture medium, can increase lifespan. Caloric
restriction does not extend lifespan in yeast strains lacking one of the longevity assurance genes, SIR2. This result has been shown in multiple organisms from yeast to flies, and even in mice. The SIR2 protein is the founding member of the sirtuin family involved in
genomic stability, metabolism, stress resistance, and aging. Researchers have found that
overexpression of Sir2 extends lifespan, ...
|
{"input_type": "file", "source {"input_type": "file", "source": "/home/sid/tuning/finetune/backend/output/nlesxcge-4276/data/document.pdf", "num_examples": 52, "bad_lines": 0}...
|
/home/sid/tuning/finetune/backend/output/nlesxcge- /home/sid/tuning/finetune/backend/output/nlesxcge-4276/data/nlesxcge-4276.json...
|
null
|
completed
|
1764899965
|
1764903846
|
NULL
|
/home/sid/tuning/finetune/backend/output/nlesxcge- /home/sid/tuning/finetune/backend/output/nlesxcge-4276/adapter...
|
False
|
Edit
Delete
|